megaparsec/Text/Megaparsec/Prim.hs
2015-08-12 18:41:22 +06:00

667 lines
23 KiB
Haskell
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- |
-- Module : Text.Megaparsec.Prim
-- Copyright : © 2015 Megaparsec contributors
-- © 2007 Paolo Martini
-- © 19992001 Daan Leijen
-- License : BSD3
--
-- Maintainer : Mark Karpov <markkarpov@opmbx.org>
-- Stability : experimental
-- Portability : portable
--
-- The primitive parser combinators.
{-# OPTIONS_HADDOCK not-home #-}
module Text.Megaparsec.Prim
( State (..)
, Stream (..)
, Consumed (..)
, Reply (..)
, ParsecT
, Parsec
, runParsecT
, mkPT
, unknownError
, unexpected
, mergeErrorReply
, (<?>)
, label
, runParserT
, runParser
, parse
, parseMaybe
, parseTest
, try
, lookAhead
, token
, tokens
, tokenPrim
, getPosition
, getInput
, setPosition
, setInput
, getParserState
, setParserState
, updateParserState
, getState
, putState
, modifyState )
where
import Data.Bool (bool)
import qualified Data.ByteString.Char8 as C
import qualified Data.ByteString.Lazy.Char8 as CL
import qualified Data.Text as T
import qualified Data.Text.Lazy as TL
import Control.Monad
import Control.Monad.Identity
import Control.Monad.Trans
import Control.Monad.Reader.Class
import Control.Monad.State.Class hiding (state)
import Control.Monad.Cont.Class
import Control.Monad.Error.Class
import qualified Control.Applicative as A
import Text.Megaparsec.Error
import Text.Megaparsec.Pos
import Text.Megaparsec.ShowToken
-- | This is Parsec state, this is parametrized over stream type @s@, and
-- user state @u@.
data State s u = State
{ stateInput :: s
, statePos :: !SourcePos
, stateUser :: !u }
-- | An instance of @Stream s m t@ has stream type @s@, underlying monad @m@
-- and token type @t@ determined by the stream.
--
-- Some rough guidelines for a “correct” instance of Stream:
--
-- * @unfoldM uncons@ gives the @[t]@ corresponding to the stream.
-- * A @Stream@ instance is responsible for maintaining the “position
-- within the stream” in the stream state @s@. This is trivial unless
-- you are using the monad in a non-trivial way.
class (Monad m, ShowToken t) => Stream s m t | s -> t where
uncons :: s -> m (Maybe (t, s))
instance (Monad m, ShowToken t) => Stream [t] m t where
uncons [] = return Nothing
uncons (t:ts) = return $ Just (t, ts)
{-# INLINE uncons #-}
instance Monad m => Stream CL.ByteString m Char where
uncons = return . CL.uncons
instance Monad m => Stream C.ByteString m Char where
uncons = return . C.uncons
instance Monad m => Stream T.Text m Char where
uncons = return . T.uncons
{-# INLINE uncons #-}
instance Monad m => Stream TL.Text m Char where
uncons = return . TL.uncons
{-# INLINE uncons #-}
-- | This data structure represents an aspect of result of parser's
-- work. The two constructors have the following meaning:
--
-- * @Cosumed@ is a wrapper for result when some part of input stream
-- was consumed.
-- * @Empty@ is a wrapper for result when input stream is empty.
--
-- You shouldn't really need to know this. See also: 'Reply'.
data Consumed a = Consumed a
| Empty !a
-- | This data structure represents an aspect of result of parser's
-- work. The two constructors have the following meaning:
--
-- * @Ok@ for successfully run parser.
-- * @Error@ for failed parser.
--
-- You shouldn't really need to know this. See also 'Consumed'.
data Reply s u a = Ok a !(State s u) ParseError
| Error ParseError
-- | @ParsecT s u m a@ is a parser with stream type @s@, user state type @u@,
-- underlying monad @m@ and return type @a@. Parsec is strict in the user
-- state. If this is undesirable, simply use a data type like @data Box a =
-- Box a@ and the state type @Box YourStateType@ to add a level of
-- indirection.
newtype ParsecT s u m a = ParsecT
{ unParser :: forall b . State s u
-> (a -> State s u -> ParseError -> m b) -- consumed ok
-> (ParseError -> m b) -- consumed err
-> (a -> State s u -> ParseError -> m b) -- empty ok
-> (ParseError -> m b) -- empty err
-> m b }
-- | @Parsec@ is non-transformer variant of more general @ParsecT@
-- monad-transformer.
type Parsec s u = ParsecT s u Identity
instance Functor (ParsecT s u m) where
fmap = parsecMap
parsecMap :: (a -> b) -> ParsecT s u m a -> ParsecT s u m b
parsecMap f p = ParsecT $ \s cok cerr eok eerr ->
unParser p s (cok . f) cerr (eok . f) eerr
instance A.Applicative (ParsecT s u m) where
pure = return
(<*>) = ap
(*>) = (>>)
p1 <* p2 = do { x1 <- p1 ; void p2 ; return x1 }
instance A.Alternative (ParsecT s u m) where
empty = mzero
(<|>) = mplus
many p = reverse <$> manyAccum (:) p
instance Monad (ParsecT s u m) where
return = parserReturn
(>>=) = parserBind
fail = parserFail
parserReturn :: a -> ParsecT s u m a
parserReturn x = ParsecT $ \s _ _ eok _ -> eok x s (unknownError s)
parserBind :: ParsecT s u m a -> (a -> ParsecT s u m b) -> ParsecT s u m b
{-# INLINE parserBind #-}
parserBind m k = ParsecT $ \s cok cerr eok eerr ->
let
-- consumed-okay case for m
mcok x st err =
let
-- if (k x) consumes, those go straight up
pcok = cok
pcerr = cerr
-- if (k x) doesn't consume input, but is okay, we still
-- return in the consumed continuation
peok x' s' err' = cok x' s' (mergeError err err')
-- if (k x) doesn't consume input, but errors, we return the
-- error in the 'consumed-error' continuation
peerr err' = cerr (mergeError err err')
in unParser (k x) st pcok pcerr peok peerr
-- empty-ok case for m
meok x st err =
let
-- in these cases, (k x) can return as empty
pcok = cok
peok x' s' err' = eok x' s' (mergeError err err')
pcerr = cerr
peerr err' = eerr (mergeError err err')
in unParser (k x) st pcok pcerr peok peerr
-- consumed-error case for m
mcerr = cerr
-- empty-error case for m
meerr = eerr
in unParser m s mcok mcerr meok meerr
parserFail :: String -> ParsecT s u m a
parserFail msg = ParsecT $ \s _ _ _ eerr ->
eerr $ newErrorMessage (Message msg) (statePos s)
-- | Low-level unpacking of the ParsecT type. To actually run parser see
-- 'runParserT' and 'runParser'.
runParsecT :: Monad m =>
ParsecT s u m a -> State s u -> m (Consumed (m (Reply s u a)))
runParsecT p s = unParser p s cok cerr eok eerr
where cok a s' err = return . Consumed . return $ Ok a s' err
cerr err = return . Consumed . return $ Error err
eok a s' err = return . Empty . return $ Ok a s' err
eerr err = return . Empty . return $ Error err
-- | Low-level creation of the ParsecT type. You really shouldn't have to do
-- this.
mkPT :: Monad m =>
(State s u -> m (Consumed (m (Reply s u a)))) -> ParsecT s u m a
mkPT k = ParsecT $ \s cok cerr eok eerr -> do
cons <- k s
case cons of
Consumed mrep -> do
rep <- mrep
case rep of
Ok x s' err -> cok x s' err
Error err -> cerr err
Empty mrep -> do
rep <- mrep
case rep of
Ok x s' err -> eok x s' err
Error err -> eerr err
instance MonadIO m => MonadIO (ParsecT s u m) where
liftIO = lift . liftIO
instance MonadReader r m => MonadReader r (ParsecT s u m) where
ask = lift ask
local f p = mkPT $ \s -> local f (runParsecT p s)
instance MonadState s m => MonadState s (ParsecT s' u m) where
get = lift get
put = lift . put
instance MonadCont m => MonadCont (ParsecT s u m) where
callCC f = mkPT $ \s ->
callCC $ \c ->
runParsecT (f (\a -> mkPT $ \s' -> c (pack s' a))) s
where pack s a= Empty $ return (Ok a s (unknownError s))
instance MonadError e m => MonadError e (ParsecT s u m) where
throwError = lift . throwError
p `catchError` h = mkPT $ \s ->
runParsecT p s `catchError` \e ->
runParsecT (h e) s
instance MonadPlus (ParsecT s u m) where
mzero = parserZero
mplus = parserPlus
parserZero :: ParsecT s u m a
parserZero = ParsecT $ \s _ _ _ eerr -> eerr $ unknownError s
parserPlus :: ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a
{-# INLINE parserPlus #-}
parserPlus m n
= ParsecT $ \s cok cerr eok eerr ->
let
meerr err =
let
neok y s' err' = eok y s' (mergeError err err')
neerr err' = eerr $ mergeError err err'
in unParser n s cok cerr neok neerr
in unParser m s cok cerr eok meerr
instance MonadTrans (ParsecT s u) where
lift amb = ParsecT $ \s _ _ eok _ -> do
a <- amb
eok a s $ unknownError s
-- Errors
-- | Create new @ParseError@ object. It will contain information about
-- position at which error is happened and nothing more.
unknownError :: State s u -> ParseError
unknownError state = newErrorUnknown (statePos state)
-- | The parser @unexpected msg@ always fails with an unexpected error
-- message @msg@ without consuming any input.
--
-- The parsers 'fail', ('<?>') and @unexpected@ are the three parsers used
-- to generate error messages. Of these, only ('<?>') is commonly used.
unexpected :: Stream s m t => String -> ParsecT s u m a
unexpected msg = ParsecT $ \s _ _ _ eerr ->
eerr $ newErrorMessage (Unexpected msg) (statePos s)
-- | @mergeErrorReply e reply@ returns @reply@ with error @e@ added.
mergeErrorReply :: ParseError -> Reply s u a -> Reply s u a
mergeErrorReply e1 reply
= case reply of
Ok x state e2 -> Ok x state (mergeError e1 e2)
Error e2 -> Error (mergeError e1 e2)
-- Basic combinators
infix 0 <?>
-- | The parser @p \<?> msg@ behaves as parser @p@, but whenever the
-- parser @p@ fails /without consuming any input/, it replaces expect error
-- messages with the expect error message @msg@.
--
-- This is normally used at the end of a set alternatives where we want to
-- return an error message in terms of a higher level construct rather than
-- returning all possible characters. For example, if the @expr@ parser from
-- the “try” example would fail, the error message is: “…: expecting
-- expression”. Without the @(\<?>)@ combinator, the message would be like
-- “…: expecting \"let\" or letter”, which is less friendly.
(<?>) :: ParsecT s u m a -> String -> ParsecT s u m a
p <?> msg = label p msg
-- | A synonym for @\<?>@, but as a function instead of an operator.
label :: ParsecT s u m a -> String -> ParsecT s u m a
label p msg = labels p [msg]
labels :: ParsecT s u m a -> [String] -> ParsecT s u m a
labels p msgs = ParsecT $ \s cok cerr eok eerr ->
let eok' x s' error' = eok x s' $ if errorIsUnknown error'
then error'
else setExpectErrors error' msgs
eerr' err = eerr $ setExpectErrors err msgs
in unParser p s cok cerr eok' eerr'
where
setExpectErrors err [] = setErrorMessage (Expected "end of input") err
setExpectErrors err [m] = setErrorMessage (Expected m) err
setExpectErrors err (m:ms)
= foldr (\msg' err' -> addErrorMessage (Expected msg') err')
(setErrorMessage (Expected m) err) ms
-- Running a parser
-- | The most general way to run a parser. @runParserT p state filePath
-- input@ runs parser @p@ on the input list of tokens @input@, obtained from
-- source @filePath@ with the initial user state @st@. The @filePath@ is
-- only used in error messages and may be the empty string. Returns a
-- computation in the underlying monad @m@ that return either a 'ParseError'
-- ('Left') or a value of type @a@ ('Right').
runParserT :: Stream s m t =>
ParsecT s u m a -> u -> SourceName -> s -> m (Either ParseError a)
runParserT p u name s
= do res <- runParsecT p (State s (initialPos name) u)
r <- parserReply res
case r of
Ok x _ _ -> return (Right x)
Error err -> return (Left err)
where parserReply res
= case res of
Consumed r -> r
Empty r -> r
-- | The most general way to run a parser over the identity monad.
-- @runParser p state filePath input@ runs parser @p@ on the input list of
-- tokens @input@, obtained from source @filePath@ with the initial user
-- state @st@. The @filePath@ is only used in error messages and may be the
-- empty string. Returns either a 'ParseError' ('Left') or a value of type
-- @a@ ('Right').
--
-- > parseFromFile p fname = runParser p () fname <$> readFile fname
runParser :: Stream s Identity t =>
Parsec s u a -> u -> SourceName -> s -> Either ParseError a
runParser p u name s = runIdentity $ runParserT p u name s
-- | @parse p filePath input@ runs a parser @p@ over identity without user
-- state. The @filePath@ is only used in error messages and may be the empty
-- string. Returns either a 'ParseError' ('Left') or a value of type @a@
-- ('Right').
--
-- > main = case (parse numbers "" "11, 2, 43") of
-- > Left err -> print err
-- > Right xs -> print (sum xs)
-- >
-- > numbers = commaSep integer
parse :: Stream s Identity t =>
Parsec s () a -> SourceName -> s -> Either ParseError a
parse p = runParser p ()
-- | @parseMaybe p input@ runs parser @p@ on @input@ and returns result
-- inside 'Just' on success and 'Nothing' on failure.
parseMaybe :: Stream s Identity t => Parsec s () a -> s -> Maybe a
parseMaybe p s =
case parse p "" s of
Left _ -> Nothing
Right x -> Just x
-- | The expression @parseTest p input@ applies a parser @p@ against
-- input @input@ and prints the result to stdout. Used for testing.
parseTest :: (Stream s Identity t, Show a) => Parsec s () a -> s -> IO ()
parseTest p input =
case parse p "" input of
Left err -> putStr "parse error at " >> print err
Right x -> print x
-- | The parser @try p@ behaves like parser @p@, except that it
-- pretends that it hasn't consumed any input when an error occurs.
--
-- This combinator is used whenever arbitrary look ahead is needed. Since it
-- pretends that it hasn't consumed any input when @p@ fails, the ('<|>')
-- combinator will try its second alternative even when the first parser
-- failed while consuming input.
--
-- The @try@ combinator can for example be used to distinguish identifiers
-- and reserved words. Both reserved words and identifiers are a sequence of
-- letters. Whenever we expect a certain reserved word where we can also
-- expect an identifier we have to use the @try@ combinator. Suppose we
-- write:
--
-- > expr = letExpr <|> identifier <?> "expression"
-- >
-- > letExpr = string "let" >> …
-- > identifier = some letter
--
-- If the user writes “lexical”, the parser fails with: @unexpected \'x\',
-- expecting \'t\' in \"let\"@. Indeed, since the ('<|>') combinator only
-- tries alternatives when the first alternative hasn't consumed input, the
-- @identifier@ parser is never tried (because the prefix “le” of the
-- @string \"let\"@ parser is already consumed). The right behaviour can be
-- obtained by adding the @try@ combinator:
--
-- > expr = letExpr <|> identifier <?> "expression"
-- >
-- > letExpr = try (string "let") >> …
-- > identifier = some letter
try :: ParsecT s u m a -> ParsecT s u m a
try p = ParsecT $ \s cok _ eok eerr -> unParser p s cok eerr eok eerr
-- | @lookAhead p@ parses @p@ without consuming any input.
--
-- If @p@ fails and consumes some input, so does @lookAhead@. Combine with
-- 'try' if this is undesirable.
lookAhead :: Stream s m t => ParsecT s u m a -> ParsecT s u m a
lookAhead p = ParsecT $ \s _ cerr eok eerr -> do
let eok' a _ _ = eok a s (newErrorUnknown (statePos s))
unParser p s eok' cerr eok' eerr
-- | The parser @token posFromTok testTok@ accepts a token @t@ with result
-- @x@ when the function @testTok t@ returns @'Just' x@. The source position
-- of the @t@ should be returned by @posFromTok t@. Token will be shown with
-- 'showToken' function.
--
-- This combinator is expressed in terms of 'tokenPrim'. It is used to
-- accept user defined token streams. For example, suppose that we have a
-- stream of basic tokens tupled with source positions. We can than define a
-- parser that accepts single tokens as:
--
-- > mytoken x = token posFromTok testTok
-- > where posFromTok (pos,t) = pos
-- > testTok (pos,t) = if x == t then Just t else Nothing
token :: Stream s Identity t =>
(t -> SourcePos) -- ^ Computes the position of a token.
-> (t -> Maybe a) -- ^ Matching function for the token to parse.
-> Parsec s u a
token tokpos = tokenPrim nextpos
where nextpos _ tok ts =
case runIdentity (uncons ts) of
Nothing -> tokpos tok
Just (tok', _) -> tokpos tok'
-- | The parser @tokens posFromTok@ parses list of tokens and returns
-- it. The resulting parser will use 'showToken' to pretty-print the
-- collection of tokens.
--
-- This can be used to example to write 'Text.Megaparsec.Char.string':
--
-- > string = tokens updatePosString
tokens :: (Stream s m t, Eq t, ShowToken [t]) =>
(SourcePos -> [t] -> SourcePos) -- ^ Computes position of tokens.
-> [t] -- ^ List of tokens to parse
-> ParsecT s u m [t]
{-# INLINE tokens #-}
tokens _ [] = ParsecT $ \s _ _ eok _ -> eok [] s $ unknownError s
tokens nextposs tts
= ParsecT $ \(State input pos u) cok cerr _ eerr ->
let errExpect x = setErrorMessage (Expected $ showToken tts)
(newErrorMessage (Unexpected x) pos)
walk [] _ rs = let pos' = nextposs pos tts
s' = State rs pos' u
in cok tts s' $ newErrorUnknown pos'
walk (t:ts) i rs = do
sr <- uncons rs
let errorCont = if i == 0 then eerr else cerr
what = bool (showToken $ take i tts) "end of input" (i == 0)
case sr of
Nothing -> errorCont . errExpect $ what
Just (x,xs)
| t == x -> walk ts (succ i) xs
| otherwise -> errorCont . errExpect . showToken $
take i tts ++ [x]
in walk tts 0 input
-- | The parser @tokenPrim nextPos testTok@ accepts a token @t@ with result
-- @x@ when the function @testTok t@ returns @'Just' x@. The position of the
-- /next/ token should be returned when @nextPos@ is called with the current
-- source position @pos@, the current token @t@ and the rest of the tokens
-- @toks@, @nextPos pos t toks@.
--
-- This is the most primitive combinator for accepting tokens. For example,
-- the 'Text.Megaparsec.Char.char' parser could be implemented as:
--
-- > char c = tokenPrim nextPos testChar
-- > where testChar x = if x == c then Just x else Nothing
-- > nextPos pos x xs = updatePosChar pos x
tokenPrim :: Stream s m t =>
(SourcePos -> t -> s -> SourcePos) -- ^ Next position calculating function.
-> (t -> Maybe a) -- ^ Matching function for the token to parse.
-> ParsecT s u m a
{-# INLINE tokenPrim #-}
tokenPrim nextpos = tokenPrimEx nextpos Nothing
tokenPrimEx :: Stream s m t =>
(SourcePos -> t -> s -> SourcePos)
-> Maybe (SourcePos -> t -> s -> u -> u)
-> (t -> Maybe a)
-> ParsecT s u m a
{-# INLINE tokenPrimEx #-}
tokenPrimEx nextpos Nothing test
= ParsecT $ \(State input pos user) cok _ _ eerr -> do
r <- uncons input
case r of
Nothing -> eerr $ unexpectError "end of input" pos
Just (c,cs)
-> case test c of
Just x -> let newpos = nextpos pos c cs
newstate = State cs newpos user
in seq newpos $ seq newstate $
cok x newstate (newErrorUnknown newpos)
Nothing -> eerr $ unexpectError (showToken c) pos
tokenPrimEx nextpos (Just nextState) test
= ParsecT $ \(State input pos user) cok _ _ eerr -> do
r <- uncons input
case r of
Nothing -> eerr $ unexpectError "end of input" pos
Just (c,cs)
-> case test c of
Just x -> let newpos = nextpos pos c cs
newUser = nextState pos c cs user
newstate = State cs newpos newUser
in seq newpos $ seq newstate $
cok x newstate (newErrorUnknown newpos)
Nothing -> eerr $ unexpectError (showToken c) pos
unexpectError :: String -> SourcePos -> ParseError
unexpectError msg = newErrorMessage (Unexpected msg)
manyAccum :: (a -> [a] -> [a]) -> ParsecT s u m a -> ParsecT s u m [a]
manyAccum acc p =
ParsecT $ \s cok cerr eok _ ->
let walk xs x s' _ =
unParser p s'
(seq xs $ walk $ acc x xs) -- consumed-ok
cerr -- consumed-err
manyErr -- empty-ok
(cok (acc x xs) s') -- empty-err
in unParser p s (walk []) cerr manyErr (eok [] s)
manyErr :: forall t . t
manyErr =
error
"Text.Megaparsec.Prim.many: combinator 'many' is applied to a parser \
\that accepts an empty string."
-- Parser state combinators
-- | Returns the current source position. See also 'SourcePos'.
getPosition :: Monad m => ParsecT s u m SourcePos
getPosition = statePos <$> getParserState
-- | Returns the current input.
getInput :: Monad m => ParsecT s u m s
getInput = stateInput <$> getParserState
-- | @setPosition pos@ sets the current source position to @pos@.
setPosition :: Monad m => SourcePos -> ParsecT s u m ()
setPosition pos = void $ updateParserState (\(State s _ u) -> State s pos u)
-- | @setInput input@ continues parsing with @input@. The 'getInput' and
-- @setInput@ functions can for example be used to deal with #include files.
setInput :: Monad m => s -> ParsecT s u m ()
setInput s = void $ updateParserState (\(State _ pos u) -> State s pos u)
-- | Returns the full parser state as a 'State' record.
getParserState :: Monad m => ParsecT s u m (State s u)
getParserState = updateParserState id
-- | @setParserState st@ set the full parser state to @st@.
setParserState :: Monad m => State s u -> ParsecT s u m (State s u)
setParserState st = updateParserState (const st)
-- | @updateParserState f@ applies function @f@ to the parser state.
updateParserState :: (State s u -> State s u) -> ParsecT s u m (State s u)
updateParserState f =
ParsecT $ \s _ _ eok _ -> let s' = f s in eok s' s' $ unknownError s'
-- User state combinators
-- | Returns the current user state.
getState :: Monad m => ParsecT s u m u
getState = stateUser <$> getParserState
-- | @putState st@ set the user state to @st@.
putState :: Monad m => u -> ParsecT s u m ()
putState u = void $ updateParserState (\s -> s { stateUser = u })
-- | @modifyState f@ applies function @f@ to the user state. Suppose
-- that we want to count identifiers in a source, we could use the user
-- state as:
--
-- > expr = Id <$> identifier <* modifyState (+1)
modifyState :: Monad m => (u -> u) -> ParsecT s u m ()
modifyState f = void $ updateParserState (\s -> s { stateUser = f (stateUser s)})