sq/cli/diff/internal/go-udiff/lcs/common.go
Neil O'Toole 1ea24dac4a
#229: sq diff core (#230)
* "sq diff" initial implementation

* Refactor "cli" pkg.
2023-05-19 08:24:18 -06:00

180 lines
4.6 KiB
Go

// Copyright 2022 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package lcs
import (
"log"
"sort"
)
// lcs is a longest common sequence
type lcs []diag
// A diag is a piece of the edit graph where A[X+i] == B[Y+i], for 0<=i<Len.
// All computed diagonals are parts of a longest common subsequence.
type diag struct {
X, Y int
Len int
}
// sort sorts in place, by lowest X, and if tied, inversely by Len
func (l lcs) sort() lcs {
sort.Slice(l, func(i, j int) bool {
if l[i].X != l[j].X {
return l[i].X < l[j].X
}
return l[i].Len > l[j].Len
})
return l
}
// validate that the elements of the lcs do not overlap
// (can only happen when the two-sided algorithm ends early)
// expects the lcs to be sorted
func (l lcs) valid() bool {
for i := 1; i < len(l); i++ {
if l[i-1].X+l[i-1].Len > l[i].X {
return false
}
if l[i-1].Y+l[i-1].Len > l[i].Y {
return false
}
}
return true
}
// repair overlapping lcs
// only called if two-sided stops early
func (l lcs) fix() lcs {
// from the set of diagonals in l, find a maximal non-conflicting set
// this problem may be NP-complete, but we use a greedy heuristic,
// which is quadratic, but with a better data structure, could be D log D.
// indepedent is not enough: {0,3,1} and {3,0,2} can't both occur in an lcs
// which has to have monotone x and y
if len(l) == 0 {
return nil
}
sort.Slice(l, func(i, j int) bool { return l[i].Len > l[j].Len })
tmp := make(lcs, 0, len(l))
tmp = append(tmp, l[0])
for i := 1; i < len(l); i++ {
var dir direction
nxt := l[i]
for _, in := range tmp {
if dir, nxt = overlap(in, nxt); dir == empty || dir == bad {
break
}
}
if nxt.Len > 0 && dir != bad {
tmp = append(tmp, nxt)
}
}
tmp.sort()
if false && !tmp.valid() { // debug checking
log.Fatalf("here %d", len(tmp))
}
return tmp
}
type direction int
const (
empty direction = iota // diag is empty (so not in lcs)
leftdown // proposed acceptably to the left and below
rightup // proposed diag is acceptably to the right and above
bad // proposed diag is inconsistent with the lcs so far
)
// overlap trims the proposed diag prop so it doesn't overlap with
// the existing diag that has already been added to the lcs.
func overlap(exist, prop diag) (direction, diag) {
if prop.X <= exist.X && exist.X < prop.X+prop.Len {
// remove the end of prop where it overlaps with the X end of exist
delta := prop.X + prop.Len - exist.X
prop.Len -= delta
if prop.Len <= 0 {
return empty, prop
}
}
if exist.X <= prop.X && prop.X < exist.X+exist.Len {
// remove the beginning of prop where overlaps with exist
delta := exist.X + exist.Len - prop.X
prop.Len -= delta
if prop.Len <= 0 {
return empty, prop
}
prop.X += delta
prop.Y += delta
}
if prop.Y <= exist.Y && exist.Y < prop.Y+prop.Len {
// remove the end of prop that overlaps (in Y) with exist
delta := prop.Y + prop.Len - exist.Y
prop.Len -= delta
if prop.Len <= 0 {
return empty, prop
}
}
if exist.Y <= prop.Y && prop.Y < exist.Y+exist.Len {
// remove the beginning of peop that overlaps with exist
delta := exist.Y + exist.Len - prop.Y
prop.Len -= delta
if prop.Len <= 0 {
return empty, prop
}
prop.X += delta // no test reaches this code
prop.Y += delta
}
if prop.X+prop.Len <= exist.X && prop.Y+prop.Len <= exist.Y {
return leftdown, prop
}
if exist.X+exist.Len <= prop.X && exist.Y+exist.Len <= prop.Y {
return rightup, prop
}
// prop can't be in an lcs that contains exist
return bad, prop
}
// manipulating Diag and lcs
// prepend a diagonal (x,y)-(x+1,y+1) segment either to an empty lcs
// or to its first Diag. prepend is only called to extend diagonals
// the backward direction.
func (lcs lcs) prepend(x, y int) lcs {
if len(lcs) > 0 {
d := &lcs[0]
if int(d.X) == x+1 && int(d.Y) == y+1 {
// extend the diagonal down and to the left
d.X, d.Y = int(x), int(y)
d.Len++
return lcs
}
}
r := diag{X: int(x), Y: int(y), Len: 1}
lcs = append([]diag{r}, lcs...)
return lcs
}
// append appends a diagonal, or extends the existing one.
// by adding the edge (x,y)-(x+1.y+1). append is only called
// to extend diagonals in the forward direction.
func (lcs lcs) append(x, y int) lcs {
if len(lcs) > 0 {
last := &lcs[len(lcs)-1]
// Expand last element if adjoining.
if last.X+last.Len == x && last.Y+last.Len == y {
last.Len++
return lcs
}
}
return append(lcs, diag{X: x, Y: y, Len: 1})
}
// enforce constraint on d, k
func ok(d, k int) bool {
return d >= 0 && -d <= k && k <= d
}