stable-diffusion-webui/webui.py

1074 lines
41 KiB
Python
Raw Normal View History

2022-08-22 17:15:46 +03:00
import argparse, os, sys, glob
2022-08-25 23:31:44 +03:00
from collections import namedtuple
2022-08-22 17:15:46 +03:00
import torch
import torch.nn as nn
import numpy as np
import gradio as gr
from omegaconf import OmegaConf
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
2022-08-22 17:15:46 +03:00
from itertools import islice
from einops import rearrange, repeat
from torch import autocast
import mimetypes
import random
import math
import html
import time
import json
import traceback
2022-08-22 17:15:46 +03:00
2022-08-25 23:31:44 +03:00
import k_diffusion.sampling
2022-08-22 17:15:46 +03:00
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
import ldm.modules.encoders.modules
2022-08-22 17:15:46 +03:00
try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
from transformers import logging
logging.set_verbosity_error()
except:
pass
2022-08-22 17:15:46 +03:00
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI
mimetypes.init()
mimetypes.add_type('application/javascript', '.js')
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
opt_f = 8
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
invalid_filename_chars = '<>:"/\|?*\n'
config_filename = "config.json"
2022-08-22 17:15:46 +03:00
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/stable-diffusion/v1-inference.yaml", help="path to config which constructs model",)
parser.add_argument("--ckpt", type=str, default="models/ldm/stable-diffusion-v1/model.ckpt", help="path to checkpoint of model",)
parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN')) # i disagree with where you're putting it but since all guidefags are doing it this way, there you go
parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware accleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default='embeddings', help="embeddings dirtectory for textual inversion (default: embeddings)")
cmd_opts = parser.parse_args()
2022-08-22 17:15:46 +03:00
css_hide_progressbar = """
.wrap .m-12 svg { display:none!important; }
.wrap .m-12::before { content:"Loading..." }
.progress-bar { display:none!important; }
.meta-text { display:none!important; }
"""
2022-08-22 17:15:46 +03:00
2022-08-25 23:31:44 +03:00
SamplerData = namedtuple('SamplerData', ['name', 'constructor'])
samplers = [
*[SamplerData(x[0], lambda model: KDiffusionSampler(model, x[1])) for x in [
('LMS', 'sample_lms'),
('Heun', 'sample_heun'),
('Euler', 'sample_euler'),
('Euler ancestral', 'sample_euler_ancestral'),
('DPM 2', 'sample_dpm_2'),
('DPM 2 Ancestral', 'sample_dpm_2_ancestral'),
] if hasattr(k_diffusion.sampling, x[1])],
SamplerData('DDIM', lambda model: DDIMSampler(model)),
SamplerData('PLMS', lambda model: PLMSSampler(model)),
]
RealesrganModelInfo = namedtuple("RealesrganModelInfo", ["name", "location", "model", "netscale"])
try:
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
realesrgan_models = [
RealesrganModelInfo(
name="Real-ESRGAN 2x plus",
location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
netscale=2, model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
),
RealesrganModelInfo(
name="Real-ESRGAN 4x plus",
location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
netscale=4, model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
),
RealesrganModelInfo(
name="Real-ESRGAN 4x plus anime 6B",
location="https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
netscale=4, model=lambda: RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
),
]
have_realesrgan = True
except:
print("Error loading Real-ESRGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
realesrgan_models = [RealesrganModelInfo('None', '', 0, None)]
have_realesrgan = False
class Options:
data = None
data_labels = {
"outdir": ("", "Output dictectory; if empty, defaults to 'outputs/*'"),
"samples_save": (True, "Save indiviual samples"),
"samples_format": ('png', 'File format for indiviual samples'),
"grid_save": (True, "Save image grids"),
"grid_format": ('png', 'File format for grids'),
"grid_extended_filename": (False, "Add extended info (seed, prompt) to filename when saving grid"),
"n_rows": (-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", -1, 16),
"jpeg_quality": (80, "Quality for saved jpeg images", 1, 100),
"verify_input": (True, "Check input, and produce warning if it's too long"),
"enable_pnginfo": (True, "Save text information about generation parameters as chunks to png files"),
"prompt_matrix_add_to_start": (True, "In prompt matrix, add the variable combination of text to the start of the prompt, rather than the end"),
}
def __init__(self):
self.data = {k: v[0] for k, v in self.data_labels.items()}
def __setattr__(self, key, value):
if self.data is not None:
if key in self.data:
self.data[key] = value
return super(Options, self).__setattr__(key, value)
def __getattr__(self, item):
if self.data is not None:
if item in self.data:
return self.data[item]
if item in self.data_labels:
return self.data_labels[item][0]
return super(Options, self).__getattribute__(item)
def save(self, filename):
with open(filename, "w", encoding="utf8") as file:
json.dump(self.data, file)
def load(self, filename):
with open(filename, "r", encoding="utf8") as file:
self.data = json.load(file)
2022-08-22 17:15:46 +03:00
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
class CFGDenoiser(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, x, sigma, uncond, cond, cond_scale):
x_in = torch.cat([x] * 2)
sigma_in = torch.cat([sigma] * 2)
cond_in = torch.cat([uncond, cond])
uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2)
return uncond + (cond - uncond) * cond_scale
class KDiffusionSampler:
2022-08-25 23:31:44 +03:00
def __init__(self, m, funcname):
self.model = m
2022-08-25 23:31:44 +03:00
self.model_wrap = k_diffusion.external.CompVisDenoiser(m)
self.funcname = funcname
def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T):
sigmas = self.model_wrap.get_sigmas(S)
x = x_T * sigmas[0]
model_wrap_cfg = CFGDenoiser(self.model_wrap)
2022-08-25 23:31:44 +03:00
fun = getattr(k_diffusion.sampling, self.funcname)
samples_ddim = fun(model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}, disable=False)
return samples_ddim, None
def create_random_tensors(shape, seeds):
xs = []
for seed in seeds:
torch.manual_seed(seed)
# randn results depend on device; gpu and cpu get different results for same seed;
# the way I see it, it's better to do this on CPU, so that everyone gets same result;
# but the original script had it like this so i do not dare change it for now because
# it will break everyone's seeds.
xs.append(torch.randn(shape, device=device))
x = torch.stack(xs)
return x
def torch_gc():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def save_image(image, path, basename, seed, prompt, extension, info=None, short_filename=False):
prompt = sanitize_filename_part(prompt)
if short_filename:
filename = f"{basename}.{extension}"
else:
filename = f"{basename}-{seed}-{prompt[:128]}.{extension}"
if extension == 'png' and opts.enable_pnginfo and info is not None:
pnginfo = PngImagePlugin.PngInfo()
pnginfo.add_text("parameters", info)
else:
pnginfo = None
image.save(os.path.join(path, filename), quality=opts.jpeg_quality, pnginfo=pnginfo)
def sanitize_filename_part(text):
return text.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]
def plaintext_to_html(text):
text = "".join([f"<p>{html.escape(x)}</p>\n" for x in text.split('\n')])
return text
2022-08-22 17:15:46 +03:00
def load_GFPGAN():
model_name = 'GFPGANv1.3'
model_path = os.path.join(cmd_opts.gfpgan_dir, 'experiments/pretrained_models', model_name + '.pth')
2022-08-22 17:15:46 +03:00
if not os.path.isfile(model_path):
raise Exception("GFPGAN model not found at path "+model_path)
sys.path.append(os.path.abspath(cmd_opts.gfpgan_dir))
2022-08-22 17:15:46 +03:00
from gfpgan import GFPGANer
return GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None)
def image_grid(imgs, batch_size, round_down=False, force_n_rows=None):
if force_n_rows is not None:
rows = force_n_rows
elif opts.n_rows > 0:
rows = opts.n_rows
elif opts.n_rows == 0:
rows = batch_size
else:
rows = math.sqrt(len(imgs))
rows = int(rows) if round_down else round(rows)
cols = math.ceil(len(imgs) / rows)
2022-08-22 17:15:46 +03:00
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols * w, rows * h), color='black')
2022-08-22 17:15:46 +03:00
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
def draw_prompt_matrix(im, width, height, all_prompts):
def wrap(text, d, font, line_length):
lines = ['']
for word in text.split():
line = f'{lines[-1]} {word}'.strip()
if d.textlength(line, font=font) <= line_length:
lines[-1] = line
else:
lines.append(word)
return '\n'.join(lines)
def draw_texts(pos, x, y, texts, sizes):
for i, (text, size) in enumerate(zip(texts, sizes)):
active = pos & (1 << i) != 0
if not active:
text = '\u0336'.join(text) + '\u0336'
d.multiline_text((x, y + size[1] / 2), text, font=fnt, fill=color_active if active else color_inactive, anchor="mm", align="center")
y += size[1] + line_spacing
fontsize = (width + height) // 25
line_spacing = fontsize // 2
fnt = ImageFont.truetype("arial.ttf", fontsize)
color_active = (0, 0, 0)
color_inactive = (153, 153, 153)
pad_top = height // 4
pad_left = width * 3 // 4 if len(all_prompts) > 2 else 0
cols = im.width // width
rows = im.height // height
prompts = all_prompts[1:]
result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white")
result.paste(im, (pad_left, pad_top))
d = ImageDraw.Draw(result)
boundary = math.ceil(len(prompts) / 2)
prompts_horiz = [wrap(x, d, fnt, width) for x in prompts[:boundary]]
prompts_vert = [wrap(x, d, fnt, pad_left) for x in prompts[boundary:]]
sizes_hor = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_horiz]]
sizes_ver = [(x[2] - x[0], x[3] - x[1]) for x in [d.multiline_textbbox((0, 0), x, font=fnt) for x in prompts_vert]]
hor_text_height = sum([x[1] + line_spacing for x in sizes_hor]) - line_spacing
ver_text_height = sum([x[1] + line_spacing for x in sizes_ver]) - line_spacing
for col in range(cols):
x = pad_left + width * col + width / 2
y = pad_top / 2 - hor_text_height / 2
draw_texts(col, x, y, prompts_horiz, sizes_hor)
for row in range(rows):
x = pad_left / 2
y = pad_top + height * row + height / 2 - ver_text_height / 2
draw_texts(row, x, y, prompts_vert, sizes_ver)
return result
def resize_image(resize_mode, im, width, height):
if resize_mode == 0:
res = im.resize((width, height), resample=LANCZOS)
elif resize_mode == 1:
ratio = width / height
src_ratio = im.width / im.height
src_w = width if ratio > src_ratio else im.width * height // im.height
src_h = height if ratio <= src_ratio else im.height * width // im.width
resized = im.resize((src_w, src_h), resample=LANCZOS)
res = Image.new("RGB", (width, height))
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
else:
ratio = width / height
src_ratio = im.width / im.height
src_w = width if ratio < src_ratio else im.width * height // im.height
src_h = height if ratio >= src_ratio else im.height * width // im.width
resized = im.resize((src_w, src_h), resample=LANCZOS)
res = Image.new("RGB", (width, height))
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
if ratio < src_ratio:
fill_height = height // 2 - src_h // 2
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h))
elif ratio > src_ratio:
fill_width = width // 2 - src_w // 2
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0))
return res
def check_prompt_length(prompt, comments):
"""this function tests if prompt is too long, and if so, adds a message to comments"""
tokenizer = model.cond_stage_model.tokenizer
max_length = model.cond_stage_model.max_length
info = model.cond_stage_model.tokenizer([prompt], truncation=True, max_length=max_length, return_overflowing_tokens=True, padding="max_length", return_tensors="pt")
ovf = info['overflowing_tokens'][0]
overflowing_count = ovf.shape[0]
if overflowing_count == 0:
return
vocab = {v: k for k, v in tokenizer.get_vocab().items()}
overflowing_words = [vocab.get(int(x), "") for x in ovf]
overflowing_text = tokenizer.convert_tokens_to_string(''.join(overflowing_words))
comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
def wrap_gradio_call(func):
def f(*p1, **p2):
t = time.perf_counter()
res = list(func(*p1, **p2))
elapsed = time.perf_counter() - t
# last item is always HTML
res[-1] = res[-1] + f"<p class='performance'>Time taken: {elapsed:.2f}s</p>"
return tuple(res)
return f
GFPGAN = None
if os.path.exists(cmd_opts.gfpgan_dir):
try:
GFPGAN = load_GFPGAN()
print("Loaded GFPGAN")
except Exception:
print("Error loading GFPGAN:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
class TextInversionEmbeddings:
ids_lookup = {}
word_embeddings = {}
word_embeddings_checksums = {}
fixes = []
used_custom_terms = []
dir_mtime = None
def load(self, dir, model):
mt = os.path.getmtime(dir)
if self.dir_mtime is not None and mt <= self.dir_mtime:
return
self.dir_mtime = mt
self.ids_lookup.clear()
self.word_embeddings.clear()
tokenizer = model.cond_stage_model.tokenizer
def const_hash(a):
r = 0
for v in a:
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
return r
def process_file(path, filename):
name = os.path.splitext(filename)[0]
data = torch.load(path)
param_dict = data['string_to_param']
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1].reshape(768)
self.word_embeddings[name] = emb
self.word_embeddings_checksums[name] = f'{const_hash(emb)&0xffff:04x}'
ids = tokenizer([name], add_special_tokens=False)['input_ids'][0]
first_id = ids[0]
if first_id not in self.ids_lookup:
self.ids_lookup[first_id] = []
self.ids_lookup[first_id].append((ids, name))
for fn in os.listdir(dir):
try:
process_file(os.path.join(dir, fn), fn)
except:
print(f"Error loading emedding {fn}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
continue
print(f"Loaded a total of {len(self.word_embeddings)} text inversion embeddings.")
def hijack(self, m):
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
def __init__(self, wrapped, embeddings):
super().__init__()
self.wrapped = wrapped
self.embeddings = embeddings
self.tokenizer = wrapped.tokenizer
self.max_length = wrapped.max_length
def forward(self, text):
self.embeddings.fixes = []
self.embeddings.used_custom_terms = []
remade_batch_tokens = []
id_start = self.wrapped.tokenizer.bos_token_id
id_end = self.wrapped.tokenizer.eos_token_id
maxlen = self.wrapped.max_length - 2
cache = {}
batch_tokens = self.wrapped.tokenizer(text, truncation=False, add_special_tokens=False)["input_ids"]
for tokens in batch_tokens:
tuple_tokens = tuple(tokens)
if tuple_tokens in cache:
remade_tokens, fixes = cache[tuple_tokens]
else:
fixes = []
remade_tokens = []
i = 0
while i < len(tokens):
token = tokens[i]
possible_matches = self.embeddings.ids_lookup.get(token, None)
if possible_matches is None:
remade_tokens.append(token)
else:
found = False
for ids, word in possible_matches:
if tokens[i:i+len(ids)] == ids:
fixes.append((len(remade_tokens), word))
remade_tokens.append(777)
i += len(ids) - 1
found = True
self.embeddings.used_custom_terms.append((word, self.embeddings.word_embeddings_checksums[word]))
break
if not found:
remade_tokens.append(token)
i += 1
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end]
cache[tuple_tokens] = (remade_tokens, fixes)
remade_batch_tokens.append(remade_tokens)
self.embeddings.fixes.append(fixes)
tokens = torch.asarray(remade_batch_tokens).to(self.wrapped.device)
outputs = self.wrapped.transformer(input_ids=tokens)
z = outputs.last_hidden_state
return z
class EmbeddingsWithFixes(nn.Module):
def __init__(self, wrapped, embeddings):
super().__init__()
self.wrapped = wrapped
self.embeddings = embeddings
def forward(self, input_ids):
batch_fixes = self.embeddings.fixes
self.embeddings.fixes = []
inputs_embeds = self.wrapped(input_ids)
for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, word in fixes:
tensor[offset] = self.embeddings.word_embeddings[word]
return inputs_embeds
def get_learned_conditioning_with_embeddings(model, prompts):
if os.path.exists(cmd_opts.embeddings_dir):
text_inversion_embeddings.load(cmd_opts.embeddings_dir, model)
return model.get_learned_conditioning(prompts)
def process_images(outpath, func_init, func_sample, prompt, seed, sampler_index, batch_size, n_iter, steps, cfg_scale, width, height, prompt_matrix, use_GFPGAN, do_not_save_grid=False, extra_generation_params=None):
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
2022-08-22 17:15:46 +03:00
assert prompt is not None
torch_gc()
2022-08-22 17:15:46 +03:00
if seed == -1:
seed = random.randrange(4294967294)
seed = int(seed)
os.makedirs(outpath, exist_ok=True)
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
grid_count = len(os.listdir(outpath)) - 1
comments = []
prompt_matrix_parts = []
if prompt_matrix:
all_prompts = []
prompt_matrix_parts = prompt.split("|")
combination_count = 2 ** (len(prompt_matrix_parts) - 1)
for combination_num in range(combination_count):
selected_prompts = [text.strip().strip(',') for n, text in enumerate(prompt_matrix_parts[1:]) if combination_num & (1<<n)]
if opts.prompt_matrix_add_to_start:
selected_prompts = selected_prompts + [prompt_matrix_parts[0]]
else:
selected_prompts = [prompt_matrix_parts[0]] + selected_prompts
all_prompts.append( ", ".join(selected_prompts))
n_iter = math.ceil(len(all_prompts) / batch_size)
all_seeds = len(all_prompts) * [seed]
print(f"Prompt matrix will create {len(all_prompts)} images using a total of {n_iter} batches.")
else:
if opts.verify_input:
try:
check_prompt_length(prompt, comments)
except:
import traceback
print("Error verifying input:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
all_prompts = batch_size * n_iter * [prompt]
all_seeds = [seed + x for x in range(len(all_prompts))]
generation_params = {
"Steps": steps,
"Sampler": samplers[sampler_index].name,
"CFG scale": cfg_scale,
"Seed": seed,
"GFPGAN": ("GFPGAN" if use_GFPGAN and GFPGAN is not None else None)
}
if extra_generation_params is not None:
generation_params.update(extra_generation_params)
generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
def infotext():
return f"{prompt}\n{generation_params_text}".strip() + "".join(["\n\n" + x for x in comments])
if os.path.exists(cmd_opts.embeddings_dir):
text_inversion_embeddings.load(cmd_opts.embeddings_dir, model)
2022-08-22 17:15:46 +03:00
output_images = []
with torch.no_grad(), autocast("cuda"), model.ema_scope():
init_data = func_init()
2022-08-22 17:15:46 +03:00
for n in range(n_iter):
prompts = all_prompts[n * batch_size:(n + 1) * batch_size]
seeds = all_seeds[n * batch_size:(n + 1) * batch_size]
uc = model.get_learned_conditioning(len(prompts) * [""])
c = model.get_learned_conditioning(prompts)
if len(text_inversion_embeddings.used_custom_terms) > 0:
comments.append("Used custom terms: " + ", ".join([f'{word} [{checksum}]' for word, checksum in text_inversion_embeddings.used_custom_terms]))
# we manually generate all input noises because each one should have a specific seed
x = create_random_tensors([opt_C, height // opt_f, width // opt_f], seeds=seeds)
samples_ddim = func_sample(init_data=init_data, x=x, conditioning=c, unconditional_conditioning=uc)
2022-08-22 17:15:46 +03:00
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
2022-08-22 17:15:46 +03:00
if prompt_matrix or opts.samples_save or opts.grid_save:
for i, x_sample in enumerate(x_samples_ddim):
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
x_sample = x_sample.astype(np.uint8)
if use_GFPGAN and GFPGAN is not None:
cropped_faces, restored_faces, restored_img = GFPGAN.enhance(x_sample, has_aligned=False, only_center_face=False, paste_back=True)
x_sample = restored_img
image = Image.fromarray(x_sample)
save_image(image, sample_path, f"{base_count:05}", seeds[i], prompts[i], opts.samples_format, info=infotext())
output_images.append(image)
base_count += 1
2022-08-22 17:15:46 +03:00
if (prompt_matrix or opts.grid_save) and not do_not_save_grid:
grid = image_grid(output_images, batch_size, round_down=prompt_matrix)
if prompt_matrix:
try:
grid = draw_prompt_matrix(grid, width, height, prompt_matrix_parts)
except Exception:
import traceback
print("Error creating prompt_matrix text:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
output_images.insert(0, grid)
save_image(grid, outpath, f"grid-{grid_count:04}", seed, prompt, opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename)
2022-08-22 17:15:46 +03:00
grid_count += 1
torch_gc()
return output_images, seed, infotext()
2022-08-24 21:20:36 +03:00
2022-08-25 23:31:44 +03:00
def txt2img(prompt: str, ddim_steps: int, sampler_index: int, use_GFPGAN: bool, prompt_matrix: bool, ddim_eta: float, n_iter: int, batch_size: int, cfg_scale: float, seed: int, height: int, width: int):
outpath = opts.outdir or "outputs/txt2img-samples"
2022-08-24 21:20:36 +03:00
2022-08-25 23:31:44 +03:00
sampler = samplers[sampler_index].constructor(model)
def init():
pass
def sample(init_data, x, conditioning, unconditional_conditioning):
samples_ddim, _ = sampler.sample(S=ddim_steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=cfg_scale, unconditional_conditioning=unconditional_conditioning, eta=ddim_eta, x_T=x)
return samples_ddim
output_images, seed, info = process_images(
outpath=outpath,
func_init=init,
func_sample=sample,
prompt=prompt,
seed=seed,
2022-08-25 23:31:44 +03:00
sampler_index=sampler_index,
batch_size=batch_size,
n_iter=n_iter,
steps=ddim_steps,
cfg_scale=cfg_scale,
width=width,
height=height,
prompt_matrix=prompt_matrix,
use_GFPGAN=use_GFPGAN
)
del sampler
return output_images, seed, plaintext_to_html(info)
class Flagging(gr.FlaggingCallback):
def setup(self, components, flagging_dir: str):
pass
def flag(self, flag_data, flag_option=None, flag_index=None, username=None):
import csv
os.makedirs("log/images", exist_ok=True)
# those must match the "txt2img" function
prompt, ddim_steps, sampler_name, use_GFPGAN, prompt_matrix, ddim_eta, n_iter, n_samples, cfg_scale, request_seed, height, width, images, seed, comment = flag_data
filenames = []
with open("log/log.csv", "a", encoding="utf8", newline='') as file:
import time
import base64
at_start = file.tell() == 0
writer = csv.writer(file)
if at_start:
writer.writerow(["prompt", "seed", "width", "height", "cfgs", "steps", "filename"])
filename_base = str(int(time.time() * 1000))
for i, filedata in enumerate(images):
filename = "log/images/"+filename_base + ("" if len(images) == 1 else "-"+str(i+1)) + ".png"
if filedata.startswith("data:image/png;base64,"):
filedata = filedata[len("data:image/png;base64,"):]
with open(filename, "wb") as imgfile:
imgfile.write(base64.decodebytes(filedata.encode('utf-8')))
filenames.append(filename)
writer.writerow([prompt, seed, width, height, cfg_scale, ddim_steps, filenames[0]])
print("Logged:", filenames[0])
2022-08-22 17:15:46 +03:00
txt2img_interface = gr.Interface(
wrap_gradio_call(txt2img),
2022-08-22 17:15:46 +03:00
inputs=[
gr.Textbox(label="Prompt", placeholder="A corgi wearing a top hat as an oil painting.", lines=1),
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50),
2022-08-25 23:31:44 +03:00
gr.Radio(label='Sampling method', choices=[x.name for x in samplers], value=samplers[0].name, type="index"),
2022-08-22 17:15:46 +03:00
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None),
gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False),
2022-08-22 17:15:46 +03:00
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="DDIM ETA", value=0.0, visible=False),
gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count (how many batches of images to generate)', value=1),
gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
2022-08-22 17:15:46 +03:00
gr.Number(label='Seed', value=-1),
gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512),
gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512),
],
outputs=[
gr.Gallery(label="Images"),
gr.Number(label='Seed'),
gr.HTML(),
2022-08-22 17:15:46 +03:00
],
title="Stable Diffusion Text-to-Image",
flagging_callback=Flagging()
2022-08-22 17:15:46 +03:00
)
def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_matrix, loopback: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int):
outpath = opts.outdir or "outputs/img2img-samples"
2022-08-24 21:20:36 +03:00
2022-08-25 23:31:44 +03:00
sampler = KDiffusionSampler(model, 'sample_lms')
2022-08-22 17:15:46 +03:00
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
2022-08-22 17:15:46 +03:00
def init():
image = init_img.convert("RGB")
image = resize_image(resize_mode, image, width, height)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
2022-08-22 17:15:46 +03:00
init_image = 2. * image - 1.
init_image = init_image.to(device)
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
return init_latent,
def sample(init_data, x, conditioning, unconditional_conditioning):
t_enc = int(denoising_strength * ddim_steps)
x0, = init_data
sigmas = sampler.model_wrap.get_sigmas(ddim_steps)
noise = x * sigmas[ddim_steps - t_enc - 1]
xi = x0 + noise
sigma_sched = sigmas[ddim_steps - t_enc - 1:]
model_wrap_cfg = CFGDenoiser(sampler.model_wrap)
2022-08-25 23:31:44 +03:00
samples_ddim = k_diffusion.sampling.sample_lms(model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': cfg_scale}, disable=False)
return samples_ddim
if loopback:
output_images, info = None, None
history = []
initial_seed = None
for i in range(n_iter):
output_images, seed, info = process_images(
outpath=outpath,
func_init=init,
func_sample=sample,
prompt=prompt,
seed=seed,
2022-08-25 23:31:44 +03:00
sampler_index=0,
batch_size=1,
n_iter=1,
steps=ddim_steps,
cfg_scale=cfg_scale,
width=width,
height=height,
prompt_matrix=prompt_matrix,
use_GFPGAN=use_GFPGAN,
do_not_save_grid=True,
extra_generation_params={"Denoising Strength": denoising_strength},
)
if initial_seed is None:
initial_seed = seed
init_img = output_images[0]
seed = seed + 1
denoising_strength = max(denoising_strength * 0.95, 0.1)
history.append(init_img)
grid_count = len(os.listdir(outpath)) - 1
grid = image_grid(history, batch_size, force_n_rows=1)
save_image(grid, outpath, f"grid-{grid_count:04}", initial_seed, prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename)
output_images = history
seed = initial_seed
else:
output_images, seed, info = process_images(
outpath=outpath,
func_init=init,
func_sample=sample,
prompt=prompt,
seed=seed,
2022-08-25 23:31:44 +03:00
sampler_index=0,
batch_size=batch_size,
n_iter=n_iter,
steps=ddim_steps,
cfg_scale=cfg_scale,
width=width,
height=height,
prompt_matrix=prompt_matrix,
use_GFPGAN=use_GFPGAN,
extra_generation_params={"Denoising Strength": denoising_strength},
)
del sampler
2022-08-22 17:15:46 +03:00
return output_images, seed, plaintext_to_html(info)
2022-08-22 17:15:46 +03:00
sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg"
sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
2022-08-22 17:15:46 +03:00
img2img_interface = gr.Interface(
wrap_gradio_call(img2img),
2022-08-22 17:15:46 +03:00
inputs=[
gr.Textbox(placeholder="A fantasy landscape, trending on artstation.", lines=1),
gr.Image(value=sample_img2img, source="upload", interactive=True, type="pil"),
2022-08-22 17:15:46 +03:00
gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50),
gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None),
gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False),
gr.Checkbox(label='Loopback (use images from previous batch when creating next batch)', value=False),
gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count (how many batches of images to generate)', value=1),
gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1),
gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='Classifier Free Guidance Scale (how strongly the image should follow the prompt)', value=7.0),
2022-08-22 17:15:46 +03:00
gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising Strength', value=0.75),
gr.Number(label='Seed', value=-1),
gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512),
gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512),
gr.Radio(label="Resize mode", choices=["Just resize", "Crop and resize", "Resize and fill"], type="index", value="Just resize")
2022-08-22 17:15:46 +03:00
],
outputs=[
gr.Gallery(),
gr.Number(label='Seed'),
gr.HTML(),
2022-08-22 17:15:46 +03:00
],
allow_flagging="never",
2022-08-22 17:15:46 +03:00
)
2022-08-25 23:31:44 +03:00
def run_extras(image, GFPGAN_strength, RealESRGAN_upscaling, RealESRGAN_model_index):
image = image.convert("RGB")
outpath = opts.outdir or "outputs/extras-samples"
if GFPGAN is not None and GFPGAN_strength > 0:
cropped_faces, restored_faces, restored_img = GFPGAN.enhance(np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True)
res = Image.fromarray(restored_img)
if GFPGAN_strength < 1.0:
res = Image.blend(image, res, GFPGAN_strength)
image = res
if have_realesrgan and RealESRGAN_upscaling != 1.0:
info = realesrgan_models[RealESRGAN_model_index]
model = info.model()
upsampler = RealESRGANer(
scale=info.netscale,
model_path=info.location,
model=model,
half=True
)
upsampled = upsampler.enhance(np.array(image), outscale=RealESRGAN_upscaling)[0]
image = Image.fromarray(upsampled)
os.makedirs(outpath, exist_ok=True)
base_count = len(os.listdir(outpath))
save_image(image, outpath, f"{base_count:05}", None, '', opts.samples_format, short_filename=True)
return image, 0, ''
extras_interface = gr.Interface(
wrap_gradio_call(run_extras),
inputs=[
gr.Image(label="Source", source="upload", interactive=True, type="pil"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN strength", value=1, interactive=GFPGAN is not None),
gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Real-ESRGAN upscaling", value=2, interactive=have_realesrgan),
gr.Radio(label='Real-ESRGAN model', choices=[x.name for x in realesrgan_models], value=realesrgan_models[0].name, type="index", interactive=have_realesrgan),
],
outputs=[
gr.Image(label="Result"),
gr.Number(label='Seed', visible=False),
gr.HTML(),
],
allow_flagging="never",
)
opts = Options()
if os.path.exists(config_filename):
opts.load(config_filename)
def run_settings(*args):
up = []
for key, value, comp in zip(opts.data_labels.keys(), args, settings_interface.input_components):
opts.data[key] = value
up.append(comp.update(value=value))
opts.save(config_filename)
return 'Settings saved.', ''
def create_setting_component(key):
def fun():
return opts.data[key] if key in opts.data else opts.data_labels[key][0]
labelinfo = opts.data_labels[key]
t = type(labelinfo[0])
label = labelinfo[1]
if t == str:
item = gr.Textbox(label=label, value=fun, lines=1)
elif t == int:
if len(labelinfo) == 4:
item = gr.Slider(minimum=labelinfo[2], maximum=labelinfo[3], step=1, label=label, value=fun)
else:
item = gr.Number(label=label, value=fun)
elif t == bool:
item = gr.Checkbox(label=label, value=fun)
else:
raise Exception(f'bad options item type: {str(t)} for key {key}')
return item
settings_interface = gr.Interface(
run_settings,
inputs=[create_setting_component(key) for key in opts.data_labels.keys()],
outputs=[
gr.Textbox(label='Result'),
gr.HTML(),
],
title=None,
description=None,
allow_flagging="never",
)
interfaces = [
(txt2img_interface, "txt2img"),
(img2img_interface, "img2img"),
(extras_interface, "Extras"),
(settings_interface, "Settings"),
]
config = OmegaConf.load(cmd_opts.config)
model = load_model_from_config(config, cmd_opts.ckpt)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = (model if cmd_opts.no_half else model.half()).to(device)
text_inversion_embeddings = TextInversionEmbeddings()
if os.path.exists(cmd_opts.embeddings_dir):
text_inversion_embeddings.hijack(model)
demo = gr.TabbedInterface(
interface_list=[x[0] for x in interfaces],
tab_names=[x[1] for x in interfaces],
css=("" if cmd_opts.no_progressbar_hiding else css_hide_progressbar) + """
.output-html p {margin: 0 0.5em;}
.performance { font-size: 0.85em; color: #444; }
"""
)
2022-08-22 17:15:46 +03:00
demo.launch()