stable-diffusion-webui/modules/deepbooru.py

66 lines
2.2 KiB
Python
Raw Normal View History

2022-10-05 21:50:10 +03:00
import os.path
from concurrent.futures import ProcessPoolExecutor
import numpy as np
import deepdanbooru as dd
import tensorflow as tf
def _load_tf_and_return_tags(pil_image, threshold):
this_folder = os.path.dirname(__file__)
model_path = os.path.join(this_folder, '..', 'models', 'deepbooru', 'deepdanbooru-v3-20211112-sgd-e28')
2022-10-05 23:05:24 +03:00
model_good = False
for path_candidate in [model_path, os.path.dirname(model_path)]:
if os.path.exists(os.path.join(path_candidate, 'project.json')):
model_path = path_candidate
model_good = True
if not model_good:
return ("Download https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/"
"deepdanbooru-v3-20211112-sgd-e28.zip unpack and put into models/deepbooru")
2022-10-05 21:50:10 +03:00
tags = dd.project.load_tags_from_project(model_path)
model = dd.project.load_model_from_project(
model_path, compile_model=True
)
width = model.input_shape[2]
height = model.input_shape[1]
image = np.array(pil_image)
image = tf.image.resize(
image,
size=(height, width),
method=tf.image.ResizeMethod.AREA,
preserve_aspect_ratio=True,
)
image = image.numpy() # EagerTensor to np.array
image = dd.image.transform_and_pad_image(image, width, height)
image = image / 255.0
image_shape = image.shape
image = image.reshape((1, image_shape[0], image_shape[1], image_shape[2]))
y = model.predict(image)[0]
result_dict = {}
for i, tag in enumerate(tags):
result_dict[tag] = y[i]
result_tags_out = []
result_tags_print = []
for tag in tags:
if result_dict[tag] >= threshold:
2022-10-05 22:15:08 +03:00
if tag.startswith("rating:"):
continue
2022-10-05 21:50:10 +03:00
result_tags_out.append(tag)
result_tags_print.append(f'{result_dict[tag]} {tag}')
print('\n'.join(sorted(result_tags_print, reverse=True)))
return ', '.join(result_tags_out)
def get_deepbooru_tags(pil_image, threshold=0.5):
with ProcessPoolExecutor() as executor:
f = executor.submit(_load_tf_and_return_tags, pil_image, threshold)
ret = f.result() # will rethrow any exceptions
return ret