2023-01-30 09:51:06 +03:00
from collections import deque
2022-09-03 12:08:45 +03:00
import torch
2022-09-28 10:49:07 +03:00
import inspect
2022-09-03 12:08:45 +03:00
import k_diffusion . sampling
2023-01-30 10:47:09 +03:00
from modules import prompt_parser , devices , sd_samplers_common
2022-09-03 12:08:45 +03:00
2023-01-30 09:51:06 +03:00
from modules . shared import opts , state
2022-09-03 12:08:45 +03:00
import modules . shared as shared
2022-11-02 03:38:17 +03:00
from modules . script_callbacks import CFGDenoiserParams , cfg_denoiser_callback
2023-02-11 05:18:38 +03:00
from modules . script_callbacks import CFGDenoisedParams , cfg_denoised_callback
2023-05-14 04:49:41 +03:00
from modules . script_callbacks import AfterCFGCallbackParams , cfg_after_cfg_callback
2022-09-03 12:08:45 +03:00
2022-09-03 17:21:15 +03:00
samplers_k_diffusion = [
2023-05-16 11:54:02 +03:00
( ' Euler a ' , ' sample_euler_ancestral ' , [ ' k_euler_a ' , ' k_euler_ancestral ' ] , { " uses_ensd " : True } ) ,
2022-10-06 14:12:52 +03:00
( ' Euler ' , ' sample_euler ' , [ ' k_euler ' ] , { } ) ,
( ' LMS ' , ' sample_lms ' , [ ' k_lms ' ] , { } ) ,
2023-05-16 12:36:15 +03:00
( ' Heun ' , ' sample_heun ' , [ ' k_heun ' ] , { " second_order " : True } ) ,
2022-12-24 09:03:45 +03:00
( ' DPM2 ' , ' sample_dpm_2 ' , [ ' k_dpm_2 ' ] , { ' discard_next_to_last_sigma ' : True } ) ,
2023-05-16 11:54:02 +03:00
( ' DPM2 a ' , ' sample_dpm_2_ancestral ' , [ ' k_dpm_2_a ' ] , { ' discard_next_to_last_sigma ' : True , " uses_ensd " : True } ) ,
2023-05-16 12:36:15 +03:00
( ' DPM++ 2S a ' , ' sample_dpmpp_2s_ancestral ' , [ ' k_dpmpp_2s_a ' ] , { " uses_ensd " : True , " second_order " : True } ) ,
2022-11-05 18:32:22 +03:00
( ' DPM++ 2M ' , ' sample_dpmpp_2m ' , [ ' k_dpmpp_2m ' ] , { } ) ,
2023-05-21 07:31:39 +03:00
( ' DPM++ SDE ' , ' sample_dpmpp_sde ' , [ ' k_dpmpp_sde ' ] , { " second_order " : True , " brownian_noise " : True } ) ,
2023-05-21 08:01:59 +03:00
( ' DPM++ 2M SDE ' , ' sample_dpmpp_2m_sde ' , [ ' k_dpmpp_2m_sde_ka ' ] , { " brownian_noise " : True , ' discard_next_to_last_sigma ' : True } ) ,
2023-05-16 11:54:02 +03:00
( ' DPM fast ' , ' sample_dpm_fast ' , [ ' k_dpm_fast ' ] , { " uses_ensd " : True } ) ,
( ' DPM adaptive ' , ' sample_dpm_adaptive ' , [ ' k_dpm_ad ' ] , { " uses_ensd " : True } ) ,
2022-10-06 14:12:52 +03:00
( ' LMS Karras ' , ' sample_lms ' , [ ' k_lms_ka ' ] , { ' scheduler ' : ' karras ' } ) ,
2023-05-16 12:36:15 +03:00
( ' DPM2 Karras ' , ' sample_dpm_2 ' , [ ' k_dpm_2_ka ' ] , { ' scheduler ' : ' karras ' , ' discard_next_to_last_sigma ' : True , " uses_ensd " : True , " second_order " : True } ) ,
( ' DPM2 a Karras ' , ' sample_dpm_2_ancestral ' , [ ' k_dpm_2_a_ka ' ] , { ' scheduler ' : ' karras ' , ' discard_next_to_last_sigma ' : True , " uses_ensd " : True , " second_order " : True } ) ,
( ' DPM++ 2S a Karras ' , ' sample_dpmpp_2s_ancestral ' , [ ' k_dpmpp_2s_a_ka ' ] , { ' scheduler ' : ' karras ' , " uses_ensd " : True , " second_order " : True } ) ,
2022-11-05 18:32:22 +03:00
( ' DPM++ 2M Karras ' , ' sample_dpmpp_2m ' , [ ' k_dpmpp_2m_ka ' ] , { ' scheduler ' : ' karras ' } ) ,
2023-05-21 07:31:39 +03:00
( ' DPM++ SDE Karras ' , ' sample_dpmpp_sde ' , [ ' k_dpmpp_sde_ka ' ] , { ' scheduler ' : ' karras ' , " second_order " : True , " brownian_noise " : True } ) ,
2023-05-21 08:01:59 +03:00
( ' DPM++ 2M SDE Karras ' , ' sample_dpmpp_2m_sde ' , [ ' k_dpmpp_2m_sde_ka ' ] , { ' scheduler ' : ' karras ' , " brownian_noise " : True , ' discard_next_to_last_sigma ' : True } ) ,
2022-09-03 17:21:15 +03:00
]
samplers_data_k_diffusion = [
2023-01-30 09:51:06 +03:00
sd_samplers_common . SamplerData ( label , lambda model , funcname = funcname : KDiffusionSampler ( funcname , model ) , aliases , options )
2022-10-06 14:12:52 +03:00
for label , funcname , aliases , options in samplers_k_diffusion
2022-09-03 17:21:15 +03:00
if hasattr ( k_diffusion . sampling , funcname )
]
2022-09-26 11:56:47 +03:00
sampler_extra_params = {
2022-09-28 10:49:07 +03:00
' sample_euler ' : [ ' s_churn ' , ' s_tmin ' , ' s_tmax ' , ' s_noise ' ] ,
' sample_heun ' : [ ' s_churn ' , ' s_tmin ' , ' s_tmax ' , ' s_noise ' ] ,
' sample_dpm_2 ' : [ ' s_churn ' , ' s_tmin ' , ' s_tmax ' , ' s_noise ' ] ,
2022-09-26 11:56:47 +03:00
}
2022-09-03 12:08:45 +03:00
2023-05-22 18:26:28 +03:00
k_diffusion_samplers_map = { x . name : x for x in samplers_data_k_diffusion }
2023-05-22 18:02:05 +03:00
k_diffusion_scheduler = {
2023-05-23 18:48:23 +03:00
' None ' : None ,
2023-05-22 18:02:05 +03:00
' karras ' : k_diffusion . sampling . get_sigmas_karras ,
' exponential ' : k_diffusion . sampling . get_sigmas_exponential ,
' polyexponential ' : k_diffusion . sampling . get_sigmas_polyexponential
}
2022-10-22 20:48:13 +03:00
2022-09-03 12:08:45 +03:00
class CFGDenoiser ( torch . nn . Module ) :
2023-01-30 10:11:30 +03:00
"""
Classifier free guidance denoiser . A wrapper for stable diffusion model ( specifically for unet )
that can take a noisy picture and produce a noise - free picture using two guidances ( prompts )
instead of one . Originally , the second prompt is just an empty string , but we use non - empty
negative prompt .
"""
2022-09-03 12:08:45 +03:00
def __init__ ( self , model ) :
super ( ) . __init__ ( )
self . inner_model = model
self . mask = None
self . nmask = None
self . init_latent = None
2022-09-15 13:10:16 +03:00
self . step = 0
2023-02-04 11:06:17 +03:00
self . image_cfg_scale = None
2022-09-03 12:08:45 +03:00
2022-12-24 18:38:16 +03:00
def combine_denoised ( self , x_out , conds_list , uncond , cond_scale ) :
denoised_uncond = x_out [ - uncond . shape [ 0 ] : ]
denoised = torch . clone ( denoised_uncond )
for i , conds in enumerate ( conds_list ) :
for cond_index , weight in conds :
denoised [ i ] + = ( x_out [ cond_index ] - denoised_uncond [ i ] ) * ( weight * cond_scale )
return denoised
2023-02-04 11:06:17 +03:00
def combine_denoised_for_edit_model ( self , x_out , cond_scale ) :
out_cond , out_img_cond , out_uncond = x_out . chunk ( 3 )
denoised = out_uncond + cond_scale * ( out_cond - out_img_cond ) + self . image_cfg_scale * ( out_img_cond - out_uncond )
return denoised
2023-03-29 01:18:28 +03:00
def forward ( self , x , sigma , uncond , cond , cond_scale , s_min_uncond , image_cond ) :
2022-10-18 17:23:38 +03:00
if state . interrupted or state . skipped :
2023-01-30 09:51:06 +03:00
raise sd_samplers_common . InterruptedException
2022-10-18 17:23:38 +03:00
2023-02-04 11:06:17 +03:00
# at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
# so is_edit_model is set to False to support AND composition.
is_edit_model = shared . sd_model . cond_stage_key == " edit " and self . image_cfg_scale is not None and self . image_cfg_scale != 1.0
2022-10-05 23:16:27 +03:00
conds_list , tensor = prompt_parser . reconstruct_multicond_batch ( cond , self . step )
2022-09-15 13:10:16 +03:00
uncond = prompt_parser . reconstruct_cond_batch ( uncond , self . step )
2023-05-10 11:05:02 +03:00
assert not is_edit_model or all ( len ( conds ) == 1 for conds in conds_list ) , " AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0) "
2023-02-04 11:06:17 +03:00
2022-10-05 23:16:27 +03:00
batch_size = len ( conds_list )
repeats = [ len ( conds_list [ i ] ) for i in range ( batch_size ) ]
2023-03-25 05:48:16 +03:00
if shared . sd_model . model . conditioning_key == " crossattn-adm " :
image_uncond = torch . zeros_like ( image_cond )
2023-05-11 18:28:15 +03:00
make_condition_dict = lambda c_crossattn , c_adm : { " c_crossattn " : c_crossattn , " c_adm " : c_adm }
2023-03-25 05:48:16 +03:00
else :
image_uncond = image_cond
2023-05-11 18:28:15 +03:00
make_condition_dict = lambda c_crossattn , c_concat : { " c_crossattn " : c_crossattn , " c_concat " : [ c_concat ] }
2023-03-25 05:48:16 +03:00
2023-02-04 11:06:17 +03:00
if not is_edit_model :
x_in = torch . cat ( [ torch . stack ( [ x [ i ] for _ in range ( n ) ] ) for i , n in enumerate ( repeats ) ] + [ x ] )
sigma_in = torch . cat ( [ torch . stack ( [ sigma [ i ] for _ in range ( n ) ] ) for i , n in enumerate ( repeats ) ] + [ sigma ] )
2023-03-25 05:48:16 +03:00
image_cond_in = torch . cat ( [ torch . stack ( [ image_cond [ i ] for _ in range ( n ) ] ) for i , n in enumerate ( repeats ) ] + [ image_uncond ] )
2023-02-04 11:06:17 +03:00
else :
x_in = torch . cat ( [ torch . stack ( [ x [ i ] for _ in range ( n ) ] ) for i , n in enumerate ( repeats ) ] + [ x ] + [ x ] )
sigma_in = torch . cat ( [ torch . stack ( [ sigma [ i ] for _ in range ( n ) ] ) for i , n in enumerate ( repeats ) ] + [ sigma ] + [ sigma ] )
2023-03-25 05:48:16 +03:00
image_cond_in = torch . cat ( [ torch . stack ( [ image_cond [ i ] for _ in range ( n ) ] ) for i , n in enumerate ( repeats ) ] + [ image_uncond ] + [ torch . zeros_like ( self . init_latent ) ] )
2022-10-05 23:16:27 +03:00
2023-02-24 08:04:23 +03:00
denoiser_params = CFGDenoiserParams ( x_in , image_cond_in , sigma_in , state . sampling_step , state . sampling_steps , tensor , uncond )
2022-11-02 03:38:17 +03:00
cfg_denoiser_callback ( denoiser_params )
x_in = denoiser_params . x
image_cond_in = denoiser_params . image_cond
sigma_in = denoiser_params . sigma
2023-03-11 14:52:29 +03:00
tensor = denoiser_params . text_cond
uncond = denoiser_params . text_uncond
2023-04-29 15:57:09 +03:00
skip_uncond = False
2022-10-31 02:48:33 +03:00
2023-04-29 15:57:09 +03:00
# alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
if self . step % 2 and s_min_uncond > 0 and sigma [ 0 ] < s_min_uncond and not is_edit_model :
skip_uncond = True
x_in = x_in [ : - batch_size ]
sigma_in = sigma_in [ : - batch_size ]
2023-03-29 01:18:28 +03:00
2023-05-22 00:13:53 +03:00
# TODO add infotext entry
if shared . opts . pad_cond_uncond and tensor . shape [ 1 ] != uncond . shape [ 1 ] :
empty = shared . sd_model . cond_stage_model_empty_prompt
num_repeats = ( tensor . shape [ 1 ] - uncond . shape [ 1 ] ) / / empty . shape [ 1 ]
if num_repeats < 0 :
tensor = torch . cat ( [ tensor , empty . repeat ( ( tensor . shape [ 0 ] , - num_repeats , 1 ) ) ] , axis = 1 )
elif num_repeats > 0 :
uncond = torch . cat ( [ uncond , empty . repeat ( ( uncond . shape [ 0 ] , num_repeats , 1 ) ) ] , axis = 1 )
2023-04-29 15:57:09 +03:00
if tensor . shape [ 1 ] == uncond . shape [ 1 ] or skip_uncond :
if is_edit_model :
2023-02-04 11:06:17 +03:00
cond_in = torch . cat ( [ tensor , uncond , uncond ] )
2023-04-29 15:57:09 +03:00
elif skip_uncond :
cond_in = tensor
else :
cond_in = torch . cat ( [ tensor , uncond ] )
2022-10-08 15:25:59 +03:00
if shared . batch_cond_uncond :
2023-03-25 05:48:16 +03:00
x_out = self . inner_model ( x_in , sigma_in , cond = make_condition_dict ( [ cond_in ] , image_cond_in ) )
2022-10-08 15:25:59 +03:00
else :
x_out = torch . zeros_like ( x_in )
for batch_offset in range ( 0 , x_out . shape [ 0 ] , batch_size ) :
a = batch_offset
b = a + batch_size
2023-03-25 05:48:16 +03:00
x_out [ a : b ] = self . inner_model ( x_in [ a : b ] , sigma_in [ a : b ] , cond = make_condition_dict ( [ cond_in [ a : b ] ] , image_cond_in [ a : b ] ) )
2022-09-03 12:08:45 +03:00
else :
2022-10-05 23:16:27 +03:00
x_out = torch . zeros_like ( x_in )
2022-10-08 15:25:59 +03:00
batch_size = batch_size * 2 if shared . batch_cond_uncond else batch_size
for batch_offset in range ( 0 , tensor . shape [ 0 ] , batch_size ) :
2022-10-05 23:16:27 +03:00
a = batch_offset
2022-10-08 15:25:59 +03:00
b = min ( a + batch_size , tensor . shape [ 0 ] )
2023-02-04 11:06:17 +03:00
if not is_edit_model :
c_crossattn = [ tensor [ a : b ] ]
else :
c_crossattn = torch . cat ( [ tensor [ a : b ] ] , uncond )
2023-03-25 05:48:16 +03:00
x_out [ a : b ] = self . inner_model ( x_in [ a : b ] , sigma_in [ a : b ] , cond = make_condition_dict ( c_crossattn , image_cond_in [ a : b ] ) )
2022-10-08 15:25:59 +03:00
2023-04-29 15:57:09 +03:00
if not skip_uncond :
2023-03-29 01:18:28 +03:00
x_out [ - uncond . shape [ 0 ] : ] = self . inner_model ( x_in [ - uncond . shape [ 0 ] : ] , sigma_in [ - uncond . shape [ 0 ] : ] , cond = make_condition_dict ( [ uncond ] , image_cond_in [ - uncond . shape [ 0 ] : ] ) )
2022-10-05 23:16:27 +03:00
2023-04-29 16:05:20 +03:00
denoised_image_indexes = [ x [ 0 ] [ 0 ] for x in conds_list ]
2023-04-29 15:57:09 +03:00
if skip_uncond :
fake_uncond = torch . cat ( [ x_out [ i : i + 1 ] for i in denoised_image_indexes ] )
2023-04-29 16:05:20 +03:00
x_out = torch . cat ( [ x_out , fake_uncond ] ) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
2023-04-29 15:57:09 +03:00
2023-05-14 04:49:41 +03:00
denoised_params = CFGDenoisedParams ( x_out , state . sampling_step , state . sampling_steps , self . inner_model )
2023-02-11 05:18:38 +03:00
cfg_denoised_callback ( denoised_params )
2023-01-16 22:59:46 +03:00
devices . test_for_nans ( x_out , " unet " )
2023-01-14 16:29:23 +03:00
if opts . live_preview_content == " Prompt " :
2023-04-29 16:06:20 +03:00
sd_samplers_common . store_latent ( torch . cat ( [ x_out [ i : i + 1 ] for i in denoised_image_indexes ] ) )
2023-01-14 16:29:23 +03:00
elif opts . live_preview_content == " Negative prompt " :
2023-01-30 09:51:06 +03:00
sd_samplers_common . store_latent ( x_out [ - uncond . shape [ 0 ] : ] )
2023-01-14 16:29:23 +03:00
2023-04-29 15:57:09 +03:00
if is_edit_model :
2023-02-04 11:06:17 +03:00
denoised = self . combine_denoised_for_edit_model ( x_out , cond_scale )
2023-04-29 15:57:09 +03:00
elif skip_uncond :
denoised = self . combine_denoised ( x_out , conds_list , uncond , 1.0 )
else :
denoised = self . combine_denoised ( x_out , conds_list , uncond , cond_scale )
2022-09-03 12:08:45 +03:00
if self . mask is not None :
denoised = self . init_latent * self . mask + self . nmask * denoised
2023-05-14 04:49:41 +03:00
after_cfg_callback_params = AfterCFGCallbackParams ( denoised , state . sampling_step , state . sampling_steps )
cfg_after_cfg_callback ( after_cfg_callback_params )
2023-05-14 08:15:22 +03:00
denoised = after_cfg_callback_params . x
2023-05-14 04:49:41 +03:00
2022-09-15 13:10:16 +03:00
self . step + = 1
2022-09-03 12:08:45 +03:00
return denoised
2022-09-16 09:47:03 +03:00
class TorchHijack :
2022-11-26 05:12:23 +03:00
def __init__ ( self , sampler_noises ) :
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
# implementation.
self . sampler_noises = deque ( sampler_noises )
2022-09-16 09:47:03 +03:00
def __getattr__ ( self , item ) :
if item == ' randn_like ' :
2022-11-26 05:12:23 +03:00
return self . randn_like
2022-09-16 09:47:03 +03:00
if hasattr ( torch , item ) :
return getattr ( torch , item )
2023-05-09 22:17:58 +03:00
raise AttributeError ( f " ' { type ( self ) . __name__ } ' object has no attribute ' { item } ' " )
2022-09-16 09:47:03 +03:00
2022-11-26 05:12:23 +03:00
def randn_like ( self , x ) :
if self . sampler_noises :
noise = self . sampler_noises . popleft ( )
if noise . shape == x . shape :
return noise
2023-04-29 11:29:37 +03:00
if opts . randn_source == " CPU " or x . device . type == ' mps ' :
2022-11-30 16:02:39 +03:00
return torch . randn_like ( x , device = devices . cpu ) . to ( x . device )
else :
return torch . randn_like ( x )
2022-11-26 05:12:23 +03:00
2022-09-13 21:49:58 +03:00
2022-09-03 12:08:45 +03:00
class KDiffusionSampler :
def __init__ ( self , funcname , sd_model ) :
2022-11-26 16:10:46 +03:00
denoiser = k_diffusion . external . CompVisVDenoiser if sd_model . parameterization == " v " else k_diffusion . external . CompVisDenoiser
self . model_wrap = denoiser ( sd_model , quantize = shared . opts . enable_quantization )
2022-09-03 12:08:45 +03:00
self . funcname = funcname
self . func = getattr ( k_diffusion . sampling , self . funcname )
2022-09-28 10:49:07 +03:00
self . extra_params = sampler_extra_params . get ( funcname , [ ] )
2023-02-04 03:46:13 +03:00
self . model_wrap_cfg = CFGDenoiser ( self . model_wrap )
2022-09-13 21:49:58 +03:00
self . sampler_noises = None
2022-09-19 16:42:56 +03:00
self . stop_at = None
2022-09-28 18:09:06 +03:00
self . eta = None
2023-05-21 07:31:39 +03:00
self . config = None # set by the function calling the constructor
2022-10-18 17:23:38 +03:00
self . last_latent = None
2023-04-29 15:57:09 +03:00
self . s_min_uncond = None
2022-09-03 12:08:45 +03:00
2022-10-20 01:09:43 +03:00
self . conditioning_key = sd_model . model . conditioning_key
2022-09-06 19:33:51 +03:00
def callback_state ( self , d ) :
2022-10-18 17:23:38 +03:00
step = d [ ' i ' ]
latent = d [ " denoised " ]
2023-01-14 16:29:23 +03:00
if opts . live_preview_content == " Combined " :
2023-01-30 09:51:06 +03:00
sd_samplers_common . store_latent ( latent )
2022-10-18 17:23:38 +03:00
self . last_latent = latent
if self . stop_at is not None and step > self . stop_at :
2023-01-30 09:51:06 +03:00
raise sd_samplers_common . InterruptedException
2022-10-18 17:23:38 +03:00
state . sampling_step = step
shared . total_tqdm . update ( )
def launch_sampling ( self , steps , func ) :
state . sampling_steps = steps
state . sampling_step = 0
try :
return func ( )
2023-05-22 19:09:49 +03:00
except RecursionError :
print (
2023-05-23 04:38:30 +03:00
' Encountered RecursionError during sampling, returning last latent. '
' rho >5 with a polyexponential scheduler may cause this error. '
' You should try to use a smaller rho value instead. '
2023-05-22 19:09:49 +03:00
)
return self . last_latent
2023-01-30 09:51:06 +03:00
except sd_samplers_common . InterruptedException :
2022-10-18 17:23:38 +03:00
return self . last_latent
2022-09-06 19:33:51 +03:00
2022-09-13 21:49:58 +03:00
def number_of_needed_noises ( self , p ) :
return p . steps
2022-09-28 18:09:06 +03:00
def initialize ( self , p ) :
2022-09-19 16:42:56 +03:00
self . model_wrap_cfg . mask = p . mask if hasattr ( p , ' mask ' ) else None
self . model_wrap_cfg . nmask = p . nmask if hasattr ( p , ' nmask ' ) else None
2023-01-25 23:25:40 +03:00
self . model_wrap_cfg . step = 0
2023-02-04 11:06:17 +03:00
self . model_wrap_cfg . image_cfg_scale = getattr ( p , ' image_cfg_scale ' , None )
2023-01-30 10:47:09 +03:00
self . eta = p . eta if p . eta is not None else opts . eta_ancestral
2023-03-29 01:18:28 +03:00
self . s_min_uncond = getattr ( p , ' s_min_uncond ' , 0.0 )
2022-09-03 12:08:45 +03:00
2022-11-30 16:02:39 +03:00
k_diffusion . sampling . torch = TorchHijack ( self . sampler_noises if self . sampler_noises is not None else [ ] )
2022-09-16 09:47:03 +03:00
2023-05-23 18:48:23 +03:00
if opts . k_sched_type != " None " :
2023-05-23 06:34:51 +03:00
p . extra_generation_params [ " KDiffusion Scheduler Type " ] = opts . k_sched_type
p . extra_generation_params [ " KDiffusion Scheduler sigma_max " ] = opts . sigma_max
p . extra_generation_params [ " KDiffusion Scheduler sigma_min " ] = opts . sigma_min
p . extra_generation_params [ " KDiffusion Scheduler rho " ] = opts . rho
2022-09-26 11:56:47 +03:00
extra_params_kwargs = { }
2022-09-28 10:49:07 +03:00
for param_name in self . extra_params :
if hasattr ( p , param_name ) and param_name in inspect . signature ( self . func ) . parameters :
extra_params_kwargs [ param_name ] = getattr ( p , param_name )
2022-09-26 11:56:47 +03:00
2022-09-28 18:09:06 +03:00
if ' eta ' in inspect . signature ( self . func ) . parameters :
2023-01-30 10:47:09 +03:00
if self . eta != 1.0 :
p . extra_generation_params [ " Eta " ] = self . eta
2022-09-28 18:09:06 +03:00
extra_params_kwargs [ ' eta ' ] = self . eta
return extra_params_kwargs
2022-12-24 09:03:45 +03:00
def get_sigmas ( self , p , steps ) :
2023-01-05 10:43:21 +03:00
discard_next_to_last_sigma = self . config is not None and self . config . options . get ( ' discard_next_to_last_sigma ' , False )
if opts . always_discard_next_to_last_sigma and not discard_next_to_last_sigma :
discard_next_to_last_sigma = True
p . extra_generation_params [ " Discard penultimate sigma " ] = True
steps + = 1 if discard_next_to_last_sigma else 0
2022-12-26 23:49:13 +03:00
2022-09-30 03:46:06 +03:00
if p . sampler_noise_scheduler_override :
2022-10-06 23:27:01 +03:00
sigmas = p . sampler_noise_scheduler_override ( steps )
2023-05-23 18:48:23 +03:00
elif opts . k_sched_type != " None " :
2023-05-22 19:29:38 +03:00
sigma_min , sigma_max = ( 0.1 , 10 ) if opts . use_old_karras_scheduler_sigmas else ( self . model_wrap . sigmas [ 0 ] . item ( ) , self . model_wrap . sigmas [ - 1 ] . item ( ) )
2023-05-23 06:34:51 +03:00
sigmas_func = k_diffusion_scheduler [ opts . k_sched_type ]
2023-05-22 18:02:05 +03:00
sigmas_kwargs = {
2023-05-23 06:34:51 +03:00
' sigma_min ' : opts . sigma_min or sigma_min ,
' sigma_max ' : opts . sigma_max or sigma_max
2023-05-22 18:02:05 +03:00
}
2023-05-23 06:34:51 +03:00
if opts . k_sched_type != ' exponential ' :
sigmas_kwargs [ ' rho ' ] = opts . rho
2023-05-22 18:02:05 +03:00
sigmas = sigmas_func ( n = steps , * * sigmas_kwargs , device = shared . device )
2022-10-06 23:27:01 +03:00
elif self . config is not None and self . config . options . get ( ' scheduler ' , None ) == ' karras ' :
2023-01-01 09:51:37 +03:00
sigma_min , sigma_max = ( 0.1 , 10 ) if opts . use_old_karras_scheduler_sigmas else ( self . model_wrap . sigmas [ 0 ] . item ( ) , self . model_wrap . sigmas [ - 1 ] . item ( ) )
sigmas = k_diffusion . sampling . get_sigmas_karras ( n = steps , sigma_min = sigma_min , sigma_max = sigma_max , device = shared . device )
2022-09-30 03:46:06 +03:00
else :
2022-10-06 23:27:01 +03:00
sigmas = self . model_wrap . get_sigmas ( steps )
2022-09-28 18:09:06 +03:00
2023-01-05 10:43:21 +03:00
if discard_next_to_last_sigma :
2022-12-19 06:16:42 +03:00
sigmas = torch . cat ( [ sigmas [ : - 2 ] , sigmas [ - 1 : ] ] )
2022-12-24 09:03:45 +03:00
return sigmas
2023-02-15 11:57:18 +03:00
def create_noise_sampler ( self , x , sigmas , p ) :
2023-02-11 05:12:16 +03:00
""" For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes """
if shared . opts . no_dpmpp_sde_batch_determinism :
return None
from k_diffusion . sampling import BrownianTreeNoiseSampler
sigma_min , sigma_max = sigmas [ sigmas > 0 ] . min ( ) , sigmas . max ( )
2023-02-15 11:57:18 +03:00
current_iter_seeds = p . all_seeds [ p . iteration * p . batch_size : ( p . iteration + 1 ) * p . batch_size ]
return BrownianTreeNoiseSampler ( x , sigma_min , sigma_max , seed = current_iter_seeds )
2023-02-11 05:12:16 +03:00
2022-12-24 09:03:45 +03:00
def sample_img2img ( self , p , x , noise , conditioning , unconditional_conditioning , steps = None , image_conditioning = None ) :
2023-01-30 09:51:06 +03:00
steps , t_enc = sd_samplers_common . setup_img2img_steps ( p , steps )
2022-12-24 09:03:45 +03:00
sigmas = self . get_sigmas ( p , steps )
2022-09-28 18:09:06 +03:00
sigma_sched = sigmas [ steps - t_enc - 1 : ]
2022-10-11 02:02:44 +03:00
xi = x + noise * sigma_sched [ 0 ]
2023-05-11 18:28:15 +03:00
2022-10-11 02:02:44 +03:00
extra_params_kwargs = self . initialize ( p )
2023-02-11 05:12:16 +03:00
parameters = inspect . signature ( self . func ) . parameters
if ' sigma_min ' in parameters :
2022-10-11 02:36:00 +03:00
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
2022-10-11 02:02:44 +03:00
extra_params_kwargs [ ' sigma_min ' ] = sigma_sched [ - 2 ]
2023-02-11 05:12:16 +03:00
if ' sigma_max ' in parameters :
2022-10-11 02:02:44 +03:00
extra_params_kwargs [ ' sigma_max ' ] = sigma_sched [ 0 ]
2023-02-11 05:12:16 +03:00
if ' n ' in parameters :
2022-10-11 02:02:44 +03:00
extra_params_kwargs [ ' n ' ] = len ( sigma_sched ) - 1
2023-02-11 05:12:16 +03:00
if ' sigma_sched ' in parameters :
2022-10-11 02:02:44 +03:00
extra_params_kwargs [ ' sigma_sched ' ] = sigma_sched
2023-02-11 05:12:16 +03:00
if ' sigmas ' in parameters :
2022-10-11 02:02:44 +03:00
extra_params_kwargs [ ' sigmas ' ] = sigma_sched
2022-09-28 18:09:06 +03:00
2023-05-21 07:31:39 +03:00
if self . config . options . get ( ' brownian_noise ' , False ) :
2023-02-15 11:57:18 +03:00
noise_sampler = self . create_noise_sampler ( x , sigmas , p )
2023-02-11 05:12:16 +03:00
extra_params_kwargs [ ' noise_sampler ' ] = noise_sampler
2022-09-28 18:09:06 +03:00
self . model_wrap_cfg . init_latent = x
2022-10-20 23:49:14 +03:00
self . last_latent = x
2023-05-21 07:31:39 +03:00
extra_args = {
2023-05-11 18:28:15 +03:00
' cond ' : conditioning ,
' image_cond ' : image_conditioning ,
' uncond ' : unconditional_conditioning ,
2023-02-04 02:19:56 +03:00
' cond_scale ' : p . cfg_scale ,
2023-03-29 01:18:28 +03:00
' s_min_uncond ' : self . s_min_uncond
2023-02-04 02:19:56 +03:00
}
samples = self . launch_sampling ( t_enc + 1 , lambda : self . func ( self . model_wrap_cfg , xi , extra_args = extra_args , disable = False , callback = self . callback_state , * * extra_params_kwargs ) )
2022-10-11 02:02:44 +03:00
2022-10-18 17:23:38 +03:00
return samples
2022-09-03 12:08:45 +03:00
2023-02-11 05:12:16 +03:00
def sample ( self , p , x , conditioning , unconditional_conditioning , steps = None , image_conditioning = None ) :
2022-09-19 16:42:56 +03:00
steps = steps or p . steps
2022-12-24 09:03:45 +03:00
sigmas = self . get_sigmas ( p , steps )
2022-10-06 14:12:52 +03:00
2022-09-03 12:08:45 +03:00
x = x * sigmas [ 0 ]
2022-09-28 18:09:06 +03:00
extra_params_kwargs = self . initialize ( p )
2023-02-11 05:12:16 +03:00
parameters = inspect . signature ( self . func ) . parameters
if ' sigma_min ' in parameters :
2022-09-29 13:30:33 +03:00
extra_params_kwargs [ ' sigma_min ' ] = self . model_wrap . sigmas [ 0 ] . item ( )
extra_params_kwargs [ ' sigma_max ' ] = self . model_wrap . sigmas [ - 1 ] . item ( )
2023-02-11 05:12:16 +03:00
if ' n ' in parameters :
2022-09-29 13:30:33 +03:00
extra_params_kwargs [ ' n ' ] = steps
else :
extra_params_kwargs [ ' sigmas ' ] = sigmas
2022-10-18 17:23:38 +03:00
2023-05-21 07:31:39 +03:00
if self . config . options . get ( ' brownian_noise ' , False ) :
2023-02-15 11:57:18 +03:00
noise_sampler = self . create_noise_sampler ( x , sigmas , p )
2023-02-11 05:12:16 +03:00
extra_params_kwargs [ ' noise_sampler ' ] = noise_sampler
2022-10-20 23:49:14 +03:00
self . last_latent = x
2022-10-19 23:47:45 +03:00
samples = self . launch_sampling ( steps , lambda : self . func ( self . model_wrap_cfg , x , extra_args = {
2023-05-11 18:28:15 +03:00
' cond ' : conditioning ,
' image_cond ' : image_conditioning ,
' uncond ' : unconditional_conditioning ,
2023-03-29 01:18:28 +03:00
' cond_scale ' : p . cfg_scale ,
' s_min_uncond ' : self . s_min_uncond
2022-10-19 23:47:45 +03:00
} , disable = False , callback = self . callback_state , * * extra_params_kwargs ) )
2022-10-18 17:23:38 +03:00
2022-09-19 16:42:56 +03:00
return samples
2022-09-03 12:08:45 +03:00