stable-diffusion-webui/modules/ldsr_model.py

75 lines
2.1 KiB
Python
Raw Normal View History

import os
import sys
import traceback
from collections import namedtuple
2022-09-26 17:29:50 +03:00
from modules import shared, images, modelloader, paths
from modules.paths import models_path
2022-09-26 17:29:50 +03:00
model_dir = "LDSR"
model_path = os.path.join(models_path, model_dir)
cmd_path = None
model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
LDSRModelInfo = namedtuple("LDSRModelInfo", ["name", "location", "model", "netscale"])
ldsr_models = []
have_ldsr = False
LDSR_obj = None
2022-09-26 18:27:18 +03:00
class UpscalerLDSR(images.Upscaler):
def __init__(self, steps):
self.steps = steps
self.name = "LDSR"
def do_upscale(self, img):
return upscale_with_ldsr(img)
2022-09-26 17:29:50 +03:00
def setup_model(dirname):
global cmd_path
global model_path
if not os.path.exists(model_path):
os.makedirs(model_path)
cmd_path = dirname
shared.sd_upscalers.append(UpscalerLDSR(100))
2022-09-26 17:29:50 +03:00
def prepare_ldsr():
path = paths.paths.get("LDSR", None)
if path is None:
return
global have_ldsr
global LDSR_obj
try:
from LDSR import LDSR
2022-09-26 17:29:50 +03:00
model_files = modelloader.load_models(model_path, model_url, cmd_path, dl_name="model.ckpt", ext_filter=[".ckpt"])
yaml_files = modelloader.load_models(model_path, yaml_url, cmd_path, dl_name="project.yaml", ext_filter=[".yaml"])
if len(model_files) != 0 and len(yaml_files) != 0:
model_file = model_files[0]
yaml_file = yaml_files[0]
have_ldsr = True
LDSR_obj = LDSR(model_file, yaml_file)
else:
return
except Exception:
print("Error importing LDSR:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
have_ldsr = False
def upscale_with_ldsr(image):
2022-09-26 17:29:50 +03:00
prepare_ldsr()
if not have_ldsr or LDSR_obj is None:
return image
ddim_steps = shared.opts.ldsr_steps
pre_scale = shared.opts.ldsr_pre_down
post_scale = shared.opts.ldsr_post_down
image = LDSR_obj.super_resolution(image, ddim_steps, pre_scale, post_scale)
return image