stable-diffusion-webui/modules/img2img.py

166 lines
6.3 KiB
Python
Raw Normal View History

import math
import os
import sys
import traceback
import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops
from modules import devices, sd_samplers
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
import modules.images as images
2022-09-03 17:21:15 +03:00
import modules.scripts
def process_batch(p, input_dir, output_dir, args):
processing.fix_seed(p)
images = shared.listfiles(input_dir)
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
save_normally = output_dir == ''
p.do_not_save_grid = True
p.do_not_save_samples = not save_normally
state.job_count = len(images) * p.n_iter
for i, image in enumerate(images):
state.job = f"{i+1} out of {len(images)}"
if state.skipped:
state.skipped = False
if state.interrupted:
break
img = Image.open(image)
# Use the EXIF orientation of photos taken by smartphones.
img = ImageOps.exif_transpose(img)
p.init_images = [img] * p.batch_size
proc = modules.scripts.scripts_img2img.run(p, *args)
if proc is None:
proc = process_images(p)
for n, processed_image in enumerate(proc.images):
filename = os.path.basename(image)
if n > 0:
left, right = os.path.splitext(filename)
filename = f"{left}-{n}{right}"
if not save_normally:
os.makedirs(output_dir, exist_ok=True)
processed_image.save(os.path.join(output_dir, filename))
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_with_mask_orig, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
is_inpaint = mode == 1
is_batch = mode == 2
if is_inpaint:
# Drawn mask
2022-09-09 19:43:16 +03:00
if mask_mode == 0:
is_mask_sketch = isinstance(init_img_with_mask, dict)
is_mask_paint = not is_mask_sketch
if is_mask_sketch:
2022-11-08 03:58:49 +03:00
# Sketch: mask iff. not transparent
image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
2022-11-08 03:58:49 +03:00
else:
# Color-sketch: mask iff. painted over
image = init_img_with_mask
orig = init_img_with_mask_orig or init_img_with_mask
pred = np.any(np.array(image) != np.array(orig), axis=-1)
mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
blur = ImageFilter.GaussianBlur(mask_blur)
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
2022-11-08 03:58:49 +03:00
image = image.convert("RGB")
# Uploaded mask
2022-09-09 19:43:16 +03:00
else:
image = init_img_inpaint
mask = init_mask_inpaint
# No mask
else:
image = init_img
mask = None
# Use the EXIF orientation of photos taken by smartphones.
if image is not None:
image = ImageOps.exif_transpose(image)
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
p = StableDiffusionProcessingImg2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples,
outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids,
prompt=prompt,
2022-09-09 09:15:36 +03:00
negative_prompt=negative_prompt,
styles=[prompt_style, prompt_style2],
seed=seed,
subseed=subseed,
subseed_strength=subseed_strength,
seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=seed_enable_extras,
sampler_name=sd_samplers.samplers_for_img2img[sampler_index].name,
batch_size=batch_size,
n_iter=n_iter,
steps=steps,
cfg_scale=cfg_scale,
width=width,
height=height,
2022-09-07 12:32:28 +03:00
restore_faces=restore_faces,
tiling=tiling,
init_images=[image],
mask=mask,
mask_blur=mask_blur,
inpainting_fill=inpainting_fill,
resize_mode=resize_mode,
denoising_strength=denoising_strength,
inpaint_full_res=inpaint_full_res,
inpaint_full_res_padding=inpaint_full_res_padding,
2022-09-03 21:02:38 +03:00
inpainting_mask_invert=inpainting_mask_invert,
)
p.scripts = modules.scripts.scripts_txt2img
p.script_args = args
2022-10-16 18:53:56 +03:00
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
2022-09-20 19:07:09 +03:00
p.extra_generation_params["Mask blur"] = mask_blur
if is_batch:
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, args)
processed = Processed(p, [], p.seed, "")
else:
2022-09-04 01:29:43 +03:00
processed = modules.scripts.scripts_img2img.run(p, *args)
2022-09-03 17:21:15 +03:00
if processed is None:
processed = process_images(p)
p.close()
2022-09-08 16:37:13 +03:00
shared.total_tqdm.clear()
generation_info_js = processed.js()
if opts.samples_log_stdout:
print(generation_info_js)
2022-10-04 17:23:48 +03:00
if opts.do_not_show_images:
processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)