stable-diffusion-webui/modules/devices.py

132 lines
3.6 KiB
Python
Raw Normal View History

2022-10-22 01:11:07 +03:00
import sys, os, shlex
import contextlib
2022-09-11 08:11:27 +03:00
import torch
from modules import errors
from packaging import version
# has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
# check `getattr` and try it for compatibility
def has_mps() -> bool:
if not getattr(torch, 'has_mps', False):
return False
try:
torch.zeros(1).to(torch.device("mps"))
return True
except Exception:
return False
2022-09-11 08:11:27 +03:00
2022-09-11 18:48:36 +03:00
2022-10-22 01:11:07 +03:00
def extract_device_id(args, name):
for x in range(len(args)):
if name in args[x]:
return args[x + 1]
2022-10-22 01:11:07 +03:00
return None
2022-09-11 18:48:36 +03:00
2022-11-27 13:08:54 +03:00
def get_cuda_device_string():
from modules import shared
if shared.cmd_opts.device_id is not None:
return f"cuda:{shared.cmd_opts.device_id}"
2022-11-27 13:08:54 +03:00
return "cuda"
2022-11-27 13:08:54 +03:00
def get_optimal_device():
if torch.cuda.is_available():
return torch.device(get_cuda_device_string())
2022-09-11 18:48:36 +03:00
if has_mps():
2022-09-11 18:48:36 +03:00
return torch.device("mps")
return cpu
def get_device_for(task):
from modules import shared
if task in shared.cmd_opts.use_cpu:
return cpu
return get_optimal_device()
def torch_gc():
if torch.cuda.is_available():
2022-11-27 13:08:54 +03:00
with torch.cuda.device(get_cuda_device_string()):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def enable_tf32():
if torch.cuda.is_available():
# enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't
# see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407
if any([torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())]):
2022-11-08 05:06:48 +03:00
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
2022-11-07 04:05:51 +03:00
errors.run(enable_tf32, "Enabling TF32")
2022-09-12 20:09:32 +03:00
cpu = torch.device("cpu")
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
dtype = torch.float16
2022-10-10 16:11:14 +03:00
dtype_vae = torch.float16
2022-09-12 20:09:32 +03:00
2022-09-12 20:09:32 +03:00
def randn(seed, shape):
torch.manual_seed(seed)
if device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
2022-09-12 20:09:32 +03:00
return torch.randn(shape, device=device)
def randn_without_seed(shape):
if device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)
2022-10-10 16:11:14 +03:00
def autocast(disable=False):
from modules import shared
2022-10-10 16:11:14 +03:00
if disable:
return contextlib.nullcontext()
if dtype == torch.float32 or shared.cmd_opts.precision == "full":
return contextlib.nullcontext()
return torch.autocast("cuda")
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
orig_tensor_to = torch.Tensor.to
def tensor_to_fix(self, *args, **kwargs):
if self.device.type != 'mps' and \
((len(args) > 0 and isinstance(args[0], torch.device) and args[0].type == 'mps') or \
(isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')):
self = self.contiguous()
return orig_tensor_to(self, *args, **kwargs)
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
orig_layer_norm = torch.nn.functional.layer_norm
def layer_norm_fix(*args, **kwargs):
if len(args) > 0 and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps':
args = list(args)
args[0] = args[0].contiguous()
return orig_layer_norm(*args, **kwargs)
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
if has_mps() and version.parse(torch.__version__) < version.parse("1.13"):
torch.Tensor.to = tensor_to_fix
torch.nn.functional.layer_norm = layer_norm_fix