stable-diffusion-webui/modules/interrogate.py

168 lines
6.1 KiB
Python
Raw Normal View History

import contextlib
2022-09-11 18:48:36 +03:00
import os
import sys
import traceback
from collections import namedtuple
import re
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import modules.shared as shared
from modules import devices, paths, lowvram
2022-09-11 18:48:36 +03:00
blip_image_eval_size = 384
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
clip_model_name = 'ViT-L/14'
Category = namedtuple("Category", ["name", "topn", "items"])
re_topn = re.compile(r"\.top(\d+)\.")
class InterrogateModels:
blip_model = None
clip_model = None
clip_preprocess = None
categories = None
dtype = None
2022-09-11 18:48:36 +03:00
def __init__(self, content_dir):
self.categories = []
if os.path.exists(content_dir):
for filename in os.listdir(content_dir):
m = re_topn.search(filename)
topn = 1 if m is None else int(m.group(1))
with open(os.path.join(content_dir, filename), "r", encoding="utf8") as file:
lines = [x.strip() for x in file.readlines()]
self.categories.append(Category(name=filename, topn=topn, items=lines))
def load_blip_model(self):
import models.blip
blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
blip_model.eval()
return blip_model
def load_clip_model(self):
import clip
model, preprocess = clip.load(clip_model_name)
model.eval()
model = model.to(shared.device)
return model, preprocess
def load(self):
if self.blip_model is None:
self.blip_model = self.load_blip_model()
if not shared.cmd_opts.no_half:
self.blip_model = self.blip_model.half()
2022-09-11 18:48:36 +03:00
self.blip_model = self.blip_model.to(shared.device)
if self.clip_model is None:
self.clip_model, self.clip_preprocess = self.load_clip_model()
if not shared.cmd_opts.no_half:
self.clip_model = self.clip_model.half()
2022-09-11 18:48:36 +03:00
self.clip_model = self.clip_model.to(shared.device)
self.dtype = next(self.clip_model.parameters()).dtype
def send_clip_to_ram(self):
2022-09-11 18:48:36 +03:00
if not shared.opts.interrogate_keep_models_in_memory:
if self.clip_model is not None:
self.clip_model = self.clip_model.to(devices.cpu)
def send_blip_to_ram(self):
if not shared.opts.interrogate_keep_models_in_memory:
2022-09-11 18:48:36 +03:00
if self.blip_model is not None:
self.blip_model = self.blip_model.to(devices.cpu)
def unload(self):
self.send_clip_to_ram()
self.send_blip_to_ram()
devices.torch_gc()
2022-09-11 18:48:36 +03:00
def rank(self, image_features, text_array, top_count=1):
import clip
if shared.opts.interrogate_clip_dict_limit != 0:
text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
2022-09-11 18:48:36 +03:00
top_count = min(top_count, len(text_array))
text_tokens = clip.tokenize([text for text in text_array]).to(shared.device)
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
2022-09-11 18:48:36 +03:00
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = torch.zeros((1, len(text_array))).to(shared.device)
for i in range(image_features.shape[0]):
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
similarity /= image_features.shape[0]
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]
def generate_caption(self, pil_image):
gpu_image = transforms.Compose([
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
2022-09-11 18:48:36 +03:00
with torch.no_grad():
caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
return caption[0]
def interrogate(self, pil_image):
res = None
try:
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
devices.torch_gc()
2022-09-11 18:48:36 +03:00
self.load()
caption = self.generate_caption(pil_image)
self.send_blip_to_ram()
devices.torch_gc()
2022-09-11 18:48:36 +03:00
res = caption
cilp_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device)
2022-09-11 18:48:36 +03:00
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
with torch.no_grad(), precision_scope("cuda"):
image_features = self.clip_model.encode_image(cilp_image).type(self.dtype)
2022-09-11 18:48:36 +03:00
image_features /= image_features.norm(dim=-1, keepdim=True)
2022-09-11 18:48:36 +03:00
if shared.opts.interrogate_use_builtin_artists:
artist = self.rank(image_features, ["by " + artist.name for artist in shared.artist_db.artists])[0]
2022-09-11 18:48:36 +03:00
res += ", " + artist[0]
2022-09-11 18:48:36 +03:00
for name, topn, items in self.categories:
matches = self.rank(image_features, items, top_count=topn)
for match, score in matches:
res += ", " + match
2022-09-11 18:48:36 +03:00
except Exception:
print(f"Error interrogating", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
2022-09-12 12:26:37 +03:00
res += "<error>"
2022-09-11 18:48:36 +03:00
self.unload()
return res