mirror of
https://github.com/openvinotoolkit/stable-diffusion-webui.git
synced 2024-12-15 07:03:06 +03:00
129 lines
4.5 KiB
Python
129 lines
4.5 KiB
Python
|
import re
|
||
|
from collections import namedtuple
|
||
|
import torch
|
||
|
|
||
|
import modules.shared as shared
|
||
|
|
||
|
re_prompt = re.compile(r'''
|
||
|
(.*?)
|
||
|
\[
|
||
|
([^]:]+):
|
||
|
(?:([^]:]*):)?
|
||
|
([0-9]*\.?[0-9]+)
|
||
|
]
|
||
|
|
|
||
|
(.+)
|
||
|
''', re.X)
|
||
|
|
||
|
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
||
|
# will be represented with prompt_schedule like this (assuming steps=100):
|
||
|
# [25, 'fantasy landscape with a mountain and an oak in foreground shoddy']
|
||
|
# [50, 'fantasy landscape with a lake and an oak in foreground in background shoddy']
|
||
|
# [60, 'fantasy landscape with a lake and an oak in foreground in background masterful']
|
||
|
# [75, 'fantasy landscape with a lake and an oak in background masterful']
|
||
|
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
|
||
|
|
||
|
|
||
|
def get_learned_conditioning_prompt_schedules(prompts, steps):
|
||
|
res = []
|
||
|
cache = {}
|
||
|
|
||
|
for prompt in prompts:
|
||
|
prompt_schedule: list[list[str | int]] = [[steps, ""]]
|
||
|
|
||
|
cached = cache.get(prompt, None)
|
||
|
if cached is not None:
|
||
|
res.append(cached)
|
||
|
|
||
|
for m in re_prompt.finditer(prompt):
|
||
|
plaintext = m.group(1) if m.group(5) is None else m.group(5)
|
||
|
concept_from = m.group(2)
|
||
|
concept_to = m.group(3)
|
||
|
if concept_to is None:
|
||
|
concept_to = concept_from
|
||
|
concept_from = ""
|
||
|
swap_position = float(m.group(4)) if m.group(4) is not None else None
|
||
|
|
||
|
if swap_position is not None:
|
||
|
if swap_position < 1:
|
||
|
swap_position = swap_position * steps
|
||
|
swap_position = int(min(swap_position, steps))
|
||
|
|
||
|
swap_index = None
|
||
|
found_exact_index = False
|
||
|
for i in range(len(prompt_schedule)):
|
||
|
end_step = prompt_schedule[i][0]
|
||
|
prompt_schedule[i][1] += plaintext
|
||
|
|
||
|
if swap_position is not None and swap_index is None:
|
||
|
if swap_position == end_step:
|
||
|
swap_index = i
|
||
|
found_exact_index = True
|
||
|
|
||
|
if swap_position < end_step:
|
||
|
swap_index = i
|
||
|
|
||
|
if swap_index is not None:
|
||
|
if not found_exact_index:
|
||
|
prompt_schedule.insert(swap_index, [swap_position, prompt_schedule[swap_index][1]])
|
||
|
|
||
|
for i in range(len(prompt_schedule)):
|
||
|
end_step = prompt_schedule[i][0]
|
||
|
must_replace = swap_position < end_step
|
||
|
|
||
|
prompt_schedule[i][1] += concept_to if must_replace else concept_from
|
||
|
|
||
|
res.append(prompt_schedule)
|
||
|
cache[prompt] = prompt_schedule
|
||
|
#for t in prompt_schedule:
|
||
|
# print(t)
|
||
|
|
||
|
return res
|
||
|
|
||
|
|
||
|
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
|
||
|
ScheduledPromptBatch = namedtuple("ScheduledPromptBatch", ["shape", "schedules"])
|
||
|
|
||
|
|
||
|
def get_learned_conditioning(prompts, steps):
|
||
|
|
||
|
res = []
|
||
|
|
||
|
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
|
||
|
cache = {}
|
||
|
|
||
|
for prompt, prompt_schedule in zip(prompts, prompt_schedules):
|
||
|
|
||
|
cached = cache.get(prompt, None)
|
||
|
if cached is not None:
|
||
|
res.append(cached)
|
||
|
|
||
|
texts = [x[1] for x in prompt_schedule]
|
||
|
conds = shared.sd_model.get_learned_conditioning(texts)
|
||
|
|
||
|
cond_schedule = []
|
||
|
for i, (end_at_step, text) in enumerate(prompt_schedule):
|
||
|
cond_schedule.append(ScheduledPromptConditioning(end_at_step, conds[i]))
|
||
|
|
||
|
cache[prompt] = cond_schedule
|
||
|
res.append(cond_schedule)
|
||
|
|
||
|
return ScheduledPromptBatch((len(prompts),) + res[0][0].cond.shape, res)
|
||
|
|
||
|
|
||
|
def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step):
|
||
|
res = torch.zeros(c.shape)
|
||
|
for i, cond_schedule in enumerate(c.schedules):
|
||
|
target_index = 0
|
||
|
for curret_index, (end_at, cond) in enumerate(cond_schedule):
|
||
|
if current_step <= end_at:
|
||
|
target_index = curret_index
|
||
|
break
|
||
|
res[i] = cond_schedule[target_index].cond
|
||
|
|
||
|
return res.to(shared.device)
|
||
|
|
||
|
|
||
|
|
||
|
#get_learned_conditioning_prompt_schedules(["fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"], 100)
|