stable-diffusion-webui/modules/sd_models_xl.py

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

65 lines
2.8 KiB
Python
Raw Normal View History

2023-07-11 21:16:43 +03:00
from __future__ import annotations
import torch
import sgm.models.diffusion
import sgm.modules.diffusionmodules.denoiser_scaling
import sgm.modules.diffusionmodules.discretizer
2023-07-12 23:52:43 +03:00
from modules import devices, shared, prompt_parser
2023-07-11 21:16:43 +03:00
2023-07-12 23:52:43 +03:00
def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch: prompt_parser.SdConditioning | list[str]):
2023-07-11 21:16:43 +03:00
for embedder in self.conditioner.embedders:
embedder.ucg_rate = 0.0
2023-07-12 23:52:43 +03:00
width = getattr(self, 'target_width', 1024)
height = getattr(self, 'target_height', 1024)
sdxl_conds = {
"txt": batch,
"original_size_as_tuple": torch.tensor([height, width]).repeat(len(batch), 1).to(devices.device, devices.dtype),
"crop_coords_top_left": torch.tensor([shared.opts.sdxl_crop_top, shared.opts.sdxl_crop_left]).repeat(len(batch), 1).to(devices.device, devices.dtype),
"target_size_as_tuple": torch.tensor([height, width]).repeat(len(batch), 1).to(devices.device, devices.dtype),
}
force_zero_negative_prompt = getattr(batch, 'is_negative_prompt', False) and all(x == '' for x in batch)
c = self.conditioner(sdxl_conds, force_zero_embeddings=['txt'] if force_zero_negative_prompt else [])
2023-07-11 21:16:43 +03:00
return c
def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond):
return self.model(x, t, cond)
2023-07-13 16:18:39 +03:00
def get_first_stage_encoding(self, x): # SDXL's encode_first_stage does everything so get_first_stage_encoding is just there for compatibility
return x
2023-07-11 21:16:43 +03:00
def extend_sdxl(model):
dtype = next(model.model.diffusion_model.parameters()).dtype
model.model.diffusion_model.dtype = dtype
model.model.conditioning_key = 'crossattn'
2023-07-12 23:52:43 +03:00
model.cond_stage_model = [x for x in model.conditioner.embedders if 'CLIPEmbedder' in type(x).__name__][0]
2023-07-11 21:16:43 +03:00
model.cond_stage_key = model.cond_stage_model.input_key
model.parameterization = "v" if isinstance(model.denoiser.scaling, sgm.modules.diffusionmodules.denoiser_scaling.VScaling) else "eps"
discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization()
model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype)
2023-07-12 23:52:43 +03:00
2023-07-11 21:16:43 +03:00
sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning
sgm.models.diffusion.DiffusionEngine.apply_model = apply_model
2023-07-13 16:18:39 +03:00
sgm.models.diffusion.DiffusionEngine.get_first_stage_encoding = get_first_stage_encoding
2023-07-11 21:16:43 +03:00
2023-07-12 23:52:43 +03:00
sgm.modules.attention.print = lambda *args: None
sgm.modules.diffusionmodules.model.print = lambda *args: None
sgm.modules.diffusionmodules.openaimodel.print = lambda *args: None
sgm.modules.encoders.modules.print = lambda *args: None
2023-07-13 09:30:33 +03:00
# this gets the code to load the vanilla attention that we override
sgm.modules.attention.SDP_IS_AVAILABLE = True
2023-07-13 09:38:54 +03:00
sgm.modules.attention.XFORMERS_IS_AVAILABLE = False