stable-diffusion-webui/modules/hypernetworks/ui.py

42 lines
1.6 KiB
Python
Raw Normal View History

2022-10-07 23:22:22 +03:00
import html
import os
import re
2022-10-07 23:22:22 +03:00
import gradio as gr
2022-12-25 02:02:22 +03:00
import modules.hypernetworks.hypernetwork
2022-10-22 14:07:00 +03:00
from modules import devices, sd_hijack, shared
2022-10-07 23:22:22 +03:00
not_available = ["hardswish", "multiheadattention"]
2022-12-25 02:02:22 +03:00
keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
2022-10-07 23:22:22 +03:00
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout, dropout_structure)
2022-10-21 12:11:12 +03:00
2022-12-25 02:02:22 +03:00
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", ""
2022-10-07 23:22:22 +03:00
def train_hypernetwork(*args):
2022-10-11 14:53:02 +03:00
initial_hypernetwork = shared.loaded_hypernetwork
2022-10-07 23:22:22 +03:00
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
2022-10-07 23:22:22 +03:00
try:
sd_hijack.undo_optimizations()
2022-10-11 15:54:34 +03:00
hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
2022-10-07 23:22:22 +03:00
res = f"""
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
Hypernetwork saved to {html.escape(filename)}
"""
return res, ""
except Exception:
raise
finally:
2022-10-11 14:53:02 +03:00
shared.loaded_hypernetwork = initial_hypernetwork
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
2022-10-07 23:22:22 +03:00
sd_hijack.apply_optimizations()