mirror of
https://github.com/openvinotoolkit/stable-diffusion-webui.git
synced 2024-12-15 07:03:06 +03:00
Merge pull request #3722 from evshiron/feat/progress-api
prototype progress api
This commit is contained in:
commit
060ee5d3a7
@ -1,12 +1,40 @@
|
||||
import time
|
||||
import uvicorn
|
||||
from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
|
||||
from fastapi import APIRouter, HTTPException
|
||||
from fastapi import APIRouter, Depends, HTTPException
|
||||
import modules.shared as shared
|
||||
from modules import devices
|
||||
from modules.api.models import *
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||
from modules.sd_samplers import all_samplers
|
||||
from modules.extras import run_extras, run_pnginfo
|
||||
|
||||
# copy from wrap_gradio_gpu_call of webui.py
|
||||
# because queue lock will be acquired in api handlers
|
||||
# and time start needs to be set
|
||||
# the function has been modified into two parts
|
||||
|
||||
def before_gpu_call():
|
||||
devices.torch_gc()
|
||||
|
||||
shared.state.sampling_step = 0
|
||||
shared.state.job_count = -1
|
||||
shared.state.job_no = 0
|
||||
shared.state.job_timestamp = shared.state.get_job_timestamp()
|
||||
shared.state.current_latent = None
|
||||
shared.state.current_image = None
|
||||
shared.state.current_image_sampling_step = 0
|
||||
shared.state.skipped = False
|
||||
shared.state.interrupted = False
|
||||
shared.state.textinfo = None
|
||||
shared.state.time_start = time.time()
|
||||
|
||||
def after_gpu_call():
|
||||
shared.state.job = ""
|
||||
shared.state.job_count = 0
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
def upscaler_to_index(name: str):
|
||||
try:
|
||||
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
|
||||
@ -33,15 +61,16 @@ class Api:
|
||||
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
|
||||
self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
|
||||
self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
|
||||
self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
|
||||
|
||||
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
||||
|
||||
|
||||
if sampler_index is None:
|
||||
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||
|
||||
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||
|
||||
populate = txt2imgreq.copy(update={ # Override __init__ params
|
||||
"sd_model": shared.sd_model,
|
||||
"sd_model": shared.sd_model,
|
||||
"sampler_index": sampler_index[0],
|
||||
"do_not_save_samples": True,
|
||||
"do_not_save_grid": True
|
||||
@ -49,34 +78,36 @@ class Api:
|
||||
)
|
||||
p = StableDiffusionProcessingTxt2Img(**vars(populate))
|
||||
# Override object param
|
||||
before_gpu_call()
|
||||
with self.queue_lock:
|
||||
processed = process_images(p)
|
||||
|
||||
after_gpu_call()
|
||||
|
||||
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||
|
||||
|
||||
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
||||
|
||||
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
||||
sampler_index = sampler_to_index(img2imgreq.sampler_index)
|
||||
|
||||
|
||||
if sampler_index is None:
|
||||
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||
|
||||
|
||||
init_images = img2imgreq.init_images
|
||||
if init_images is None:
|
||||
raise HTTPException(status_code=404, detail="Init image not found")
|
||||
raise HTTPException(status_code=404, detail="Init image not found")
|
||||
|
||||
mask = img2imgreq.mask
|
||||
if mask:
|
||||
mask = decode_base64_to_image(mask)
|
||||
|
||||
|
||||
|
||||
populate = img2imgreq.copy(update={ # Override __init__ params
|
||||
"sd_model": shared.sd_model,
|
||||
"sd_model": shared.sd_model,
|
||||
"sampler_index": sampler_index[0],
|
||||
"do_not_save_samples": True,
|
||||
"do_not_save_grid": True,
|
||||
"do_not_save_grid": True,
|
||||
"mask": mask
|
||||
}
|
||||
)
|
||||
@ -89,15 +120,17 @@ class Api:
|
||||
|
||||
p.init_images = imgs
|
||||
# Override object param
|
||||
before_gpu_call()
|
||||
with self.queue_lock:
|
||||
processed = process_images(p)
|
||||
|
||||
after_gpu_call()
|
||||
|
||||
b64images = list(map(encode_pil_to_base64, processed.images))
|
||||
|
||||
if (not img2imgreq.include_init_images):
|
||||
img2imgreq.init_images = None
|
||||
img2imgreq.mask = None
|
||||
|
||||
|
||||
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
|
||||
|
||||
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
|
||||
@ -125,7 +158,7 @@ class Api:
|
||||
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict)
|
||||
|
||||
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
|
||||
|
||||
|
||||
def pnginfoapi(self, req: PNGInfoRequest):
|
||||
if(not req.image.strip()):
|
||||
return PNGInfoResponse(info="")
|
||||
@ -134,6 +167,32 @@ class Api:
|
||||
|
||||
return PNGInfoResponse(info=result[1])
|
||||
|
||||
def progressapi(self, req: ProgressRequest = Depends()):
|
||||
# copy from check_progress_call of ui.py
|
||||
|
||||
if shared.state.job_count == 0:
|
||||
return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict())
|
||||
|
||||
# avoid dividing zero
|
||||
progress = 0.01
|
||||
|
||||
if shared.state.job_count > 0:
|
||||
progress += shared.state.job_no / shared.state.job_count
|
||||
if shared.state.sampling_steps > 0:
|
||||
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
|
||||
|
||||
time_since_start = time.time() - shared.state.time_start
|
||||
eta = (time_since_start/progress)
|
||||
eta_relative = eta-time_since_start
|
||||
|
||||
progress = min(progress, 1)
|
||||
|
||||
current_image = None
|
||||
if shared.state.current_image and not req.skip_current_image:
|
||||
current_image = encode_pil_to_base64(shared.state.current_image)
|
||||
|
||||
return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image)
|
||||
|
||||
def launch(self, server_name, port):
|
||||
self.app.include_router(self.router)
|
||||
uvicorn.run(self.app, host=server_name, port=port)
|
||||
|
@ -52,17 +52,17 @@ class PydanticModelGenerator:
|
||||
# field_type = str if not overrides.get(k) else overrides[k]["type"]
|
||||
# print(k, v.annotation, v.default)
|
||||
field_type = v.annotation
|
||||
|
||||
|
||||
return Optional[field_type]
|
||||
|
||||
|
||||
def merge_class_params(class_):
|
||||
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
|
||||
parameters = {}
|
||||
for classes in all_classes:
|
||||
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
|
||||
return parameters
|
||||
|
||||
|
||||
|
||||
|
||||
self._model_name = model_name
|
||||
self._class_data = merge_class_params(class_instance)
|
||||
self._model_def = [
|
||||
@ -74,11 +74,11 @@ class PydanticModelGenerator:
|
||||
)
|
||||
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
|
||||
]
|
||||
|
||||
|
||||
for fields in additional_fields:
|
||||
self._model_def.append(ModelDef(
|
||||
field=underscore(fields["key"]),
|
||||
field_alias=fields["key"],
|
||||
field=underscore(fields["key"]),
|
||||
field_alias=fields["key"],
|
||||
field_type=fields["type"],
|
||||
field_value=fields["default"],
|
||||
field_exclude=fields["exclude"] if "exclude" in fields else False))
|
||||
@ -95,15 +95,15 @@ class PydanticModelGenerator:
|
||||
DynamicModel.__config__.allow_population_by_field_name = True
|
||||
DynamicModel.__config__.allow_mutation = True
|
||||
return DynamicModel
|
||||
|
||||
|
||||
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
||||
"StableDiffusionProcessingTxt2Img",
|
||||
"StableDiffusionProcessingTxt2Img",
|
||||
StableDiffusionProcessingTxt2Img,
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
||||
).generate_model()
|
||||
|
||||
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
||||
"StableDiffusionProcessingImg2Img",
|
||||
"StableDiffusionProcessingImg2Img",
|
||||
StableDiffusionProcessingImg2Img,
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
|
||||
).generate_model()
|
||||
@ -155,4 +155,13 @@ class PNGInfoRequest(BaseModel):
|
||||
image: str = Field(title="Image", description="The base64 encoded PNG image")
|
||||
|
||||
class PNGInfoResponse(BaseModel):
|
||||
info: str = Field(title="Image info", description="A string with all the info the image had")
|
||||
info: str = Field(title="Image info", description="A string with all the info the image had")
|
||||
|
||||
class ProgressRequest(BaseModel):
|
||||
skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization")
|
||||
|
||||
class ProgressResponse(BaseModel):
|
||||
progress: float = Field(title="Progress", description="The progress with a range of 0 to 1")
|
||||
eta_relative: float = Field(title="ETA in secs")
|
||||
state: dict = Field(title="State", description="The current state snapshot")
|
||||
current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")
|
||||
|
@ -147,6 +147,19 @@ class State:
|
||||
def get_job_timestamp(self):
|
||||
return datetime.datetime.now().strftime("%Y%m%d%H%M%S") # shouldn't this return job_timestamp?
|
||||
|
||||
def dict(self):
|
||||
obj = {
|
||||
"skipped": self.skipped,
|
||||
"interrupted": self.skipped,
|
||||
"job": self.job,
|
||||
"job_count": self.job_count,
|
||||
"job_no": self.job_no,
|
||||
"sampling_step": self.sampling_step,
|
||||
"sampling_steps": self.sampling_steps,
|
||||
}
|
||||
|
||||
return obj
|
||||
|
||||
|
||||
state = State()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user