From 2489252099c299bed49a9d4a39a4ead73b6b6f10 Mon Sep 17 00:00:00 2001 From: brkirch Date: Tue, 25 Jul 2023 03:03:06 -0400 Subject: [PATCH] `torch.empty` can create issues; use `torch.zeros` For MPS, using a tensor created with `torch.empty()` can cause `torch.baddbmm()` to include NaNs in the tensor it returns, even though `beta=0`. However, with a tensor of shape [1,1,1], there should be a negligible performance difference between `torch.empty()` and `torch.zeros()` anyway, so it's better to just use `torch.zeros()` for this and avoid unnecessarily creating issues. --- modules/sub_quadratic_attention.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/modules/sub_quadratic_attention.py b/modules/sub_quadratic_attention.py index 497568eb..ae4ee4bb 100644 --- a/modules/sub_quadratic_attention.py +++ b/modules/sub_quadratic_attention.py @@ -58,7 +58,7 @@ def _summarize_chunk( scale: float, ) -> AttnChunk: attn_weights = torch.baddbmm( - torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + torch.zeros(1, 1, 1, device=query.device, dtype=query.dtype), query, key.transpose(1,2), alpha=scale, @@ -121,7 +121,7 @@ def _get_attention_scores_no_kv_chunking( scale: float, ) -> Tensor: attn_scores = torch.baddbmm( - torch.empty(1, 1, 1, device=query.device, dtype=query.dtype), + torch.zeros(1, 1, 1, device=query.device, dtype=query.dtype), query, key.transpose(1,2), alpha=scale,