Merge branch 'dev' into remove-watermark-option

This commit is contained in:
AUTOMATIC1111 2023-04-29 16:50:52 +03:00 committed by GitHub
commit 263f0fb59c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
52 changed files with 751 additions and 332 deletions

2
.gitignore vendored
View File

@ -32,4 +32,4 @@ notification.mp3
/extensions
/test/stdout.txt
/test/stderr.txt
/cache.json
/cache.json*

View File

@ -120,6 +120,7 @@ sudo pacman -S wget git python3
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
```
3. Run `webui.sh`.
4. Check `webui-user.sh` for options.
### Installation on Apple Silicon
Find the instructions [here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Installation-on-Apple-Silicon).

View File

@ -4,8 +4,8 @@ channels:
- defaults
dependencies:
- python=3.10
- pip=22.2.2
- cudatoolkit=11.3
- pytorch=1.12.1
- torchvision=0.13.1
- numpy=1.23.1
- pip=23.0
- cudatoolkit=11.8
- pytorch=2.0
- torchvision=0.15
- numpy=1.23

View File

@ -8,7 +8,7 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
def activate(self, p, params_list):
additional = shared.opts.sd_lora
if additional != "" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
if additional != "None" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))

View File

@ -52,5 +52,5 @@ script_callbacks.on_before_ui(before_ui)
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
}))

View File

@ -5,11 +5,15 @@ import traceback
import PIL.Image
import numpy as np
import torch
from tqdm import tqdm
from basicsr.utils.download_util import load_file_from_url
import modules.upscaler
from modules import devices, modelloader
from scunet_model_arch import SCUNet as net
from modules.shared import opts
from modules import images
class UpscalerScuNET(modules.upscaler.Upscaler):
@ -42,28 +46,78 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
scalers.append(scaler_data2)
self.scalers = scalers
def do_upscale(self, img: PIL.Image, selected_file):
@staticmethod
@torch.no_grad()
def tiled_inference(img, model):
# test the image tile by tile
h, w = img.shape[2:]
tile = opts.SCUNET_tile
tile_overlap = opts.SCUNET_tile_overlap
if tile == 0:
return model(img)
device = devices.get_device_for('scunet')
assert tile % 8 == 0, "tile size should be a multiple of window_size"
sf = 1
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device)
W = torch.zeros_like(E, dtype=devices.dtype, device=device)
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar:
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch)
W[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch_mask)
pbar.update(1)
output = E.div_(W)
return output
def do_upscale(self, img: PIL.Image.Image, selected_file):
torch.cuda.empty_cache()
model = self.load_model(selected_file)
if model is None:
print(f"ScuNET: Unable to load model from {selected_file}", file=sys.stderr)
return img
device = devices.get_device_for('scunet')
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(device)
tile = opts.SCUNET_tile
h, w = img.height, img.width
np_img = np.array(img)
np_img = np_img[:, :, ::-1] # RGB to BGR
np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW
torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(device) # type: ignore
with torch.no_grad():
output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
output = 255. * np.moveaxis(output, 0, 2)
output = output.astype(np.uint8)
output = output[:, :, ::-1]
if tile > h or tile > w:
_img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device)
_img[:, :, :h, :w] = torch_img # pad image
torch_img = _img
torch_output = self.tiled_inference(torch_img, model).squeeze(0)
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
del torch_img, torch_output
torch.cuda.empty_cache()
return PIL.Image.fromarray(output, 'RGB')
output = np_output.transpose((1, 2, 0)) # CHW to HWC
output = output[:, :, ::-1] # BGR to RGB
return PIL.Image.fromarray((output * 255).astype(np.uint8))
def load_model(self, path: str):
device = devices.get_device_for('scunet')
@ -84,4 +138,3 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
model = model.to(device)
return model

View File

@ -1,103 +1,42 @@
// Stable Diffusion WebUI - Bracket checker
// Version 1.0
// By Hingashi no Florin/Bwin4L
// By Hingashi no Florin/Bwin4L & @akx
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
function checkBrackets(evt, textArea, counterElt) {
errorStringParen = '(...) - Different number of opening and closing parentheses detected.\n';
errorStringSquare = '[...] - Different number of opening and closing square brackets detected.\n';
errorStringCurly = '{...} - Different number of opening and closing curly brackets detected.\n';
function checkBrackets(textArea, counterElt) {
var counts = {};
(textArea.value.match(/[(){}\[\]]/g) || []).forEach(bracket => {
counts[bracket] = (counts[bracket] || 0) + 1;
});
var errors = [];
openBracketRegExp = /\(/g;
closeBracketRegExp = /\)/g;
openSquareBracketRegExp = /\[/g;
closeSquareBracketRegExp = /\]/g;
openCurlyBracketRegExp = /\{/g;
closeCurlyBracketRegExp = /\}/g;
totalOpenBracketMatches = 0;
totalCloseBracketMatches = 0;
totalOpenSquareBracketMatches = 0;
totalCloseSquareBracketMatches = 0;
totalOpenCurlyBracketMatches = 0;
totalCloseCurlyBracketMatches = 0;
openBracketMatches = textArea.value.match(openBracketRegExp);
if(openBracketMatches) {
totalOpenBracketMatches = openBracketMatches.length;
}
closeBracketMatches = textArea.value.match(closeBracketRegExp);
if(closeBracketMatches) {
totalCloseBracketMatches = closeBracketMatches.length;
}
openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp);
if(openSquareBracketMatches) {
totalOpenSquareBracketMatches = openSquareBracketMatches.length;
}
closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp);
if(closeSquareBracketMatches) {
totalCloseSquareBracketMatches = closeSquareBracketMatches.length;
}
openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp);
if(openCurlyBracketMatches) {
totalOpenCurlyBracketMatches = openCurlyBracketMatches.length;
}
closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp);
if(closeCurlyBracketMatches) {
totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length;
}
if(totalOpenBracketMatches != totalCloseBracketMatches) {
if(!counterElt.title.includes(errorStringParen)) {
counterElt.title += errorStringParen;
function checkPair(open, close, kind) {
if (counts[open] !== counts[close]) {
errors.push(
`${open}...${close} - Detected ${counts[open] || 0} opening and ${counts[close] || 0} closing ${kind}.`
);
}
} else {
counterElt.title = counterElt.title.replace(errorStringParen, '');
}
if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) {
if(!counterElt.title.includes(errorStringSquare)) {
counterElt.title += errorStringSquare;
}
} else {
counterElt.title = counterElt.title.replace(errorStringSquare, '');
}
checkPair('(', ')', 'round brackets');
checkPair('[', ']', 'square brackets');
checkPair('{', '}', 'curly brackets');
counterElt.title = errors.join('\n');
counterElt.classList.toggle('error', errors.length !== 0);
}
if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) {
if(!counterElt.title.includes(errorStringCurly)) {
counterElt.title += errorStringCurly;
}
} else {
counterElt.title = counterElt.title.replace(errorStringCurly, '');
}
function setupBracketChecking(id_prompt, id_counter) {
var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
var counter = gradioApp().getElementById(id_counter)
if(counterElt.title != '') {
counterElt.classList.add('error');
} else {
counterElt.classList.remove('error');
if (textarea && counter) {
textarea.addEventListener("input", () => checkBrackets(textarea, counter));
}
}
function setupBracketChecking(id_prompt, id_counter){
var textarea = gradioApp().querySelector("#" + id_prompt + " > label > textarea");
var counter = gradioApp().getElementById(id_counter)
textarea.addEventListener("input", function(evt){
checkBrackets(evt, textarea, counter)
});
}
onUiLoaded(function(){
setupBracketChecking('txt2img_prompt', 'txt2img_token_counter')
setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter')
setupBracketChecking('img2img_prompt', 'img2img_token_counter')
setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter')
})
onUiLoaded(function () {
setupBracketChecking('txt2img_prompt', 'txt2img_token_counter');
setupBracketChecking('txt2img_neg_prompt', 'txt2img_negative_token_counter');
setupBracketChecking('img2img_prompt', 'img2img_token_counter');
setupBracketChecking('img2img_neg_prompt', 'img2img_negative_token_counter');
});

View File

@ -161,14 +161,6 @@ addContextMenuEventListener = initResponse[2];
appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#roll','Roll three',
function(){
let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
setTimeout(function(){rollbutton.click()},100)
setTimeout(function(){rollbutton.click()},200)
setTimeout(function(){rollbutton.click()},300)
}
)
})();
//End example Context Menu Items

View File

@ -17,7 +17,7 @@ function keyupEditAttention(event){
// Find opening parenthesis around current cursor
const before = text.substring(0, selectionStart);
let beforeParen = before.lastIndexOf(OPEN);
if (beforeParen == -1) return false;
if (beforeParen == -1) return false;
let beforeParenClose = before.lastIndexOf(CLOSE);
while (beforeParenClose !== -1 && beforeParenClose > beforeParen) {
beforeParen = before.lastIndexOf(OPEN, beforeParen - 1);
@ -27,7 +27,7 @@ function keyupEditAttention(event){
// Find closing parenthesis around current cursor
const after = text.substring(selectionStart);
let afterParen = after.indexOf(CLOSE);
if (afterParen == -1) return false;
if (afterParen == -1) return false;
let afterParenOpen = after.indexOf(OPEN);
while (afterParenOpen !== -1 && afterParen > afterParenOpen) {
afterParen = after.indexOf(CLOSE, afterParen + 1);
@ -43,10 +43,28 @@ function keyupEditAttention(event){
target.setSelectionRange(selectionStart, selectionEnd);
return true;
}
function selectCurrentWord(){
if (selectionStart !== selectionEnd) return false;
const delimiters = opts.keyedit_delimiters + " \r\n\t";
// seek backward until to find beggining
while (!delimiters.includes(text[selectionStart - 1]) && selectionStart > 0) {
selectionStart--;
}
// seek forward to find end
while (!delimiters.includes(text[selectionEnd]) && selectionEnd < text.length) {
selectionEnd++;
}
// If the user hasn't selected anything, let's select their current parenthesis block
if(! selectCurrentParenthesisBlock('<', '>')){
selectCurrentParenthesisBlock('(', ')')
target.setSelectionRange(selectionStart, selectionEnd);
return true;
}
// If the user hasn't selected anything, let's select their current parenthesis block or word
if (!selectCurrentParenthesisBlock('<', '>') && !selectCurrentParenthesisBlock('(', ')')) {
selectCurrentWord();
}
event.preventDefault();
@ -81,7 +99,13 @@ function keyupEditAttention(event){
weight = parseFloat(weight.toPrecision(12));
if(String(weight).length == 1) weight += ".0"
text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + 1 + end - 1);
if (closeCharacter == ')' && weight == 1) {
text = text.slice(0, selectionStart - 1) + text.slice(selectionStart, selectionEnd) + text.slice(selectionEnd + 5);
selectionStart--;
selectionEnd--;
} else {
text = text.slice(0, selectionEnd + 1) + weight + text.slice(selectionEnd + 1 + end - 1);
}
target.focus();
target.value = text;
@ -93,4 +117,4 @@ function keyupEditAttention(event){
addEventListener('keydown', (event) => {
keyupEditAttention(event);
});
});

View File

@ -1,5 +1,5 @@
function extensions_apply(_, _){
function extensions_apply(_, _, disable_all){
var disable = []
var update = []
@ -13,10 +13,10 @@ function extensions_apply(_, _){
restart_reload()
return [JSON.stringify(disable), JSON.stringify(update)]
return [JSON.stringify(disable), JSON.stringify(update), disable_all]
}
function extensions_check(){
function extensions_check(_, _){
var disable = []
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){

View File

@ -16,9 +16,9 @@ onUiUpdate(function(){
let modalObserver = new MutationObserver(function(mutations) {
mutations.forEach(function(mutationRecord) {
let selectedTab = gradioApp().querySelector('#tabs div button.bg-white')?.innerText
if (mutationRecord.target.style.display === 'none' && selectedTab === 'txt2img' || selectedTab === 'img2img')
gradioApp().getElementById(selectedTab+"_generation_info_button").click()
let selectedTab = gradioApp().querySelector('#tabs div button.selected')?.innerText
if (mutationRecord.target.style.display === 'none' && (selectedTab === 'txt2img' || selectedTab === 'img2img'))
gradioApp().getElementById(selectedTab+"_generation_info_button")?.click()
});
});

View File

@ -65,8 +65,8 @@ titles = {
"Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.",
"Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt_hash], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
"Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg],[prompt_hash], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
"Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt_hash], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp], [hasprompt<prompt1|default><prompt2>..]; leave empty for default.",
"Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg],[prompt_hash], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp], [hasprompt<prompt1|default><prompt2>..]; leave empty for default.",
"Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle",
"Loopback": "Performs img2img processing multiple times. Output images are used as input for the next loop.",
@ -110,7 +110,8 @@ titles = {
"Resize height to": "Resizes image to this height. If 0, height is inferred from either of two nearby sliders.",
"Multiplier for extra networks": "When adding extra network such as Hypernetwork or Lora to prompt, use this multiplier for it.",
"Discard weights with matching name": "Regular expression; if weights's name matches it, the weights is not written to the resulting checkpoint. Use ^model_ema to discard EMA weights.",
"Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited."
"Extra networks tab order": "Comma-separated list of tab names; tabs listed here will appear in the extra networks UI first and in order lsited.",
"Negative Guidance minimum sigma": "Skip negative prompt for steps where image is already mostly denoised; the higher this value, the more skips there will be; provides increased performance in exchange for minor quality reduction."
}

View File

@ -251,8 +251,11 @@ document.addEventListener("DOMContentLoaded", function() {
modal.appendChild(modalNext)
gradioApp().appendChild(modal)
try {
gradioApp().appendChild(modal);
} catch (e) {
gradioApp().body.appendChild(modal);
}
document.body.appendChild(modal);

View File

@ -138,7 +138,7 @@ function requestProgress(id_task, progressbarContainer, gallery, atEnd, onProgre
return
}
if(elapsedFromStart > 5 && !res.queued && !res.active){
if(elapsedFromStart > 40 && !res.queued && !res.active){
removeProgressBar()
return
}

View File

@ -121,12 +121,12 @@ def run_python(code, desc=None, errdesc=None):
return run(f'"{python}" -c "{code}"', desc, errdesc)
def run_pip(args, desc=None):
def run_pip(args, desc=None, live=False):
if skip_install:
return
index_url_line = f' --index-url {index_url}' if index_url != '' else ''
return run(f'"{python}" -m pip {args} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
return run(f'"{python}" -m pip {args} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}", live=live)
def check_run_python(code):
@ -206,6 +206,10 @@ def list_extensions(settings_file):
print(e, file=sys.stderr)
disabled_extensions = set(settings.get('disabled_extensions', []))
disable_all_extensions = settings.get('disable_all_extensions', 'none')
if disable_all_extensions != 'none':
return []
return [x for x in os.listdir(extensions_dir) if x not in disabled_extensions]
@ -221,10 +225,10 @@ def run_extensions_installers(settings_file):
def prepare_environment():
global skip_install
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117")
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==2.0.0 torchvision==0.15.1 --index-url https://download.pytorch.org/whl/cu118")
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.16rc425')
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.17')
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")
@ -235,7 +239,7 @@ def prepare_environment():
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "47b6b607fdd31875c9279cd2f4f16b92e4ea958e")
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf")
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "5b3af030dd83e0297272d861c19477735d0317ec")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
@ -267,7 +271,7 @@ def prepare_environment():
if (not is_installed("xformers") or args.reinstall_xformers) and args.xformers:
if platform.system() == "Windows":
if platform.python_version().startswith("3.10"):
run_pip(f"install -U -I --no-deps {xformers_package}", "xformers")
run_pip(f"install -U -I --no-deps {xformers_package}", "xformers", live=True)
else:
print("Installation of xformers is not supported in this version of Python.")
print("You can also check this and build manually: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers#building-xformers-on-windows-by-duckness")
@ -292,7 +296,7 @@ def prepare_environment():
if not os.path.isfile(requirements_file):
requirements_file = os.path.join(script_path, requirements_file)
run_pip(f"install -r \"{requirements_file}\"", "requirements for Web UI")
run_pip(f"install -r \"{requirements_file}\"", "requirements")
run_extensions_installers(settings_file=args.ui_settings_file)

Binary file not shown.

View File

@ -6,7 +6,6 @@ import uvicorn
import gradio as gr
from threading import Lock
from io import BytesIO
from gradio.processing_utils import decode_base64_to_file
from fastapi import APIRouter, Depends, FastAPI, Request, Response
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from fastapi.exceptions import HTTPException
@ -272,7 +271,9 @@ class Api:
raise HTTPException(status_code=422, detail=f"Cannot have a selectable script in the always on scripts params")
# always on script with no arg should always run so you don't really need to add them to the requests
if "args" in request.alwayson_scripts[alwayson_script_name]:
script_args[alwayson_script.args_from:alwayson_script.args_to] = request.alwayson_scripts[alwayson_script_name]["args"]
# min between arg length in scriptrunner and arg length in the request
for idx in range(0, min((alwayson_script.args_to - alwayson_script.args_from), len(request.alwayson_scripts[alwayson_script_name]["args"]))):
script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx]
return script_args
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
@ -395,16 +396,11 @@ class Api:
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
reqDict = setUpscalers(req)
def prepareFiles(file):
file = decode_base64_to_file(file.data, file_path=file.name)
file.orig_name = file.name
return file
reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
reqDict.pop('imageList')
image_list = reqDict.pop('imageList', [])
image_folder = [decode_base64_to_image(x.data) for x in image_list]
with self.queue_lock:
result = postprocessing.run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])

View File

@ -92,14 +92,18 @@ def cond_cast_float(input):
def randn(seed, shape):
from modules.shared import opts
torch.manual_seed(seed)
if device.type == 'mps':
if opts.randn_source == "CPU" or device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)
def randn_without_seed(shape):
if device.type == 'mps':
from modules.shared import opts
if opts.randn_source == "CPU" or device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)

View File

@ -15,7 +15,12 @@ if not os.path.exists(extensions_dir):
def active():
return [x for x in extensions if x.enabled]
if shared.opts.disable_all_extensions == "all":
return []
elif shared.opts.disable_all_extensions == "extra":
return [x for x in extensions if x.enabled and x.is_builtin]
else:
return [x for x in extensions if x.enabled]
class Extension:
@ -97,6 +102,11 @@ def list_extensions():
if not os.path.isdir(extensions_dir):
return
if shared.opts.disable_all_extensions == "all":
print("*** \"Disable all extensions\" option was set, will not load any extensions ***")
elif shared.opts.disable_all_extensions == "extra":
print("*** \"Disable all extensions\" option was set, will only load built-in extensions ***")
extension_paths = []
for dirname in [extensions_dir, extensions_builtin_dir]:
if not os.path.isdir(dirname):
@ -112,4 +122,3 @@ def list_extensions():
for dirname, path, is_builtin in extension_paths:
extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions, is_builtin=is_builtin)
extensions.append(extension)

View File

@ -9,7 +9,7 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork):
def activate(self, p, params_list):
additional = shared.opts.sd_hypernetwork
if additional != "" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0:
if additional != "None" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<hypernet:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))

View File

@ -284,6 +284,10 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
restore_old_hires_fix_params(res)
# Missing RNG means the default was set, which is GPU RNG
if "RNG" not in res:
res["RNG"] = "GPU"
return res
@ -304,6 +308,8 @@ infotext_to_setting_name_mapping = [
('UniPC skip type', 'uni_pc_skip_type'),
('UniPC order', 'uni_pc_order'),
('UniPC lower order final', 'uni_pc_lower_order_final'),
('RNG', 'randn_source'),
('NGMS', 's_min_uncond'),
]

View File

@ -312,7 +312,7 @@ class Hypernetwork:
def list_hypernetworks(path):
res = {}
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True)):
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True), key=str.lower):
name = os.path.splitext(os.path.basename(filename))[0]
# Prevent a hypothetical "None.pt" from being listed.
if name != "None":

View File

@ -318,6 +318,7 @@ re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)")
re_pattern_arg = re.compile(r"(.*)<([^>]*)>$")
max_filename_part_length = 128
NOTHING_AND_SKIP_PREVIOUS_TEXT = object()
def sanitize_filename_part(text, replace_spaces=True):
@ -352,6 +353,10 @@ class FilenameGenerator:
'prompt_no_styles': lambda self: self.prompt_no_style(),
'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False),
'prompt_words': lambda self: self.prompt_words(),
'batch_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.batch_size == 1 else self.p.batch_index + 1,
'generation_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.n_iter == 1 and self.p.batch_size == 1 else self.p.iteration * self.p.batch_size + self.p.batch_index + 1,
'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..]
'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"],
}
default_time_format = '%Y%m%d%H%M%S'
@ -360,6 +365,22 @@ class FilenameGenerator:
self.seed = seed
self.prompt = prompt
self.image = image
def hasprompt(self, *args):
lower = self.prompt.lower()
if self.p is None or self.prompt is None:
return None
outres = ""
for arg in args:
if arg != "":
division = arg.split("|")
expected = division[0].lower()
default = division[1] if len(division) > 1 else ""
if lower.find(expected) >= 0:
outres = f'{outres}{expected}'
else:
outres = outres if default == "" else f'{outres}{default}'
return sanitize_filename_part(outres)
def prompt_no_style(self):
if self.p is None or self.prompt is None:
@ -403,9 +424,9 @@ class FilenameGenerator:
for m in re_pattern.finditer(x):
text, pattern = m.groups()
res += text
if pattern is None:
res += text
continue
pattern_args = []
@ -426,11 +447,13 @@ class FilenameGenerator:
print(f"Error adding [{pattern}] to filename", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if replacement is not None:
res += str(replacement)
if replacement == NOTHING_AND_SKIP_PREVIOUS_TEXT:
continue
elif replacement is not None:
res += text + str(replacement)
continue
res += f'[{pattern}]'
res += f'{text}[{pattern}]'
return res

View File

@ -151,13 +151,14 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
override_settings=override_settings,
)
p.scripts = modules.scripts.scripts_txt2img
p.scripts = modules.scripts.scripts_img2img
p.script_args = args
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
p.extra_generation_params["Mask blur"] = mask_blur
if mask:
p.extra_generation_params["Mask blur"] = mask_blur
if is_batch:
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"

View File

@ -32,7 +32,7 @@ def download_default_clip_interrogate_categories(content_dir):
category_types = ["artists", "flavors", "mediums", "movements"]
try:
os.makedirs(tmpdir)
os.makedirs(tmpdir, exist_ok=True)
for category_type in category_types:
torch.hub.download_url_to_file(f"https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/{category_type}.txt", os.path.join(tmpdir, f"{category_type}.txt"))
os.rename(tmpdir, content_dir)
@ -41,7 +41,7 @@ def download_default_clip_interrogate_categories(content_dir):
errors.display(e, "downloading default CLIP interrogate categories")
finally:
if os.path.exists(tmpdir):
os.remove(tmpdir)
os.removedirs(tmpdir)
class InterrogateModels:

View File

@ -55,12 +55,12 @@ def setup_for_low_vram(sd_model, use_medvram):
if hasattr(sd_model.cond_stage_model, 'model'):
sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model
# remove four big modules, cond, first_stage, depth (if applicable), and unet from the model and then
# remove several big modules: cond, first_stage, depth/embedder (if applicable), and unet from the model and then
# send the model to GPU. Then put modules back. the modules will be in CPU.
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), sd_model.model
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = None, None, None, None
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), getattr(sd_model, 'embedder', None), sd_model.model
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.embedder, sd_model.model = None, None, None, None, None
sd_model.to(devices.device)
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = stored
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.embedder, sd_model.model = stored
# register hooks for those the first three models
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
@ -69,6 +69,8 @@ def setup_for_low_vram(sd_model, use_medvram):
sd_model.first_stage_model.decode = first_stage_model_decode_wrap
if sd_model.depth_model:
sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu)
if sd_model.embedder:
sd_model.embedder.register_forward_pre_hook(send_me_to_gpu)
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
if hasattr(sd_model.cond_stage_model, 'model'):

View File

@ -18,9 +18,15 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
if extras_mode == 1:
for img in image_folder:
image = Image.open(img)
if isinstance(img, Image.Image):
image = img
fn = ''
else:
image = Image.open(os.path.abspath(img.name))
fn = os.path.splitext(img.orig_name)[0]
image_data.append(image)
image_names.append(os.path.splitext(img.orig_name)[0])
image_names.append(fn)
elif extras_mode == 2:
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
assert input_dir, 'input directory not selected'

View File

@ -3,6 +3,7 @@ import math
import os
import sys
import warnings
import hashlib
import torch
import numpy as np
@ -78,28 +79,34 @@ def apply_overlay(image, paste_loc, index, overlays):
def txt2img_image_conditioning(sd_model, x, width, height):
if sd_model.model.conditioning_key not in {'hybrid', 'concat'}:
# Dummy zero conditioning if we're not using inpainting model.
if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
# The "masked-image" in this case will just be all zeros since the entire image is masked.
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
# Add the fake full 1s mask to the first dimension.
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
image_conditioning = image_conditioning.to(x.dtype)
return image_conditioning
elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
else:
# Dummy zero conditioning if we're not using inpainting or unclip models.
# Still takes up a bit of memory, but no encoder call.
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
# The "masked-image" in this case will just be all zeros since the entire image is masked.
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
# Add the fake full 1s mask to the first dimension.
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
image_conditioning = image_conditioning.to(x.dtype)
return image_conditioning
class StableDiffusionProcessing:
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
if sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
@ -134,6 +141,7 @@ class StableDiffusionProcessing:
self.denoising_strength: float = denoising_strength
self.sampler_noise_scheduler_override = None
self.ddim_discretize = ddim_discretize or opts.ddim_discretize
self.s_min_uncond = s_min_uncond or opts.s_min_uncond
self.s_churn = s_churn or opts.s_churn
self.s_tmin = s_tmin or opts.s_tmin
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
@ -156,6 +164,8 @@ class StableDiffusionProcessing:
self.all_seeds = None
self.all_subseeds = None
self.iteration = 0
self.is_hr_pass = False
@property
def sd_model(self):
@ -190,6 +200,14 @@ class StableDiffusionProcessing:
return conditioning_image
def unclip_image_conditioning(self, source_image):
c_adm = self.sd_model.embedder(source_image)
if self.sd_model.noise_augmentor is not None:
noise_level = 0 # TODO: Allow other noise levels?
c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
c_adm = torch.cat((c_adm, noise_level_emb), 1)
return c_adm
def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
self.is_using_inpainting_conditioning = True
@ -241,6 +259,9 @@ class StableDiffusionProcessing:
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
if self.sampler.conditioning_key == "crossattn-adm":
return self.unclip_image_conditioning(source_image)
# Dummy zero conditioning if we're not using inpainting or depth model.
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
@ -459,6 +480,9 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
"Init image hash": getattr(p, 'init_img_hash', None),
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
}
generation_params.update(p.extra_generation_params)
@ -622,8 +646,14 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
processed = Processed(p, [], p.seed, "")
file.write(processed.infotext(p, 0))
uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps, cached_uc)
c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps, cached_c)
step_multiplier = 1
if not shared.opts.dont_fix_second_order_samplers_schedule:
try:
step_multiplier = 2 if sd_samplers.all_samplers_map.get(p.sampler_name).aliases[0] in ['k_dpmpp_2s_a', 'k_dpmpp_2s_a_ka', 'k_dpmpp_sde', 'k_dpmpp_sde_ka', 'k_dpm_2', 'k_dpm_2_a', 'k_heun'] else 1
except:
pass
uc = get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, p.steps * step_multiplier, cached_uc)
c = get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, p.steps * step_multiplier, cached_c)
if len(model_hijack.comments) > 0:
for comment in model_hijack.comments:
@ -653,6 +683,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
for i, x_sample in enumerate(x_samples_ddim):
p.batch_index = i
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
@ -689,9 +721,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
image.info["parameters"] = text
output_images.append(image)
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay:
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
image_mask = p.mask_for_overlay.convert('RGB')
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), p.mask_for_overlay.convert('L')).convert('RGBA')
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
if opts.save_mask:
images.save_image(image_mask, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
@ -701,7 +733,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if opts.return_mask:
output_images.append(image_mask)
if opts.return_mask_composite:
output_images.append(image_mask_composite)
@ -854,6 +886,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if not self.enable_hr:
return samples
self.is_hr_pass = True
target_width = self.hr_upscale_to_x
target_height = self.hr_upscale_to_y
@ -923,6 +957,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
self.is_hr_pass = False
return samples
@ -990,6 +1026,12 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.color_corrections = []
imgs = []
for img in self.init_images:
# Save init image
if opts.save_init_img:
self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
image = images.flatten(img, opts.img2img_background_color)
if crop_region is None and self.resize_mode != 3:

View File

@ -1,6 +1,5 @@
# this code is adapted from the script contributed by anon from /h/
import io
import pickle
import collections
import sys
@ -12,11 +11,9 @@ import _codecs
import zipfile
import re
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage
def encode(*args):
out = _codecs.encode(*args)
return out
@ -27,7 +24,7 @@ class RestrictedUnpickler(pickle.Unpickler):
def persistent_load(self, saved_id):
assert saved_id[0] == 'storage'
return TypedStorage()
return TypedStorage(_internal=True)
def find_class(self, module, name):
if self.extra_handler is not None:

View File

@ -122,7 +122,7 @@ def list_models():
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
for filename in model_list:
for filename in sorted(model_list, key=str.lower):
checkpoint_info = CheckpointInfo(filename)
checkpoint_info.register()
@ -383,6 +383,14 @@ def repair_config(sd_config):
elif shared.cmd_opts.upcast_sampling:
sd_config.model.params.unet_config.params.use_fp16 = True
if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla"
# For UnCLIP-L, override the hardcoded karlo directory
if hasattr(sd_config.model.params, "noise_aug_config") and hasattr(sd_config.model.params.noise_aug_config.params, "clip_stats_path"):
karlo_path = os.path.join(paths.models_path, 'karlo')
sd_config.model.params.noise_aug_config.params.clip_stats_path = sd_config.model.params.noise_aug_config.params.clip_stats_path.replace("checkpoints/karlo_models", karlo_path)
sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'

View File

@ -14,6 +14,8 @@ config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml")
config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
@ -65,9 +67,14 @@ def is_using_v_parameterization_for_sd2(state_dict):
def guess_model_config_from_state_dict(sd, filename):
sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
if sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
return config_depth_model
elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
return config_unclip
elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 1024:
return config_unopenclip
if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
if diffusion_model_input.shape[1] == 9:

View File

@ -60,3 +60,13 @@ def store_latent(decoded):
class InterruptedException(BaseException):
pass
if opts.randn_source == "CPU":
import torchsde._brownian.brownian_interval
def torchsde_randn(size, dtype, device, seed):
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
torchsde._brownian.brownian_interval._randn = torchsde_randn

View File

@ -70,8 +70,13 @@ class VanillaStableDiffusionSampler:
# Have to unwrap the inpainting conditioning here to perform pre-processing
image_conditioning = None
uc_image_conditioning = None
if isinstance(cond, dict):
image_conditioning = cond["c_concat"][0]
if self.conditioning_key == "crossattn-adm":
image_conditioning = cond["c_adm"]
uc_image_conditioning = unconditional_conditioning["c_adm"]
else:
image_conditioning = cond["c_concat"][0]
cond = cond["c_crossattn"][0]
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
@ -98,8 +103,12 @@ class VanillaStableDiffusionSampler:
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
# Note that they need to be lists because it just concatenates them later.
if image_conditioning is not None:
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
if self.conditioning_key == "crossattn-adm":
cond = {"c_adm": image_conditioning, "c_crossattn": [cond]}
unconditional_conditioning = {"c_adm": uc_image_conditioning, "c_crossattn": [unconditional_conditioning]}
else:
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
return x, ts, cond, unconditional_conditioning
@ -176,8 +185,12 @@ class VanillaStableDiffusionSampler:
# Wrap the conditioning models with additional image conditioning for inpainting model
if image_conditioning is not None:
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
if self.conditioning_key == "crossattn-adm":
conditioning = {"c_adm": image_conditioning, "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_adm": torch.zeros_like(image_conditioning), "c_crossattn": [unconditional_conditioning]}
else:
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
@ -195,8 +208,12 @@ class VanillaStableDiffusionSampler:
# Wrap the conditioning models with additional image conditioning for inpainting model
# dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
if image_conditioning is not None:
conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
if self.conditioning_key == "crossattn-adm":
conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_adm": image_conditioning}
unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_adm": torch.zeros_like(image_conditioning)}
else:
conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])

View File

@ -76,7 +76,7 @@ class CFGDenoiser(torch.nn.Module):
return denoised
def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
@ -92,14 +92,21 @@ class CFGDenoiser(torch.nn.Module):
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
if shared.sd_model.model.conditioning_key == "crossattn-adm":
image_uncond = torch.zeros_like(image_cond)
make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": c_crossattn, "c_adm": c_adm}
else:
image_uncond = image_cond
make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": c_crossattn, "c_concat": [c_concat]}
if not is_edit_model:
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
else:
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond] + [torch.zeros_like(self.init_latent)])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
cfg_denoiser_callback(denoiser_params)
@ -108,21 +115,30 @@ class CFGDenoiser(torch.nn.Module):
sigma_in = denoiser_params.sigma
tensor = denoiser_params.text_cond
uncond = denoiser_params.text_uncond
skip_uncond = False
if tensor.shape[1] == uncond.shape[1]:
if not is_edit_model:
cond_in = torch.cat([tensor, uncond])
else:
# alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
skip_uncond = True
x_in = x_in[:-batch_size]
sigma_in = sigma_in[:-batch_size]
if tensor.shape[1] == uncond.shape[1] or skip_uncond:
if is_edit_model:
cond_in = torch.cat([tensor, uncond, uncond])
elif skip_uncond:
cond_in = tensor
else:
cond_in = torch.cat([tensor, uncond])
if shared.batch_cond_uncond:
x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict([cond_in], image_cond_in))
else:
x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset
b = a + batch_size
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict([cond_in[a:b]], image_cond_in[a:b]))
else:
x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
@ -135,9 +151,15 @@ class CFGDenoiser(torch.nn.Module):
else:
c_crossattn = torch.cat([tensor[a:b]], uncond)
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": c_crossattn, "c_concat": [image_cond_in[a:b]]})
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
if not skip_uncond:
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict([uncond], image_cond_in[-uncond.shape[0]:]))
denoised_image_indexes = [x[0][0] for x in conds_list]
if skip_uncond:
fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps)
cfg_denoised_callback(denoised_params)
@ -145,20 +167,21 @@ class CFGDenoiser(torch.nn.Module):
devices.test_for_nans(x_out, "unet")
if opts.live_preview_content == "Prompt":
sd_samplers_common.store_latent(x_out[0:uncond.shape[0]])
sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes]))
elif opts.live_preview_content == "Negative prompt":
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
if not is_edit_model:
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
else:
if is_edit_model:
denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
elif skip_uncond:
denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
else:
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
self.step += 1
return denoised
@ -183,7 +206,7 @@ class TorchHijack:
if noise.shape == x.shape:
return noise
if x.device.type == 'mps':
if opts.randn_source == "CPU" or x.device.type == 'mps':
return torch.randn_like(x, device=devices.cpu).to(x.device)
else:
return torch.randn_like(x)
@ -203,6 +226,7 @@ class KDiffusionSampler:
self.eta = None
self.config = None
self.last_latent = None
self.s_min_uncond = None
self.conditioning_key = sd_model.model.conditioning_key
@ -237,6 +261,7 @@ class KDiffusionSampler:
self.model_wrap_cfg.step = 0
self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
self.eta = p.eta if p.eta is not None else opts.eta_ancestral
self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
@ -319,6 +344,7 @@ class KDiffusionSampler:
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
@ -352,7 +378,8 @@ class KDiffusionSampler:
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
'cond_scale': p.cfg_scale,
's_min_uncond': self.s_min_uncond
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples

View File

@ -4,6 +4,7 @@ import json
import os
import sys
import time
import requests
from PIL import Image
import gradio as gr
@ -39,6 +40,7 @@ restricted_opts = {
"outdir_grids",
"outdir_txt2img_grids",
"outdir_save",
"outdir_init_images"
}
ui_reorder_categories = [
@ -54,6 +56,21 @@ ui_reorder_categories = [
"scripts",
]
# https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json
gradio_hf_hub_themes = [
"gradio/glass",
"gradio/monochrome",
"gradio/seafoam",
"gradio/soft",
"freddyaboulton/dracula_revamped",
"gradio/dracula_test",
"abidlabs/dracula_test",
"abidlabs/pakistan",
"dawood/microsoft_windows",
"ysharma/steampunk"
]
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
@ -252,6 +269,7 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
"save_init_img": OptionInfo(False, "Save init images when using img2img"),
"temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
"clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
@ -267,6 +285,7 @@ options_templates.update(options_section(('saving-paths', "Paths for saving"), {
"outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
"outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
"outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
"outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs),
}))
options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
@ -282,6 +301,8 @@ options_templates.update(options_section(('upscaling', "Upscaling"), {
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
"SCUNET_tile": OptionInfo(256, "Tile size for SCUNET upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"SCUNET_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SCUNET upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}),
}))
options_templates.update(options_section(('face-restoration', "Face restoration"), {
@ -330,6 +351,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source. Changes seeds drastically. Use CPU to produce the same picture across different vidocard vendors.", gr.Radio, {"choices": ["GPU", "CPU"]}),
}))
options_templates.update(options_section(('compatibility', "Compatibility"), {
@ -337,6 +359,7 @@ options_templates.update(options_section(('compatibility', "Compatibility"), {
"use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
"no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
"use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
"dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
}))
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
@ -360,7 +383,7 @@ options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks (px)"),
"extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks (px)"),
"extra_networks_add_text_separator": OptionInfo(" ", "Extra text to add before <...> when adding extra network to prompt"),
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
}))
options_templates.update(options_section(('ui', "User interface"), {
@ -381,11 +404,13 @@ options_templates.update(options_section(('ui', "User interface"), {
"dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row"),
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_delimiters": OptionInfo(".,\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
"quicksettings": OptionInfo("sd_model_checkpoint", "Quicksettings list"),
"hidden_tabs": OptionInfo([], "Hidden UI tabs (requires restart)", ui_components.DropdownMulti, lambda: {"choices": [x for x in tab_names]}),
"ui_reorder": OptionInfo(", ".join(ui_reorder_categories), "txt2img/img2img UI item order"),
"ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order"),
"localization": OptionInfo("None", "Localization (requires restart)", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)),
"gradio_theme": OptionInfo("Default", "Gradio theme (requires restart)", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes})
}))
options_templates.update(options_section(('ui', "Live previews"), {
@ -404,6 +429,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
"eta_ancestral": OptionInfo(1.0, "eta (noise multiplier) for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_min_uncond': OptionInfo(0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 4.0, "step": 0.01}),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
@ -421,7 +447,8 @@ options_templates.update(options_section(('postprocessing', "Postprocessing"), {
}))
options_templates.update(options_section((None, "Hidden options"), {
"disabled_extensions": OptionInfo([], "Disable those extensions"),
"disabled_extensions": OptionInfo([], "Disable these extensions"),
"disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}),
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
}))
@ -598,6 +625,24 @@ clip_model = None
progress_print_out = sys.stdout
gradio_theme = gr.themes.Base()
def reload_gradio_theme(theme_name=None):
global gradio_theme
if not theme_name:
theme_name = opts.gradio_theme
if theme_name == "Default":
gradio_theme = gr.themes.Default()
else:
try:
gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
except requests.exceptions.ConnectionError:
print("Can't access HuggingFace Hub, falling back to default Gradio theme")
gradio_theme = gr.themes.Default()
class TotalTQDM:
def __init__(self):

View File

@ -72,16 +72,14 @@ class StyleDatabase:
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles])
def save_styles(self, path: str) -> None:
# Write to temporary file first, so we don't nuke the file if something goes wrong
fd, temp_path = tempfile.mkstemp(".csv")
# Always keep a backup file around
if os.path.exists(path):
shutil.copy(path, path + ".bak")
fd = os.open(path, os.O_RDWR|os.O_CREAT)
with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file:
# _fields is actually part of the public API: typing.NamedTuple is a replacement for collections.NamedTuple,
# and collections.NamedTuple has explicit documentation for accessing _fields. Same goes for _asdict()
writer = csv.DictWriter(file, fieldnames=PromptStyle._fields)
writer.writeheader()
writer.writerows(style._asdict() for k, style in self.styles.items())
# Always keep a backup file around
if os.path.exists(path):
shutil.move(path, path + ".bak")
shutil.move(temp_path, path)

View File

@ -233,6 +233,12 @@ class EmbeddingDatabase:
self.load_from_dir(embdir)
embdir.update()
# re-sort word_embeddings because load_from_dir may not load in alphabetic order.
# using a temporary copy so we don't reinitialize self.word_embeddings in case other objects have a reference to it.
sorted_word_embeddings = {e.name: e for e in sorted(self.word_embeddings.values(), key=lambda e: e.name.lower())}
self.word_embeddings.clear()
self.word_embeddings.update(sorted_word_embeddings)
displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys()))
if self.previously_displayed_embeddings != displayed_embeddings:
self.previously_displayed_embeddings = displayed_embeddings

View File

@ -70,17 +70,6 @@ def gr_show(visible=True):
sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg"
sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None
css_hide_progressbar = """
.wrap .m-12 svg { display:none!important; }
.wrap .m-12::before { content:"Loading..." }
.wrap .z-20 svg { display:none!important; }
.wrap .z-20::before { content:"Loading..." }
.wrap.cover-bg .z-20::before { content:"" }
.progress-bar { display:none!important; }
.meta-text { display:none!important; }
.meta-text-center { display:none!important; }
"""
# Using constants for these since the variation selector isn't visible.
# Important that they exactly match script.js for tooltip to work.
random_symbol = '\U0001f3b2\ufe0f' # 🎲️
@ -182,8 +171,8 @@ def create_seed_inputs(target_interface):
with FormRow(elem_id=target_interface + '_seed_row', variant="compact"):
seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=target_interface + '_seed')
seed.style(container=False)
random_seed = ToolButton(random_symbol, elem_id=target_interface + '_random_seed')
reuse_seed = ToolButton(reuse_symbol, elem_id=target_interface + '_reuse_seed')
random_seed = ToolButton(random_symbol, elem_id=target_interface + '_random_seed', label='Random seed')
reuse_seed = ToolButton(reuse_symbol, elem_id=target_interface + '_reuse_seed', label='Reuse seed')
seed_checkbox = gr.Checkbox(label='Extra', elem_id=target_interface + '_subseed_show', value=False)
@ -479,7 +468,7 @@ def create_ui():
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height")
with gr.Column(elem_id="txt2img_dimensions_row", scale=1, elem_classes="dimensions-tools"):
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn")
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn", label="Switch dims")
if opts.dimensions_and_batch_together:
with gr.Column(elem_id="txt2img_column_batch"):
@ -1215,7 +1204,7 @@ def create_ui():
with gr.Column(elem_id='ti_gallery_container'):
ti_output = gr.Text(elem_id="ti_output", value="", show_label=False)
ti_gallery = gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(grid=4)
ti_gallery = gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(columns=4)
ti_progress = gr.HTML(elem_id="ti_progress", value="")
ti_outcome = gr.HTML(elem_id="ti_error", value="")
@ -1566,22 +1555,6 @@ def create_ui():
(train_interface, "Train", "ti"),
]
css = ""
for cssfile in modules.scripts.list_files_with_name("style.css"):
if not os.path.isfile(cssfile):
continue
with open(cssfile, "r", encoding="utf8") as file:
css += file.read() + "\n"
if os.path.exists(os.path.join(data_path, "user.css")):
with open(os.path.join(data_path, "user.css"), "r", encoding="utf8") as file:
css += file.read() + "\n"
if not cmd_opts.no_progressbar_hiding:
css += css_hide_progressbar
interfaces += script_callbacks.ui_tabs_callback()
interfaces += [(settings_interface, "Settings", "settings")]
@ -1592,7 +1565,7 @@ def create_ui():
for _interface, label, _ifid in interfaces:
shared.tab_names.append(label)
with gr.Blocks(css=css, analytics_enabled=False, title="Stable Diffusion") as demo:
with gr.Blocks(theme=shared.gradio_theme, analytics_enabled=False, title="Stable Diffusion") as demo:
with gr.Row(elem_id="quicksettings", variant="compact"):
for i, k, item in sorted(quicksettings_list, key=lambda x: quicksettings_names.get(x[1], x[0])):
component = create_setting_component(k, is_quicksettings=True)
@ -1655,6 +1628,7 @@ def create_ui():
fn=get_settings_values,
inputs=[],
outputs=[component_dict[k] for k in component_keys],
queue=False,
)
def modelmerger(*args):
@ -1731,7 +1705,7 @@ def create_ui():
if init_field is not None:
init_field(saved_value)
if type(x) in [gr.Slider, gr.Radio, gr.Checkbox, gr.Textbox, gr.Number, gr.Dropdown] and x.visible:
if type(x) in [gr.Slider, gr.Radio, gr.Checkbox, gr.Textbox, gr.Number, gr.Dropdown, ToolButton] and x.visible:
apply_field(x, 'visible')
if type(x) == gr.Slider:
@ -1777,25 +1751,60 @@ def create_ui():
return demo
def reload_javascript():
def webpath(fn):
if fn.startswith(script_path):
web_path = os.path.relpath(fn, script_path).replace('\\', '/')
else:
web_path = os.path.abspath(fn)
return f'file={web_path}?{os.path.getmtime(fn)}'
def javascript_html():
script_js = os.path.join(script_path, "script.js")
head = f'<script type="text/javascript" src="file={os.path.abspath(script_js)}?{os.path.getmtime(script_js)}"></script>\n'
head = f'<script type="text/javascript" src="{webpath(script_js)}"></script>\n'
inline = f"{localization.localization_js(shared.opts.localization)};"
if cmd_opts.theme is not None:
inline += f"set_theme('{cmd_opts.theme}');"
for script in modules.scripts.list_scripts("javascript", ".js"):
head += f'<script type="text/javascript" src="file={script.path}?{os.path.getmtime(script.path)}"></script>\n'
head += f'<script type="text/javascript" src="{webpath(script.path)}"></script>\n'
for script in modules.scripts.list_scripts("javascript", ".mjs"):
head += f'<script type="module" src="file={script.path}?{os.path.getmtime(script.path)}"></script>\n'
head += f'<script type="module" src="{webpath(script.path)}"></script>\n'
head += f'<script type="text/javascript">{inline}</script>\n'
return head
def css_html():
head = ""
def stylesheet(fn):
return f'<link rel="stylesheet" property="stylesheet" href="{webpath(fn)}">'
for cssfile in modules.scripts.list_files_with_name("style.css"):
if not os.path.isfile(cssfile):
continue
head += stylesheet(cssfile)
if os.path.exists(os.path.join(data_path, "user.css")):
head += stylesheet(os.path.join(data_path, "user.css"))
return head
def reload_javascript():
js = javascript_html()
css = css_html()
def template_response(*args, **kwargs):
res = shared.GradioTemplateResponseOriginal(*args, **kwargs)
res.body = res.body.replace(b'</head>', f'{head}</head>'.encode("utf8"))
res.body = res.body.replace(b'</head>', f'{js}</head>'.encode("utf8"))
res.body = res.body.replace(b'</body>', f'{css}</body>'.encode("utf8"))
res.init_headers()
return res

View File

@ -125,7 +125,7 @@ Requested path was: {f}
with gr.Column(variant='panel', elem_id=f"{tabname}_results"):
with gr.Group(elem_id=f"{tabname}_gallery_container"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(grid=4)
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(columns=4)
generation_info = None
with gr.Column():

View File

@ -62,3 +62,13 @@ class DropdownMulti(FormComponent, gr.Dropdown):
def get_block_name(self):
return "dropdown"
class DropdownEditable(FormComponent, gr.Dropdown):
"""Same as gr.Dropdown but allows editing value"""
def __init__(self, **kwargs):
super().__init__(allow_custom_value=True, **kwargs)
def get_block_name(self):
return "dropdown"

View File

@ -21,7 +21,7 @@ def check_access():
assert not shared.cmd_opts.disable_extension_access, "extension access disabled because of command line flags"
def apply_and_restart(disable_list, update_list):
def apply_and_restart(disable_list, update_list, disable_all):
check_access()
disabled = json.loads(disable_list)
@ -43,6 +43,7 @@ def apply_and_restart(disable_list, update_list):
print(traceback.format_exc(), file=sys.stderr)
shared.opts.disabled_extensions = disabled
shared.opts.disable_all_extensions = disable_all
shared.opts.save(shared.config_filename)
shared.state.interrupt()
@ -99,9 +100,13 @@ def extension_table():
else:
ext_status = ext.status
style = ""
if shared.opts.disable_all_extensions == "extra" and not ext.is_builtin or shared.opts.disable_all_extensions == "all":
style = ' style="color: var(--primary-400)"'
code += f"""
<tr>
<td><label><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td>
<td><label{style}><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td>
<td>{remote}</td>
<td>{ext.version}</td>
<td{' class="extension_status"' if ext.remote is not None else ''}>{ext_status}</td>
@ -124,7 +129,7 @@ def normalize_git_url(url):
return url
def install_extension_from_url(dirname, url):
def install_extension_from_url(dirname, url, branch_name=None):
check_access()
assert url, 'No URL specified'
@ -145,10 +150,17 @@ def install_extension_from_url(dirname, url):
try:
shutil.rmtree(tmpdir, True)
with git.Repo.clone_from(url, tmpdir) as repo:
repo.remote().fetch()
for submodule in repo.submodules:
submodule.update()
if not branch_name:
# if no branch is specified, use the default branch
with git.Repo.clone_from(url, tmpdir) as repo:
repo.remote().fetch()
for submodule in repo.submodules:
submodule.update()
else:
with git.Repo.clone_from(url, tmpdir, branch=branch_name) as repo:
repo.remote().fetch()
for submodule in repo.submodules:
submodule.update()
try:
os.rename(tmpdir, target_dir)
except OSError as err:
@ -294,16 +306,24 @@ def create_ui():
with gr.Row(elem_id="extensions_installed_top"):
apply = gr.Button(value="Apply and restart UI", variant="primary")
check = gr.Button(value="Check for updates")
extensions_disable_all = gr.Radio(label="Disable all extensions", choices=["none", "extra", "all"], value=shared.opts.disable_all_extensions, elem_id="extensions_disable_all")
extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False).style(container=False)
extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False).style(container=False)
info = gr.HTML()
html = ""
if shared.opts.disable_all_extensions != "none":
html = """
<span style="color: var(--primary-400);">
"Disable all extensions" was set, change it to "none" to load all extensions again
</span>
"""
info = gr.HTML(html)
extensions_table = gr.HTML(lambda: extension_table())
apply.click(
fn=apply_and_restart,
_js="extensions_apply",
inputs=[extensions_disabled_list, extensions_update_list],
inputs=[extensions_disabled_list, extensions_update_list, extensions_disable_all],
outputs=[],
)
@ -363,13 +383,14 @@ def create_ui():
with gr.TabItem("Install from URL"):
install_url = gr.Text(label="URL for extension's git repository")
install_branch = gr.Text(label="Specific branch name", placeholder="Leave empty for default main branch")
install_dirname = gr.Text(label="Local directory name", placeholder="Leave empty for auto")
install_button = gr.Button(value="Install", variant="primary")
install_result = gr.HTML(elem_id="extension_install_result")
install_button.click(
fn=modules.ui.wrap_gradio_call(install_extension_from_url, extra_outputs=[gr.update()]),
inputs=[install_dirname, install_url],
inputs=[install_dirname, install_url, install_branch],
outputs=[extensions_table, install_result],
)

View File

@ -13,7 +13,7 @@ def create_ui():
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image")
with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab") as tab_batch:
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch")
image_batch = gr.Files(label="Batch Process", interactive=True, elem_id="extras_image_batch")
with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab") as tab_batch_dir:
extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir")

View File

@ -1,10 +1,11 @@
astunparse
blendmodes
accelerate
basicsr
fonts
font-roboto
gfpgan
gradio==3.23
gradio==3.27
numpy
omegaconf
opencv-contrib-python

View File

@ -1,10 +1,10 @@
blendmodes==2022
transformers==4.25.1
accelerate==0.12.0
accelerate==0.18.0
basicsr==1.4.2
gfpgan==1.3.8
gradio==3.23
numpy==1.23.3
gradio==3.27
numpy==1.23.5
Pillow==9.4.0
realesrgan==0.3.0
torch
@ -25,6 +25,6 @@ lark==1.1.2
inflection==0.5.1
GitPython==3.1.30
torchsde==0.2.5
safetensors==0.3.0
safetensors==0.3.1
httpcore<=0.15
fastapi==0.94.0

View File

@ -1,9 +1,40 @@
import modules.scripts as scripts
import gradio as gr
import ast
import copy
from modules.processing import Processed
from modules.shared import opts, cmd_opts, state
def convertExpr2Expression(expr):
expr.lineno = 0
expr.col_offset = 0
result = ast.Expression(expr.value, lineno=0, col_offset = 0)
return result
def exec_with_return(code, module):
"""
like exec() but can return values
https://stackoverflow.com/a/52361938/5862977
"""
code_ast = ast.parse(code)
init_ast = copy.deepcopy(code_ast)
init_ast.body = code_ast.body[:-1]
last_ast = copy.deepcopy(code_ast)
last_ast.body = code_ast.body[-1:]
exec(compile(init_ast, "<ast>", "exec"), module.__dict__)
if type(last_ast.body[0]) == ast.Expr:
return eval(compile(convertExpr2Expression(last_ast.body[0]), "<ast>", "eval"), module.__dict__)
else:
exec(compile(last_ast, "<ast>", "exec"), module.__dict__)
class Script(scripts.Script):
def title(self):
@ -13,12 +44,23 @@ class Script(scripts.Script):
return cmd_opts.allow_code
def ui(self, is_img2img):
code = gr.Textbox(label="Python code", lines=1, elem_id=self.elem_id("code"))
example = """from modules.processing import process_images
return [code]
p.width = 768
p.height = 768
p.batch_size = 2
p.steps = 10
return process_images(p)
"""
def run(self, p, code):
code = gr.Code(value=example, language="python", label="Python code", elem_id=self.elem_id("code"))
indent_level = gr.Number(label='Indent level', value=2, precision=0, elem_id=self.elem_id("indent_level"))
return [code, indent_level]
def run(self, p, code, indent_level):
assert cmd_opts.allow_code, '--allow-code option must be enabled'
display_result_data = [[], -1, ""]
@ -29,13 +71,20 @@ class Script(scripts.Script):
display_result_data[2] = i
from types import ModuleType
compiled = compile(code, '', 'exec')
module = ModuleType("testmodule")
module.__dict__.update(globals())
module.p = p
module.display = display
exec(compiled, module.__dict__)
indent = " " * indent_level
indented = code.replace('\n', '\n' + indent)
body = f"""def __webuitemp__():
{indent}{indented}
__webuitemp__()"""
result = exec_with_return(body, module)
if isinstance(result, Processed):
return result
return Processed(p, *display_result_data)

View File

@ -4,8 +4,8 @@ import numpy as np
from modules import scripts_postprocessing, shared
import gradio as gr
from modules.ui_components import FormRow
from modules.ui_components import FormRow, ToolButton
from modules.ui import switch_values_symbol
upscale_cache = {}
@ -25,9 +25,12 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
with gr.TabItem('Scale to', elem_id="extras_scale_to_tab") as tab_scale_to:
with FormRow():
upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w")
upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h")
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
with gr.Column(elem_id="upscaling_column_size", scale=4):
upscaling_resize_w = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="extras_upscaling_resize_w")
upscaling_resize_h = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="extras_upscaling_resize_h")
with gr.Column(elem_id="upscaling_dimensions_row", scale=1, elem_classes="dimensions-tools"):
upscaling_res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="upscaling_res_switch_btn")
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
with FormRow():
extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
@ -36,6 +39,7 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id="extras_upscaler_2_visibility")
upscaling_res_switch_btn.click(lambda w, h: (h, w), inputs=[upscaling_resize_w, upscaling_resize_h], outputs=[upscaling_resize_w, upscaling_resize_h], show_progress=False)
tab_scale_by.select(fn=lambda: 0, inputs=[], outputs=[selected_tab])
tab_scale_to.select(fn=lambda: 1, inputs=[], outputs=[selected_tab])

View File

@ -211,7 +211,8 @@ axis_options = [
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
AxisOptionImg2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: list(sd_models.checkpoints_list)),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
AxisOption("Sigma Churn", float, apply_field("s_churn")),
AxisOption("Sigma min", float, apply_field("s_tmin")),
AxisOption("Sigma max", float, apply_field("s_tmax")),
@ -374,16 +375,19 @@ class Script(scripts.Script):
with gr.Row():
x_type = gr.Dropdown(label="X type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[1].label, type="index", elem_id=self.elem_id("x_type"))
x_values = gr.Textbox(label="X values", lines=1, elem_id=self.elem_id("x_values"))
x_values_dropdown = gr.Dropdown(label="X values",visible=False,multiselect=True,interactive=True)
fill_x_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_x_tool_button", visible=False)
with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type"))
y_values = gr.Textbox(label="Y values", lines=1, elem_id=self.elem_id("y_values"))
y_values_dropdown = gr.Dropdown(label="Y values",visible=False,multiselect=True,interactive=True)
fill_y_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_y_tool_button", visible=False)
with gr.Row():
z_type = gr.Dropdown(label="Z type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("z_type"))
z_values = gr.Textbox(label="Z values", lines=1, elem_id=self.elem_id("z_values"))
z_values_dropdown = gr.Dropdown(label="Z values",visible=False,multiselect=True,interactive=True)
fill_z_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_z_tool_button", visible=False)
with gr.Row(variant="compact", elem_id="axis_options"):
@ -401,54 +405,74 @@ class Script(scripts.Script):
swap_yz_axes_button = gr.Button(value="Swap Y/Z axes", elem_id="yz_grid_swap_axes_button")
swap_xz_axes_button = gr.Button(value="Swap X/Z axes", elem_id="xz_grid_swap_axes_button")
def swap_axes(axis1_type, axis1_values, axis2_type, axis2_values):
return self.current_axis_options[axis2_type].label, axis2_values, self.current_axis_options[axis1_type].label, axis1_values
def swap_axes(axis1_type, axis1_values, axis1_values_dropdown, axis2_type, axis2_values, axis2_values_dropdown):
return self.current_axis_options[axis2_type].label, axis2_values, axis2_values_dropdown, self.current_axis_options[axis1_type].label, axis1_values, axis1_values_dropdown
xy_swap_args = [x_type, x_values, y_type, y_values]
xy_swap_args = [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown]
swap_xy_axes_button.click(swap_axes, inputs=xy_swap_args, outputs=xy_swap_args)
yz_swap_args = [y_type, y_values, z_type, z_values]
yz_swap_args = [y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown]
swap_yz_axes_button.click(swap_axes, inputs=yz_swap_args, outputs=yz_swap_args)
xz_swap_args = [x_type, x_values, z_type, z_values]
xz_swap_args = [x_type, x_values, x_values_dropdown, z_type, z_values, z_values_dropdown]
swap_xz_axes_button.click(swap_axes, inputs=xz_swap_args, outputs=xz_swap_args)
def fill(x_type):
axis = self.current_axis_options[x_type]
return ", ".join(axis.choices()) if axis.choices else gr.update()
return axis.choices() if axis.choices else gr.update()
fill_x_button.click(fn=fill, inputs=[x_type], outputs=[x_values])
fill_y_button.click(fn=fill, inputs=[y_type], outputs=[y_values])
fill_z_button.click(fn=fill, inputs=[z_type], outputs=[z_values])
fill_x_button.click(fn=fill, inputs=[x_type], outputs=[x_values_dropdown])
fill_y_button.click(fn=fill, inputs=[y_type], outputs=[y_values_dropdown])
fill_z_button.click(fn=fill, inputs=[z_type], outputs=[z_values_dropdown])
def select_axis(x_type):
return gr.Button.update(visible=self.current_axis_options[x_type].choices is not None)
def select_axis(axis_type,axis_values_dropdown):
choices = self.current_axis_options[axis_type].choices
has_choices = choices is not None
current_values = axis_values_dropdown
if has_choices:
choices = choices()
if isinstance(current_values,str):
current_values = current_values.split(",")
current_values = list(filter(lambda x: x in choices, current_values))
return gr.Button.update(visible=has_choices),gr.Textbox.update(visible=not has_choices),gr.update(choices=choices if has_choices else None,visible=has_choices,value=current_values)
x_type.change(fn=select_axis, inputs=[x_type], outputs=[fill_x_button])
y_type.change(fn=select_axis, inputs=[y_type], outputs=[fill_y_button])
z_type.change(fn=select_axis, inputs=[z_type], outputs=[fill_z_button])
x_type.change(fn=select_axis, inputs=[x_type,x_values_dropdown], outputs=[fill_x_button,x_values,x_values_dropdown])
y_type.change(fn=select_axis, inputs=[y_type,y_values_dropdown], outputs=[fill_y_button,y_values,y_values_dropdown])
z_type.change(fn=select_axis, inputs=[z_type,z_values_dropdown], outputs=[fill_z_button,z_values,z_values_dropdown])
def get_dropdown_update_from_params(axis,params):
val_key = axis + " Values"
vals = params.get(val_key,"")
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x]
return gr.update(value = valslist)
self.infotext_fields = (
(x_type, "X Type"),
(x_values, "X Values"),
(x_values_dropdown, lambda params:get_dropdown_update_from_params("X",params)),
(y_type, "Y Type"),
(y_values, "Y Values"),
(y_values_dropdown, lambda params:get_dropdown_update_from_params("Y",params)),
(z_type, "Z Type"),
(z_values, "Z Values"),
(z_values_dropdown, lambda params:get_dropdown_update_from_params("Z",params)),
)
return [x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size]
return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size]
def run(self, p, x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size):
def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size):
if not no_fixed_seeds:
modules.processing.fix_seed(p)
if not opts.return_grid:
p.batch_size = 1
def process_axis(opt, vals):
def process_axis(opt, vals, vals_dropdown):
if opt.label == 'Nothing':
return [0]
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x]
if opt.choices is not None:
valslist = vals_dropdown
else:
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x]
if opt.type == int:
valslist_ext = []
@ -506,13 +530,19 @@ class Script(scripts.Script):
return valslist
x_opt = self.current_axis_options[x_type]
xs = process_axis(x_opt, x_values)
if x_opt.choices is not None:
x_values = ",".join(x_values_dropdown)
xs = process_axis(x_opt, x_values, x_values_dropdown)
y_opt = self.current_axis_options[y_type]
ys = process_axis(y_opt, y_values)
if y_opt.choices is not None:
y_values = ",".join(y_values_dropdown)
ys = process_axis(y_opt, y_values, y_values_dropdown)
z_opt = self.current_axis_options[z_type]
zs = process_axis(z_opt, z_values)
if z_opt.choices is not None:
z_values = ",".join(z_values_dropdown)
zs = process_axis(z_opt, z_values, z_values_dropdown)
# this could be moved to common code, but unlikely to be ever triggered anywhere else
Image.MAX_IMAGE_PIXELS = None # disable check in Pillow and rely on check below to allow large custom image sizes

View File

@ -312,12 +312,23 @@ div.dimensions-tools{
align-content: center;
}
div#extras_scale_to_tab div.form{
flex-direction: row;
}
#mode_img2img .gradio-image > div.fixed-height, #mode_img2img .gradio-image > div.fixed-height img{
height: 480px !important;
max-height: 480px !important;
min-height: 480px !important;
}
#img2img_sketch, #img2maskimg, #inpaint_sketch {
overflow: overlay !important;
resize: auto;
background: var(--panel-background-fill);
z-index: 5;
}
.image-buttons button{
min-width: auto;
}
@ -329,6 +340,7 @@ div.dimensions-tools{
/* settings */
#quicksettings {
width: fit-content;
align-items: end;
}
#quicksettings > div, #quicksettings > fieldset{

View File

@ -11,7 +11,7 @@ fi
export install_dir="$HOME"
export COMMANDLINE_ARGS="--skip-torch-cuda-test --upcast-sampling --no-half-vae --use-cpu interrogate"
export TORCH_COMMAND="pip install torch==1.12.1 torchvision==0.13.1"
export TORCH_COMMAND="pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu118"
export K_DIFFUSION_REPO="https://github.com/brkirch/k-diffusion.git"
export K_DIFFUSION_COMMIT_HASH="51c9778f269cedb55a4d88c79c0246d35bdadb71"
export PYTORCH_ENABLE_MPS_FALLBACK=1

View File

@ -43,4 +43,7 @@
# Uncomment to enable accelerated launch
#export ACCELERATE="True"
# Uncomment to disable TCMalloc
#export NO_TCMALLOC="True"
###########################################

View File

@ -20,6 +20,9 @@ startup_timer = timer.Timer()
import torch
import pytorch_lightning # pytorch_lightning should be imported after torch, but it re-enables warnings on import so import once to disable them
warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning")
warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision")
startup_timer.record("import torch")
import gradio
@ -67,11 +70,51 @@ else:
server_name = "0.0.0.0" if cmd_opts.listen else None
def fix_asyncio_event_loop_policy():
"""
The default `asyncio` event loop policy only automatically creates
event loops in the main threads. Other threads must create event
loops explicitly or `asyncio.get_event_loop` (and therefore
`.IOLoop.current`) will fail. Installing this policy allows event
loops to be created automatically on any thread, matching the
behavior of Tornado versions prior to 5.0 (or 5.0 on Python 2).
"""
import asyncio
if sys.platform == "win32" and hasattr(asyncio, "WindowsSelectorEventLoopPolicy"):
# "Any thread" and "selector" should be orthogonal, but there's not a clean
# interface for composing policies so pick the right base.
_BasePolicy = asyncio.WindowsSelectorEventLoopPolicy # type: ignore
else:
_BasePolicy = asyncio.DefaultEventLoopPolicy
class AnyThreadEventLoopPolicy(_BasePolicy): # type: ignore
"""Event loop policy that allows loop creation on any thread.
Usage::
asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
"""
def get_event_loop(self) -> asyncio.AbstractEventLoop:
try:
return super().get_event_loop()
except (RuntimeError, AssertionError):
# This was an AssertionError in python 3.4.2 (which ships with debian jessie)
# and changed to a RuntimeError in 3.4.3.
# "There is no current event loop in thread %r"
loop = self.new_event_loop()
self.set_event_loop(loop)
return loop
asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
def check_versions():
if shared.cmd_opts.skip_version_check:
return
expected_torch_version = "1.13.1"
expected_torch_version = "2.0.0"
if version.parse(torch.__version__) < version.parse(expected_torch_version):
errors.print_error_explanation(f"""
@ -84,7 +127,7 @@ there are reports of issues with training tab on the latest version.
Use --skip-version-check commandline argument to disable this check.
""".strip())
expected_xformers_version = "0.0.16rc425"
expected_xformers_version = "0.0.17"
if shared.xformers_available:
import xformers
@ -99,6 +142,8 @@ Use --skip-version-check commandline argument to disable this check.
def initialize():
fix_asyncio_event_loop_policy()
check_versions()
extensions.list_extensions()
@ -126,9 +171,6 @@ def initialize():
modules.scripts.load_scripts()
startup_timer.record("load scripts")
modelloader.load_upscalers()
startup_timer.record("load upscalers")
modules.sd_vae.refresh_vae_list()
startup_timer.record("refresh VAE")
@ -150,6 +192,7 @@ def initialize():
shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("sd_vae_as_default", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
shared.opts.onchange("gradio_theme", shared.reload_gradio_theme)
startup_timer.record("opts onchange")
shared.reload_hypernetworks()

View File

@ -23,7 +23,7 @@ fi
# Install directory without trailing slash
if [[ -z "${install_dir}" ]]
then
install_dir="/home/$(whoami)"
install_dir="${HOME}"
fi
# Name of the subdirectory (defaults to stable-diffusion-webui)
@ -113,12 +113,13 @@ case "$gpu_info" in
printf "Experimental support for Renoir: make sure to have at least 4GB of VRAM and 10GB of RAM or enable cpu mode: --use-cpu all --no-half"
printf "\n%s\n" "${delimiter}"
;;
*)
*)
;;
esac
if echo "$gpu_info" | grep -q "AMD" && [[ -z "${TORCH_COMMAND}" ]]
then
export TORCH_COMMAND="pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/rocm5.2"
# AMD users will still use torch 1.13 because 2.0 does not seem to work.
export TORCH_COMMAND="pip install torch==1.13.1+rocm5.2 torchvision==0.14.1+rocm5.2 --index-url https://download.pytorch.org/whl/rocm5.2"
fi
for preq in "${GIT}" "${python_cmd}"
@ -172,15 +173,30 @@ else
exit 1
fi
# Try using TCMalloc on Linux
prepare_tcmalloc() {
if [[ "${OSTYPE}" == "linux"* ]] && [[ -z "${NO_TCMALLOC}" ]] && [[ -z "${LD_PRELOAD}" ]]; then
TCMALLOC="$(ldconfig -p | grep -Po "libtcmalloc.so.\d" | head -n 1)"
if [[ ! -z "${TCMALLOC}" ]]; then
echo "Using TCMalloc: ${TCMALLOC}"
export LD_PRELOAD="${TCMALLOC}"
else
printf "\e[1m\e[31mCannot locate TCMalloc (improves CPU memory usage)\e[0m\n"
fi
fi
}
if [[ ! -z "${ACCELERATE}" ]] && [ ${ACCELERATE}="True" ] && [ -x "$(command -v accelerate)" ]
then
printf "\n%s\n" "${delimiter}"
printf "Accelerating launch.py..."
printf "\n%s\n" "${delimiter}"
prepare_tcmalloc
exec accelerate launch --num_cpu_threads_per_process=6 "${LAUNCH_SCRIPT}" "$@"
else
printf "\n%s\n" "${delimiter}"
printf "Launching launch.py..."
printf "\n%s\n" "${delimiter}"
printf "\n%s\n" "${delimiter}"
prepare_tcmalloc
exec "${python_cmd}" "${LAUNCH_SCRIPT}" "$@"
fi