Merge branch 'master' into xygrid_infotext_improvements

This commit is contained in:
AUTOMATIC1111 2023-01-04 18:57:14 +03:00 committed by GitHub
commit 32547f2721
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
158 changed files with 18240 additions and 2898 deletions

View File

@ -1,32 +0,0 @@
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: bug-report
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior:
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Desktop (please complete the following information):**
- OS: [e.g. Windows, Linux]
- Browser [e.g. chrome, safari]
- Commit revision [looks like this: e68484500f76a33ba477d5a99340ab30451e557b; can be seen when launching webui.bat, or obtained manually by running `git rev-parse HEAD`]
**Additional context**
Add any other context about the problem here.

83
.github/ISSUE_TEMPLATE/bug_report.yml vendored Normal file
View File

@ -0,0 +1,83 @@
name: Bug Report
description: You think somethings is broken in the UI
title: "[Bug]: "
labels: ["bug-report"]
body:
- type: checkboxes
attributes:
label: Is there an existing issue for this?
description: Please search to see if an issue already exists for the bug you encountered, and that it hasn't been fixed in a recent build/commit.
options:
- label: I have searched the existing issues and checked the recent builds/commits
required: true
- type: markdown
attributes:
value: |
*Please fill this form with as much information as possible, don't forget to fill "What OS..." and "What browsers" and *provide screenshots if possible**
- type: textarea
id: what-did
attributes:
label: What happened?
description: Tell us what happened in a very clear and simple way
validations:
required: true
- type: textarea
id: steps
attributes:
label: Steps to reproduce the problem
description: Please provide us with precise step by step information on how to reproduce the bug
value: |
1. Go to ....
2. Press ....
3. ...
validations:
required: true
- type: textarea
id: what-should
attributes:
label: What should have happened?
description: tell what you think the normal behavior should be
validations:
required: true
- type: input
id: commit
attributes:
label: Commit where the problem happens
description: Which commit are you running ? (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit hash** shown in the cmd/terminal when you launch the UI)
validations:
required: true
- type: dropdown
id: platforms
attributes:
label: What platforms do you use to access UI ?
multiple: true
options:
- Windows
- Linux
- MacOS
- iOS
- Android
- Other/Cloud
- type: dropdown
id: browsers
attributes:
label: What browsers do you use to access the UI ?
multiple: true
options:
- Mozilla Firefox
- Google Chrome
- Brave
- Apple Safari
- Microsoft Edge
- type: textarea
id: cmdargs
attributes:
label: Command Line Arguments
description: Are you using any launching parameters/command line arguments (modified webui-user.py) ? If yes, please write them below
render: Shell
- type: textarea
id: misc
attributes:
label: Additional information, context and logs
description: Please provide us with any relevant additional info, context or log output.

5
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@ -0,0 +1,5 @@
blank_issues_enabled: false
contact_links:
- name: WebUI Community Support
url: https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions
about: Please ask and answer questions here.

View File

@ -1,20 +0,0 @@
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.

View File

@ -0,0 +1,40 @@
name: Feature request
description: Suggest an idea for this project
title: "[Feature Request]: "
labels: ["suggestion"]
body:
- type: checkboxes
attributes:
label: Is there an existing issue for this?
description: Please search to see if an issue already exists for the feature you want, and that it's not implemented in a recent build/commit.
options:
- label: I have searched the existing issues and checked the recent builds/commits
required: true
- type: markdown
attributes:
value: |
*Please fill this form with as much information as possible, provide screenshots and/or illustrations of the feature if possible*
- type: textarea
id: feature
attributes:
label: What would your feature do ?
description: Tell us about your feature in a very clear and simple way, and what problem it would solve
validations:
required: true
- type: textarea
id: workflow
attributes:
label: Proposed workflow
description: Please provide us with step by step information on how you'd like the feature to be accessed and used
value: |
1. Go to ....
2. Press ....
3. ...
validations:
required: true
- type: textarea
id: misc
attributes:
label: Additional information
description: Add any other context or screenshots about the feature request here.

View File

@ -0,0 +1,28 @@
# Please read the [contributing wiki page](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) before submitting a pull request!
If you have a large change, pay special attention to this paragraph:
> Before making changes, if you think that your feature will result in more than 100 lines changing, find me and talk to me about the feature you are proposing. It pains me to reject the hard work someone else did, but I won't add everything to the repo, and it's better if the rejection happens before you have to waste time working on the feature.
Otherwise, after making sure you're following the rules described in wiki page, remove this section and continue on.
**Describe what this pull request is trying to achieve.**
A clear and concise description of what you're trying to accomplish with this, so your intent doesn't have to be extracted from your code.
**Additional notes and description of your changes**
More technical discussion about your changes go here, plus anything that a maintainer might have to specifically take a look at, or be wary of.
**Environment this was tested in**
List the environment you have developed / tested this on. As per the contributing page, changes should be able to work on Windows out of the box.
- OS: [e.g. Windows, Linux]
- Browser [e.g. chrome, safari]
- Graphics card [e.g. NVIDIA RTX 2080 8GB, AMD RX 6600 8GB]
**Screenshots or videos of your changes**
If applicable, screenshots or a video showing off your changes. If it edits an existing UI, it should ideally contain a comparison of what used to be there, before your changes were made.
This is **required** for anything that touches the user interface.

42
.github/workflows/on_pull_request.yaml vendored Normal file
View File

@ -0,0 +1,42 @@
# See https://github.com/actions/starter-workflows/blob/1067f16ad8a1eac328834e4b0ae24f7d206f810d/ci/pylint.yml for original reference file
name: Run Linting/Formatting on Pull Requests
on:
- push
- pull_request
# See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#onpull_requestpull_request_targetbranchesbranches-ignore for syntax docs
# if you want to filter out branches, delete the `- pull_request` and uncomment these lines :
# pull_request:
# branches:
# - master
# branches-ignore:
# - development
jobs:
lint:
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@v3
- name: Set up Python 3.10
uses: actions/setup-python@v3
with:
python-version: 3.10.6
- uses: actions/cache@v2
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
restore-keys: |
${{ runner.os }}-pip-
- name: Install PyLint
run: |
python -m pip install --upgrade pip
pip install pylint
# This lets PyLint check to see if it can resolve imports
- name: Install dependencies
run : |
export COMMANDLINE_ARGS="--skip-torch-cuda-test --exit"
python launch.py
- name: Analysing the code with pylint
run: |
pylint $(git ls-files '*.py')

31
.github/workflows/run_tests.yaml vendored Normal file
View File

@ -0,0 +1,31 @@
name: Run basic features tests on CPU with empty SD model
on:
- push
- pull_request
jobs:
test:
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@v3
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: 3.10.6
- uses: actions/cache@v3
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
restore-keys: ${{ runner.os }}-pip-
- name: Run tests
run: python launch.py --tests basic_features --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
- name: Upload main app stdout-stderr
uses: actions/upload-artifact@v3
if: always()
with:
name: stdout-stderr
path: |
test/stdout.txt
test/stderr.txt

7
.gitignore vendored
View File

@ -1,5 +1,6 @@
__pycache__ __pycache__
*.ckpt *.ckpt
*.safetensors
*.pth *.pth
/ESRGAN/* /ESRGAN/*
/SwinIR/* /SwinIR/*
@ -17,6 +18,7 @@ __pycache__
/webui.settings.bat /webui.settings.bat
/embeddings /embeddings
/styles.csv /styles.csv
/params.txt
/styles.csv.bak /styles.csv.bak
/webui-user.bat /webui-user.bat
/webui-user.sh /webui-user.sh
@ -25,3 +27,8 @@ __pycache__
/.idea /.idea
notification.mp3 notification.mp3
/SwinIR /SwinIR
/textual_inversion
.vscode
/extensions
/test/stdout.txt
/test/stderr.txt

3
.pylintrc Normal file
View File

@ -0,0 +1,3 @@
# See https://pylint.pycqa.org/en/latest/user_guide/messages/message_control.html
[MESSAGES CONTROL]
disable=C,R,W,E,I

12
CODEOWNERS Normal file
View File

@ -0,0 +1,12 @@
* @AUTOMATIC1111
# if you were managing a localization and were removed from this file, this is because
# the intended way to do localizations now is via extensions. See:
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Developing-extensions
# Make a repo with your localization and since you are still listed as a collaborator
# you can add it to the wiki page yourself. This change is because some people complained
# the git commit log is cluttered with things unrelated to almost everyone and
# because I believe this is the best overall for the project to handle localizations almost
# entirely without my oversight.

View File

@ -11,39 +11,44 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- One click install and run script (but you still must install python and git) - One click install and run script (but you still must install python and git)
- Outpainting - Outpainting
- Inpainting - Inpainting
- Prompt - Color Sketch
- Stable Diffusion upscale - Prompt Matrix
- Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to - Attention, specify parts of text that the model should pay more attention to
- a man in a ((txuedo)) - will pay more attentinoto tuxedo - a man in a ((tuxedo)) - will pay more attention to tuxedo
- a man in a (txuedo:1.21) - alternative syntax - a man in a (tuxedo:1.21) - alternative syntax
- Loopback, run img2img procvessing multiple times - select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times
- X/Y plot, a way to draw a 2 dimensional plot of images with different parameters - X/Y plot, a way to draw a 2 dimensional plot of images with different parameters
- Textual Inversion - Textual Inversion
- have as many embeddings as you want and use any names you like for them - have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token - use multiple embeddings with different numbers of vectors per token
- works with half precision floating point numbers - works with half precision floating point numbers
- train embeddings on 8GB (also reports of 6GB working)
- Extras tab with: - Extras tab with:
- GFPGAN, neural network that fixes faces - GFPGAN, neural network that fixes faces
- CodeFormer, face restoration tool as an alternative to GFPGAN - CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler - RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models - ESRGAN, neural network upscaler with a lot of third party models
- SwinIR, neural network upscaler - SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling - LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options - Resizing aspect ratio options
- Sampling method selection - Sampling method selection
- Adjust sampler eta values (noise multiplier)
- More advanced noise setting options
- Interrupt processing at any time - Interrupt processing at any time
- 4GB video card support (also reports of 2GB working) - 4GB video card support (also reports of 2GB working)
- Correct seeds for batches - Correct seeds for batches
- Prompt length validation - Live prompt token length validation
- get length of prompt in tokensas you type
- get a warning after geenration if some text was truncated
- Generation parameters - Generation parameters
- parameters you used to generate images are saved with that image - parameters you used to generate images are saved with that image
- in PNG chunks for PNG, in EXIF for JPEG - in PNG chunks for PNG, in EXIF for JPEG
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI - can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
- can be disabled in settings - can be disabled in settings
- drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page - Settings page
- Running arbitrary python code from UI (must run with commandline flag to enable) - Running arbitrary python code from UI (must run with --allow-code to enable)
- Mouseover hints for most UI elements - Mouseover hints for most UI elements
- Possible to change defaults/mix/max/step values for UI elements via text config - Possible to change defaults/mix/max/step values for UI elements via text config
- Random artist button - Random artist button
@ -56,19 +61,37 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- CLIP interrogator, a button that tries to guess prompt from an image - CLIP interrogator, a button that tries to guess prompt from an image
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway - Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
- Batch Processing, process a group of files using img2img - Batch Processing, process a group of files using img2img
- Img2img Alternative - Img2img Alternative, reverse Euler method of cross attention control
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions - Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
- Reloading checkpoints on the fly - Reloading checkpoints on the fly
- Checkpoint Merger, a tab that allows you to merge two checkpoints into one - Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community - [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
- separate prompts using uppercase `AND`
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option
- Training tab
- hypernetworks and embeddings options
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
- Clip skip
- Use Hypernetworks
- Use VAEs
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
## Installation and Running ## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
Alternatively, use Google Colab: Alternatively, use online services (like Google Colab):
- [Colab, maintained by Akaibu](https://colab.research.google.com/drive/1kw3egmSn-KgWsikYvOMjJkVDsPLjEMzl) - [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
- [Colab, original by me, outdated](https://colab.research.google.com/drive/1Iy-xW9t1-OQWhb0hNxueGij8phCyluOh).
### Automatic Installation on Windows ### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH" 1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
@ -104,17 +127,27 @@ Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki). The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
## Credits ## Credits
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers - Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git - k-diffusion - https://github.com/crowsonkb/k-diffusion.git
- GFPGAN - https://github.com/TencentARC/GFPGAN.git - GFPGAN - https://github.com/TencentARC/GFPGAN.git
- CodeFormer - https://github.com/sczhou/CodeFormer - CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN - ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR - SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion - LDSR - https://github.com/Hafiidz/latent-diffusion
- MiDaS - https://github.com/isl-org/MiDaS
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion - Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing. - Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd - Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot - Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator - CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
- xformers - https://github.com/facebookresearch/xformers
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Security advice - RyotaK
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user. - Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You) - (You)

View File

@ -523,7 +523,6 @@ Affandi,0.7170285,nudity
Diane Arbus,0.655138,digipa-high-impact Diane Arbus,0.655138,digipa-high-impact
Joseph Ducreux,0.65247905,digipa-high-impact Joseph Ducreux,0.65247905,digipa-high-impact
Berthe Morisot,0.7165984,fineart Berthe Morisot,0.7165984,fineart
Hilma AF Klint,0.71643853,scribbles
Hilma af Klint,0.71643853,scribbles Hilma af Klint,0.71643853,scribbles
Filippino Lippi,0.7163017,fineart Filippino Lippi,0.7163017,fineart
Leonid Afremov,0.7163005,fineart Leonid Afremov,0.7163005,fineart
@ -738,14 +737,12 @@ Abraham Mignon,0.60605425,fineart
Albert Bloch,0.69573116,nudity Albert Bloch,0.69573116,nudity
Charles Dana Gibson,0.67155975,fineart Charles Dana Gibson,0.67155975,fineart
Alexandre-Évariste Fragonard,0.6507174,fineart Alexandre-Évariste Fragonard,0.6507174,fineart
Alexandre-Évariste Fragonard,0.6507174,fineart
Ernst Fuchs,0.6953538,nudity Ernst Fuchs,0.6953538,nudity
Alfredo Jaar,0.6952965,digipa-high-impact Alfredo Jaar,0.6952965,digipa-high-impact
Judy Chicago,0.6952246,weird Judy Chicago,0.6952246,weird
Frans van Mieris the Younger,0.6951849,fineart Frans van Mieris the Younger,0.6951849,fineart
Aertgen van Leyden,0.6951305,fineart Aertgen van Leyden,0.6951305,fineart
Emily Carr,0.69512105,fineart Emily Carr,0.69512105,fineart
Frances Macdonald,0.6950408,scribbles
Frances MacDonald,0.6950408,scribbles Frances MacDonald,0.6950408,scribbles
Hannah Höch,0.69495845,scribbles Hannah Höch,0.69495845,scribbles
Gillis Rombouts,0.58770025,fineart Gillis Rombouts,0.58770025,fineart
@ -895,7 +892,6 @@ Richard McGuire,0.6820089,scribbles
Anni Albers,0.65708244,digipa-high-impact Anni Albers,0.65708244,digipa-high-impact
Aleksey Savrasov,0.65207493,fineart Aleksey Savrasov,0.65207493,fineart
Wayne Barlowe,0.6537874,fineart Wayne Barlowe,0.6537874,fineart
Giorgio De Chirico,0.6815907,fineart
Giorgio de Chirico,0.6815907,fineart Giorgio de Chirico,0.6815907,fineart
Ernest Procter,0.6815795,fineart Ernest Procter,0.6815795,fineart
Adriaen Brouwer,0.6815058,fineart Adriaen Brouwer,0.6815058,fineart
@ -1045,7 +1041,6 @@ Bakemono Zukushi,0.67051035,anime
Lucy Madox Brown,0.67032814,fineart Lucy Madox Brown,0.67032814,fineart
Paul Wonner,0.6700563,scribbles Paul Wonner,0.6700563,scribbles
Guido Borelli Da Caluso,0.66966087,digipa-high-impact Guido Borelli Da Caluso,0.66966087,digipa-high-impact
Guido Borelli da Caluso,0.66966087,digipa-high-impact
Emil Alzamora,0.5844039,nudity Emil Alzamora,0.5844039,nudity
Heinrich Brocksieper,0.64469147,fineart Heinrich Brocksieper,0.64469147,fineart
Dan Smith,0.669563,digipa-high-impact Dan Smith,0.669563,digipa-high-impact
@ -1242,7 +1237,6 @@ Betty Churcher,0.65387225,fineart
Claes Corneliszoon Moeyaert,0.65386075,fineart Claes Corneliszoon Moeyaert,0.65386075,fineart
David Bomberg,0.6537477,fineart David Bomberg,0.6537477,fineart
Abraham Bosschaert,0.6535562,fineart Abraham Bosschaert,0.6535562,fineart
Giuseppe De Nittis,0.65354455,fineart
Giuseppe de Nittis,0.65354455,fineart Giuseppe de Nittis,0.65354455,fineart
John La Farge,0.65342575,fineart John La Farge,0.65342575,fineart
Frits Thaulow,0.65341854,fineart Frits Thaulow,0.65341854,fineart
@ -1523,7 +1517,6 @@ Gertrude Harvey,0.5903887,fineart
Grant Wood,0.6266253,fineart Grant Wood,0.6266253,fineart
Fyodor Vasilyev,0.5234919,digipa-med-impact Fyodor Vasilyev,0.5234919,digipa-med-impact
Cagnaccio di San Pietro,0.6261671,fineart Cagnaccio di San Pietro,0.6261671,fineart
Cagnaccio Di San Pietro,0.6261671,fineart
Doris Boulton-Maude,0.62593174,fineart Doris Boulton-Maude,0.62593174,fineart
Adolf Hirémy-Hirschl,0.5946784,fineart Adolf Hirémy-Hirschl,0.5946784,fineart
Harold von Schmidt,0.6256755,fineart Harold von Schmidt,0.6256755,fineart
@ -2412,7 +2405,6 @@ Hermann Feierabend,0.5346168,digipa-high-impact
Antonio Donghi,0.4610982,digipa-low-impact Antonio Donghi,0.4610982,digipa-low-impact
Adonna Khare,0.4858036,digipa-med-impact Adonna Khare,0.4858036,digipa-med-impact
James Stokoe,0.5015107,digipa-med-impact James Stokoe,0.5015107,digipa-med-impact
Art & Language,0.5341332,digipa-high-impact
Agustín Fernández,0.53403986,fineart Agustín Fernández,0.53403986,fineart
Germán Londoño,0.5338712,fineart Germán Londoño,0.5338712,fineart
Emmanuelle Moureaux,0.5335641,digipa-high-impact Emmanuelle Moureaux,0.5335641,digipa-high-impact

1 artist score category
523 Diane Arbus 0.655138 digipa-high-impact
524 Joseph Ducreux 0.65247905 digipa-high-impact
525 Berthe Morisot 0.7165984 fineart
Hilma AF Klint 0.71643853 scribbles
526 Hilma af Klint 0.71643853 scribbles
527 Filippino Lippi 0.7163017 fineart
528 Leonid Afremov 0.7163005 fineart
737 Albert Bloch 0.69573116 nudity
738 Charles Dana Gibson 0.67155975 fineart
739 Alexandre-Évariste Fragonard 0.6507174 fineart
Alexandre-Évariste Fragonard 0.6507174 fineart
740 Ernst Fuchs 0.6953538 nudity
741 Alfredo Jaar 0.6952965 digipa-high-impact
742 Judy Chicago 0.6952246 weird
743 Frans van Mieris the Younger 0.6951849 fineart
744 Aertgen van Leyden 0.6951305 fineart
745 Emily Carr 0.69512105 fineart
Frances Macdonald 0.6950408 scribbles
746 Frances MacDonald 0.6950408 scribbles
747 Hannah Höch 0.69495845 scribbles
748 Gillis Rombouts 0.58770025 fineart
892 Anni Albers 0.65708244 digipa-high-impact
893 Aleksey Savrasov 0.65207493 fineart
894 Wayne Barlowe 0.6537874 fineart
Giorgio De Chirico 0.6815907 fineart
895 Giorgio de Chirico 0.6815907 fineart
896 Ernest Procter 0.6815795 fineart
897 Adriaen Brouwer 0.6815058 fineart
1041 Lucy Madox Brown 0.67032814 fineart
1042 Paul Wonner 0.6700563 scribbles
1043 Guido Borelli Da Caluso 0.66966087 digipa-high-impact
Guido Borelli da Caluso 0.66966087 digipa-high-impact
1044 Emil Alzamora 0.5844039 nudity
1045 Heinrich Brocksieper 0.64469147 fineart
1046 Dan Smith 0.669563 digipa-high-impact
1237 Claes Corneliszoon Moeyaert 0.65386075 fineart
1238 David Bomberg 0.6537477 fineart
1239 Abraham Bosschaert 0.6535562 fineart
Giuseppe De Nittis 0.65354455 fineart
1240 Giuseppe de Nittis 0.65354455 fineart
1241 John La Farge 0.65342575 fineart
1242 Frits Thaulow 0.65341854 fineart
1517 Grant Wood 0.6266253 fineart
1518 Fyodor Vasilyev 0.5234919 digipa-med-impact
1519 Cagnaccio di San Pietro 0.6261671 fineart
Cagnaccio Di San Pietro 0.6261671 fineart
1520 Doris Boulton-Maude 0.62593174 fineart
1521 Adolf Hirémy-Hirschl 0.5946784 fineart
1522 Harold von Schmidt 0.6256755 fineart
2405 Antonio Donghi 0.4610982 digipa-low-impact
2406 Adonna Khare 0.4858036 digipa-med-impact
2407 James Stokoe 0.5015107 digipa-med-impact
Art & Language 0.5341332 digipa-high-impact
2408 Agustín Fernández 0.53403986 fineart
2409 Germán Londoño 0.5338712 fineart
2410 Emmanuelle Moureaux 0.5335641 digipa-high-impact

View File

@ -0,0 +1,72 @@
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: modules.xlmr.BertSeriesModelWithTransformation
params:
name: "XLMR-Large"

70
configs/v1-inference.yaml Normal file
View File

@ -0,0 +1,70 @@
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder

View File

@ -3,9 +3,9 @@ channels:
- pytorch - pytorch
- defaults - defaults
dependencies: dependencies:
- python=3.8.5 - python=3.10
- pip=20.3 - pip=22.2.2
- cudatoolkit=11.3 - cudatoolkit=11.3
- pytorch=1.11.0 - pytorch=1.12.1
- torchvision=0.12.0 - torchvision=0.13.1
- numpy=1.19.2 - numpy=1.23.1

View File

@ -1,3 +1,4 @@
import os
import gc import gc
import time import time
import warnings import warnings
@ -8,27 +9,49 @@ import torchvision
from PIL import Image from PIL import Image
from einops import rearrange, repeat from einops import rearrange, repeat
from omegaconf import OmegaConf from omegaconf import OmegaConf
import safetensors.torch
from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config, ismap from ldm.util import instantiate_from_config, ismap
from modules import shared, sd_hijack
warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=UserWarning)
cached_ldsr_model: torch.nn.Module = None
# Create LDSR Class # Create LDSR Class
class LDSR: class LDSR:
def load_model_from_config(self, half_attention): def load_model_from_config(self, half_attention):
print(f"Loading model from {self.modelPath}") global cached_ldsr_model
pl_sd = torch.load(self.modelPath, map_location="cpu")
sd = pl_sd["state_dict"] if shared.opts.ldsr_cached and cached_ldsr_model is not None:
config = OmegaConf.load(self.yamlPath) print("Loading model from cache")
model = instantiate_from_config(config.model) model: torch.nn.Module = cached_ldsr_model
model.load_state_dict(sd, strict=False) else:
model.cuda() print(f"Loading model from {self.modelPath}")
if half_attention: _, extension = os.path.splitext(self.modelPath)
model = model.half() if extension.lower() == ".safetensors":
pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu")
else:
pl_sd = torch.load(self.modelPath, map_location="cpu")
sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
config = OmegaConf.load(self.yamlPath)
config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
model: torch.nn.Module = instantiate_from_config(config.model)
model.load_state_dict(sd, strict=False)
model = model.to(shared.device)
if half_attention:
model = model.half()
if shared.cmd_opts.opt_channelslast:
model = model.to(memory_format=torch.channels_last)
sd_hijack.model_hijack.hijack(model) # apply optimization
model.eval()
if shared.opts.ldsr_cached:
cached_ldsr_model = model
model.eval()
return {"model": model} return {"model": model}
def __init__(self, model_path, yaml_path): def __init__(self, model_path, yaml_path):
@ -93,7 +116,8 @@ class LDSR:
down_sample_method = 'Lanczos' down_sample_method = 'Lanczos'
gc.collect() gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available:
torch.cuda.empty_cache()
im_og = image im_og = image
width_og, height_og = im_og.size width_og, height_og = im_og.size
@ -101,8 +125,8 @@ class LDSR:
down_sample_rate = target_scale / 4 down_sample_rate = target_scale / 4
wd = width_og * down_sample_rate wd = width_og * down_sample_rate
hd = height_og * down_sample_rate hd = height_og * down_sample_rate
width_downsampled_pre = int(wd) width_downsampled_pre = int(np.ceil(wd))
height_downsampled_pre = int(hd) height_downsampled_pre = int(np.ceil(hd))
if down_sample_rate != 1: if down_sample_rate != 1:
print( print(
@ -110,7 +134,12 @@ class LDSR:
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS) im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
else: else:
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)") print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
logs = self.run(model["model"], im_og, diffusion_steps, eta)
# pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts
pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size
im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
logs = self.run(model["model"], im_padded, diffusion_steps, eta)
sample = logs["sample"] sample = logs["sample"]
sample = sample.detach().cpu() sample = sample.detach().cpu()
@ -120,9 +149,14 @@ class LDSR:
sample = np.transpose(sample, (0, 2, 3, 1)) sample = np.transpose(sample, (0, 2, 3, 1))
a = Image.fromarray(sample[0]) a = Image.fromarray(sample[0])
# remove padding
a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4))
del model del model
gc.collect() gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available:
torch.cuda.empty_cache()
return a return a
@ -137,7 +171,7 @@ def get_cond(selected_path):
c = rearrange(c, '1 c h w -> 1 h w c') c = rearrange(c, '1 c h w -> 1 h w c')
c = 2. * c - 1. c = 2. * c - 1.
c = c.to(torch.device("cuda")) c = c.to(shared.device)
example["LR_image"] = c example["LR_image"] = c
example["image"] = c_up example["image"] = c_up

View File

@ -0,0 +1,6 @@
import os
from modules import paths
def preload(parser):
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(paths.models_path, 'LDSR'))

View File

@ -5,15 +5,14 @@ import traceback
from basicsr.utils.download_util import load_file_from_url from basicsr.utils.download_util import load_file_from_url
from modules.upscaler import Upscaler, UpscalerData from modules.upscaler import Upscaler, UpscalerData
from modules.ldsr_model_arch import LDSR from ldsr_model_arch import LDSR
from modules import shared from modules import shared, script_callbacks
from modules.paths import models_path import sd_hijack_autoencoder, sd_hijack_ddpm_v1
class UpscalerLDSR(Upscaler): class UpscalerLDSR(Upscaler):
def __init__(self, user_path): def __init__(self, user_path):
self.name = "LDSR" self.name = "LDSR"
self.model_path = os.path.join(models_path, self.name)
self.user_path = user_path self.user_path = user_path
self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1" self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1" self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
@ -26,6 +25,7 @@ class UpscalerLDSR(Upscaler):
yaml_path = os.path.join(self.model_path, "project.yaml") yaml_path = os.path.join(self.model_path, "project.yaml")
old_model_path = os.path.join(self.model_path, "model.pth") old_model_path = os.path.join(self.model_path, "model.pth")
new_model_path = os.path.join(self.model_path, "model.ckpt") new_model_path = os.path.join(self.model_path, "model.ckpt")
safetensors_model_path = os.path.join(self.model_path, "model.safetensors")
if os.path.exists(yaml_path): if os.path.exists(yaml_path):
statinfo = os.stat(yaml_path) statinfo = os.stat(yaml_path)
if statinfo.st_size >= 10485760: if statinfo.st_size >= 10485760:
@ -34,8 +34,11 @@ class UpscalerLDSR(Upscaler):
if os.path.exists(old_model_path): if os.path.exists(old_model_path):
print("Renaming model from model.pth to model.ckpt") print("Renaming model from model.pth to model.ckpt")
os.rename(old_model_path, new_model_path) os.rename(old_model_path, new_model_path)
model = load_file_from_url(url=self.model_url, model_dir=self.model_path, if os.path.exists(safetensors_model_path):
file_name="model.ckpt", progress=True) model = safetensors_model_path
else:
model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
file_name="model.ckpt", progress=True)
yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path, yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
file_name="project.yaml", progress=True) file_name="project.yaml", progress=True)
@ -54,3 +57,13 @@ class UpscalerLDSR(Upscaler):
return img return img
ddim_steps = shared.opts.ldsr_steps ddim_steps = shared.opts.ldsr_steps
return ldsr.super_resolution(img, ddim_steps, self.scale) return ldsr.super_resolution(img, ddim_steps, self.scale)
def on_ui_settings():
import gradio as gr
shared.opts.add_option("ldsr_steps", shared.OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}, section=('upscaling', "Upscaling")))
shared.opts.add_option("ldsr_cached", shared.OptionInfo(False, "Cache LDSR model in memory", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")))
script_callbacks.on_ui_settings(on_ui_settings)

View File

@ -0,0 +1,286 @@
# The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo
# The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo
# As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder
import torch
import pytorch_lightning as pl
import torch.nn.functional as F
from contextlib import contextmanager
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
from ldm.modules.diffusionmodules.model import Encoder, Decoder
from ldm.util import instantiate_from_config
import ldm.models.autoencoder
class VQModel(pl.LightningModule):
def __init__(self,
ddconfig,
lossconfig,
n_embed,
embed_dim,
ckpt_path=None,
ignore_keys=[],
image_key="image",
colorize_nlabels=None,
monitor=None,
batch_resize_range=None,
scheduler_config=None,
lr_g_factor=1.0,
remap=None,
sane_index_shape=False, # tell vector quantizer to return indices as bhw
use_ema=False
):
super().__init__()
self.embed_dim = embed_dim
self.n_embed = n_embed
self.image_key = image_key
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
self.loss = instantiate_from_config(lossconfig)
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
remap=remap,
sane_index_shape=sane_index_shape)
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
if colorize_nlabels is not None:
assert type(colorize_nlabels)==int
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
if monitor is not None:
self.monitor = monitor
self.batch_resize_range = batch_resize_range
if self.batch_resize_range is not None:
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
self.scheduler_config = scheduler_config
self.lr_g_factor = lr_g_factor
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.parameters())
self.model_ema.copy_to(self)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
missing, unexpected = self.load_state_dict(sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys: {missing}")
print(f"Unexpected Keys: {unexpected}")
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self)
def encode(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
quant, emb_loss, info = self.quantize(h)
return quant, emb_loss, info
def encode_to_prequant(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
return h
def decode(self, quant):
quant = self.post_quant_conv(quant)
dec = self.decoder(quant)
return dec
def decode_code(self, code_b):
quant_b = self.quantize.embed_code(code_b)
dec = self.decode(quant_b)
return dec
def forward(self, input, return_pred_indices=False):
quant, diff, (_,_,ind) = self.encode(input)
dec = self.decode(quant)
if return_pred_indices:
return dec, diff, ind
return dec, diff
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
if self.batch_resize_range is not None:
lower_size = self.batch_resize_range[0]
upper_size = self.batch_resize_range[1]
if self.global_step <= 4:
# do the first few batches with max size to avoid later oom
new_resize = upper_size
else:
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
if new_resize != x.shape[2]:
x = F.interpolate(x, size=new_resize, mode="bicubic")
x = x.detach()
return x
def training_step(self, batch, batch_idx, optimizer_idx):
# https://github.com/pytorch/pytorch/issues/37142
# try not to fool the heuristics
x = self.get_input(batch, self.image_key)
xrec, qloss, ind = self(x, return_pred_indices=True)
if optimizer_idx == 0:
# autoencode
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train",
predicted_indices=ind)
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
return aeloss
if optimizer_idx == 1:
# discriminator
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
return discloss
def validation_step(self, batch, batch_idx):
log_dict = self._validation_step(batch, batch_idx)
with self.ema_scope():
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
return log_dict
def _validation_step(self, batch, batch_idx, suffix=""):
x = self.get_input(batch, self.image_key)
xrec, qloss, ind = self(x, return_pred_indices=True)
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
self.global_step,
last_layer=self.get_last_layer(),
split="val"+suffix,
predicted_indices=ind
)
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
self.global_step,
last_layer=self.get_last_layer(),
split="val"+suffix,
predicted_indices=ind
)
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
self.log(f"val{suffix}/rec_loss", rec_loss,
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
self.log(f"val{suffix}/aeloss", aeloss,
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
if version.parse(pl.__version__) >= version.parse('1.4.0'):
del log_dict_ae[f"val{suffix}/rec_loss"]
self.log_dict(log_dict_ae)
self.log_dict(log_dict_disc)
return self.log_dict
def configure_optimizers(self):
lr_d = self.learning_rate
lr_g = self.lr_g_factor*self.learning_rate
print("lr_d", lr_d)
print("lr_g", lr_g)
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
list(self.decoder.parameters())+
list(self.quantize.parameters())+
list(self.quant_conv.parameters())+
list(self.post_quant_conv.parameters()),
lr=lr_g, betas=(0.5, 0.9))
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
lr=lr_d, betas=(0.5, 0.9))
if self.scheduler_config is not None:
scheduler = instantiate_from_config(self.scheduler_config)
print("Setting up LambdaLR scheduler...")
scheduler = [
{
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
'interval': 'step',
'frequency': 1
},
{
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
'interval': 'step',
'frequency': 1
},
]
return [opt_ae, opt_disc], scheduler
return [opt_ae, opt_disc], []
def get_last_layer(self):
return self.decoder.conv_out.weight
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
log = dict()
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
if only_inputs:
log["inputs"] = x
return log
xrec, _ = self(x)
if x.shape[1] > 3:
# colorize with random projection
assert xrec.shape[1] > 3
x = self.to_rgb(x)
xrec = self.to_rgb(xrec)
log["inputs"] = x
log["reconstructions"] = xrec
if plot_ema:
with self.ema_scope():
xrec_ema, _ = self(x)
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
log["reconstructions_ema"] = xrec_ema
return log
def to_rgb(self, x):
assert self.image_key == "segmentation"
if not hasattr(self, "colorize"):
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
x = F.conv2d(x, weight=self.colorize)
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
return x
class VQModelInterface(VQModel):
def __init__(self, embed_dim, *args, **kwargs):
super().__init__(embed_dim=embed_dim, *args, **kwargs)
self.embed_dim = embed_dim
def encode(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
return h
def decode(self, h, force_not_quantize=False):
# also go through quantization layer
if not force_not_quantize:
quant, emb_loss, info = self.quantize(h)
else:
quant = h
quant = self.post_quant_conv(quant)
dec = self.decoder(quant)
return dec
setattr(ldm.models.autoencoder, "VQModel", VQModel)
setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,6 @@
import os
from modules import paths
def preload(parser):
parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(paths.models_path, 'ScuNET'))

View File

@ -8,49 +8,54 @@ import torch
from basicsr.utils.download_util import load_file_from_url from basicsr.utils.download_util import load_file_from_url
import modules.upscaler import modules.upscaler
from modules import shared, modelloader from modules import devices, modelloader
from modules.bsrgan_model_arch import RRDBNet from scunet_model_arch import SCUNet as net
from modules.paths import models_path
class UpscalerBSRGAN(modules.upscaler.Upscaler): class UpscalerScuNET(modules.upscaler.Upscaler):
def __init__(self, dirname): def __init__(self, dirname):
self.name = "BSRGAN" self.name = "ScuNET"
self.model_path = os.path.join(models_path, self.name) self.model_name = "ScuNET GAN"
self.model_name = "BSRGAN 4x" self.model_name2 = "ScuNET PSNR"
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/BSRGAN.pth" self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth"
self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth"
self.user_path = dirname self.user_path = dirname
super().__init__() super().__init__()
model_paths = self.find_models(ext_filter=[".pt", ".pth"]) model_paths = self.find_models(ext_filter=[".pth"])
scalers = [] scalers = []
if len(model_paths) == 0: add_model2 = True
scaler_data = modules.upscaler.UpscalerData(self.model_name, self.model_url, self, 4)
scalers.append(scaler_data)
for file in model_paths: for file in model_paths:
if "http" in file: if "http" in file:
name = self.model_name name = self.model_name
else: else:
name = modelloader.friendly_name(file) name = modelloader.friendly_name(file)
if name == self.model_name2 or file == self.model_url2:
add_model2 = False
try: try:
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4) scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
scalers.append(scaler_data) scalers.append(scaler_data)
except Exception: except Exception:
print(f"Error loading BSRGAN model: {file}", file=sys.stderr) print(f"Error loading ScuNET model: {file}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
if add_model2:
scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self)
scalers.append(scaler_data2)
self.scalers = scalers self.scalers = scalers
def do_upscale(self, img: PIL.Image, selected_file): def do_upscale(self, img: PIL.Image, selected_file):
torch.cuda.empty_cache() torch.cuda.empty_cache()
model = self.load_model(selected_file) model = self.load_model(selected_file)
if model is None: if model is None:
return img return img
model.to(shared.device)
torch.cuda.empty_cache() device = devices.get_device_for('scunet')
img = np.array(img) img = np.array(img)
img = img[:, :, ::-1] img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255 img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float() img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(shared.device) img = img.unsqueeze(0).to(device)
with torch.no_grad(): with torch.no_grad():
output = model(img) output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy() output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
@ -61,18 +66,22 @@ class UpscalerBSRGAN(modules.upscaler.Upscaler):
return PIL.Image.fromarray(output, 'RGB') return PIL.Image.fromarray(output, 'RGB')
def load_model(self, path: str): def load_model(self, path: str):
device = devices.get_device_for('scunet')
if "http" in path: if "http" in path:
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name, filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
progress=True) progress=True)
else: else:
filename = path filename = path
if not os.path.exists(filename) or filename is None: if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None:
print(f"BSRGAN: Unable to load model from {filename}", file=sys.stderr) print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr)
return None return None
model = RRDBNet(in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4) # define network
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
model.load_state_dict(torch.load(filename), strict=True) model.load_state_dict(torch.load(filename), strict=True)
model.eval() model.eval()
for k, v in model.named_parameters(): for k, v in model.named_parameters():
v.requires_grad = False v.requires_grad = False
model = model.to(device)
return model return model

View File

@ -0,0 +1,265 @@
# -*- coding: utf-8 -*-
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from einops.layers.torch import Rearrange
from timm.models.layers import trunc_normal_, DropPath
class WMSA(nn.Module):
""" Self-attention module in Swin Transformer
"""
def __init__(self, input_dim, output_dim, head_dim, window_size, type):
super(WMSA, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.head_dim = head_dim
self.scale = self.head_dim ** -0.5
self.n_heads = input_dim // head_dim
self.window_size = window_size
self.type = type
self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True)
self.relative_position_params = nn.Parameter(
torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads))
self.linear = nn.Linear(self.input_dim, self.output_dim)
trunc_normal_(self.relative_position_params, std=.02)
self.relative_position_params = torch.nn.Parameter(
self.relative_position_params.view(2 * window_size - 1, 2 * window_size - 1, self.n_heads).transpose(1,
2).transpose(
0, 1))
def generate_mask(self, h, w, p, shift):
""" generating the mask of SW-MSA
Args:
shift: shift parameters in CyclicShift.
Returns:
attn_mask: should be (1 1 w p p),
"""
# supporting square.
attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
if self.type == 'W':
return attn_mask
s = p - shift
attn_mask[-1, :, :s, :, s:, :] = True
attn_mask[-1, :, s:, :, :s, :] = True
attn_mask[:, -1, :, :s, :, s:] = True
attn_mask[:, -1, :, s:, :, :s] = True
attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
return attn_mask
def forward(self, x):
""" Forward pass of Window Multi-head Self-attention module.
Args:
x: input tensor with shape of [b h w c];
attn_mask: attention mask, fill -inf where the value is True;
Returns:
output: tensor shape [b h w c]
"""
if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2))
x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
h_windows = x.size(1)
w_windows = x.size(2)
# square validation
# assert h_windows == w_windows
x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size)
qkv = self.embedding_layer(x)
q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0)
sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
# Adding learnable relative embedding
sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
# Using Attn Mask to distinguish different subwindows.
if self.type != 'W':
attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size // 2)
sim = sim.masked_fill_(attn_mask, float("-inf"))
probs = nn.functional.softmax(sim, dim=-1)
output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
output = rearrange(output, 'h b w p c -> b w p (h c)')
output = self.linear(output)
output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)
if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2),
dims=(1, 2))
return output
def relative_embedding(self):
cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)]))
relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1
# negative is allowed
return self.relative_position_params[:, relation[:, :, 0].long(), relation[:, :, 1].long()]
class Block(nn.Module):
def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
""" SwinTransformer Block
"""
super(Block, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
assert type in ['W', 'SW']
self.type = type
if input_resolution <= window_size:
self.type = 'W'
self.ln1 = nn.LayerNorm(input_dim)
self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.ln2 = nn.LayerNorm(input_dim)
self.mlp = nn.Sequential(
nn.Linear(input_dim, 4 * input_dim),
nn.GELU(),
nn.Linear(4 * input_dim, output_dim),
)
def forward(self, x):
x = x + self.drop_path(self.msa(self.ln1(x)))
x = x + self.drop_path(self.mlp(self.ln2(x)))
return x
class ConvTransBlock(nn.Module):
def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
""" SwinTransformer and Conv Block
"""
super(ConvTransBlock, self).__init__()
self.conv_dim = conv_dim
self.trans_dim = trans_dim
self.head_dim = head_dim
self.window_size = window_size
self.drop_path = drop_path
self.type = type
self.input_resolution = input_resolution
assert self.type in ['W', 'SW']
if self.input_resolution <= self.window_size:
self.type = 'W'
self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path,
self.type, self.input_resolution)
self.conv1_1 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
self.conv1_2 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True)
self.conv_block = nn.Sequential(
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
nn.ReLU(True),
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
)
def forward(self, x):
conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1)
conv_x = self.conv_block(conv_x) + conv_x
trans_x = Rearrange('b c h w -> b h w c')(trans_x)
trans_x = self.trans_block(trans_x)
trans_x = Rearrange('b h w c -> b c h w')(trans_x)
res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
x = x + res
return x
class SCUNet(nn.Module):
# def __init__(self, in_nc=3, config=[2, 2, 2, 2, 2, 2, 2], dim=64, drop_path_rate=0.0, input_resolution=256):
def __init__(self, in_nc=3, config=None, dim=64, drop_path_rate=0.0, input_resolution=256):
super(SCUNet, self).__init__()
if config is None:
config = [2, 2, 2, 2, 2, 2, 2]
self.config = config
self.dim = dim
self.head_dim = 32
self.window_size = 8
# drop path rate for each layer
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]
self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]
begin = 0
self.m_down1 = [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
'W' if not i % 2 else 'SW', input_resolution)
for i in range(config[0])] + \
[nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)]
begin += config[0]
self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
'W' if not i % 2 else 'SW', input_resolution // 2)
for i in range(config[1])] + \
[nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)]
begin += config[1]
self.m_down3 = [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
'W' if not i % 2 else 'SW', input_resolution // 4)
for i in range(config[2])] + \
[nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)]
begin += config[2]
self.m_body = [ConvTransBlock(4 * dim, 4 * dim, self.head_dim, self.window_size, dpr[i + begin],
'W' if not i % 2 else 'SW', input_resolution // 8)
for i in range(config[3])]
begin += config[3]
self.m_up3 = [nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), ] + \
[ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin],
'W' if not i % 2 else 'SW', input_resolution // 4)
for i in range(config[4])]
begin += config[4]
self.m_up2 = [nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), ] + \
[ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin],
'W' if not i % 2 else 'SW', input_resolution // 2)
for i in range(config[5])]
begin += config[5]
self.m_up1 = [nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), ] + \
[ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin],
'W' if not i % 2 else 'SW', input_resolution)
for i in range(config[6])]
self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)]
self.m_head = nn.Sequential(*self.m_head)
self.m_down1 = nn.Sequential(*self.m_down1)
self.m_down2 = nn.Sequential(*self.m_down2)
self.m_down3 = nn.Sequential(*self.m_down3)
self.m_body = nn.Sequential(*self.m_body)
self.m_up3 = nn.Sequential(*self.m_up3)
self.m_up2 = nn.Sequential(*self.m_up2)
self.m_up1 = nn.Sequential(*self.m_up1)
self.m_tail = nn.Sequential(*self.m_tail)
# self.apply(self._init_weights)
def forward(self, x0):
h, w = x0.size()[-2:]
paddingBottom = int(np.ceil(h / 64) * 64 - h)
paddingRight = int(np.ceil(w / 64) * 64 - w)
x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0)
x1 = self.m_head(x0)
x2 = self.m_down1(x1)
x3 = self.m_down2(x2)
x4 = self.m_down3(x3)
x = self.m_body(x4)
x = self.m_up3(x + x4)
x = self.m_up2(x + x3)
x = self.m_up1(x + x2)
x = self.m_tail(x + x1)
x = x[..., :h, :w]
return x
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)

View File

@ -0,0 +1,6 @@
import os
from modules import paths
def preload(parser):
parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(paths.models_path, 'SwinIR'))

View File

@ -5,16 +5,16 @@ import numpy as np
import torch import torch
from PIL import Image from PIL import Image
from basicsr.utils.download_util import load_file_from_url from basicsr.utils.download_util import load_file_from_url
from tqdm import tqdm
from modules import modelloader from modules import modelloader, devices, script_callbacks, shared
from modules.paths import models_path from modules.shared import cmd_opts, opts
from modules.shared import cmd_opts, opts, device from swinir_model_arch import SwinIR as net
from modules.swinir_model_arch import SwinIR as net from swinir_model_arch_v2 import Swin2SR as net2
from modules.upscaler import Upscaler, UpscalerData from modules.upscaler import Upscaler, UpscalerData
precision_scope = (
torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext device_swinir = devices.get_device_for('swinir')
)
class UpscalerSwinIR(Upscaler): class UpscalerSwinIR(Upscaler):
@ -24,7 +24,6 @@ class UpscalerSwinIR(Upscaler):
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \ "/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
"-L_x4_GAN.pth " "-L_x4_GAN.pth "
self.model_name = "SwinIR 4x" self.model_name = "SwinIR 4x"
self.model_path = os.path.join(models_path, self.name)
self.user_path = dirname self.user_path = dirname
super().__init__() super().__init__()
scalers = [] scalers = []
@ -42,7 +41,7 @@ class UpscalerSwinIR(Upscaler):
model = self.load_model(model_file) model = self.load_model(model_file)
if model is None: if model is None:
return img return img
model = model.to(device) model = model.to(device_swinir, dtype=devices.dtype)
img = upscale(img, model) img = upscale(img, model)
try: try:
torch.cuda.empty_cache() torch.cuda.empty_cache()
@ -58,41 +57,63 @@ class UpscalerSwinIR(Upscaler):
filename = path filename = path
if filename is None or not os.path.exists(filename): if filename is None or not os.path.exists(filename):
return None return None
model = net( if filename.endswith(".v2.pth"):
model = net2(
upscale=scale, upscale=scale,
in_chans=3, in_chans=3,
img_size=64, img_size=64,
window_size=8, window_size=8,
img_range=1.0, img_range=1.0,
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], depths=[6, 6, 6, 6, 6, 6],
embed_dim=240, embed_dim=180,
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2, mlp_ratio=2,
upsampler="nearest+conv", upsampler="nearest+conv",
resi_connection="3conv", resi_connection="1conv",
) )
params = None
else:
model = net(
upscale=scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6, 6, 6, 6],
embed_dim=240,
num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
mlp_ratio=2,
upsampler="nearest+conv",
resi_connection="3conv",
)
params = "params_ema"
pretrained_model = torch.load(filename) pretrained_model = torch.load(filename)
model.load_state_dict(pretrained_model["params_ema"], strict=True) if params is not None:
if not cmd_opts.no_half: model.load_state_dict(pretrained_model[params], strict=True)
model = model.half() else:
model.load_state_dict(pretrained_model, strict=True)
return model return model
def upscale( def upscale(
img, img,
model, model,
tile=opts.SWIN_tile, tile=None,
tile_overlap=opts.SWIN_tile_overlap, tile_overlap=None,
window_size=8, window_size=8,
scale=4, scale=4,
): ):
tile = tile or opts.SWIN_tile
tile_overlap = tile_overlap or opts.SWIN_tile_overlap
img = np.array(img) img = np.array(img)
img = img[:, :, ::-1] img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255 img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float() img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(device) img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype)
with torch.no_grad(), precision_scope("cuda"): with torch.no_grad(), devices.autocast():
_, _, h_old, w_old = img.size() _, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old w_pad = (w_old // window_size + 1) * window_size - w_old
@ -119,21 +140,33 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
stride = tile - tile_overlap stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile] h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile] w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img) E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img)
W = torch.zeros_like(E, dtype=torch.half, device=device) W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir)
for h_idx in h_idx_list: with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
for w_idx in w_idx_list: for h_idx in h_idx_list:
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] for w_idx in w_idx_list:
out_patch = model(in_patch) in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch_mask = torch.ones_like(out_patch) out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[ E[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch) ].add_(out_patch)
W[ W[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch_mask) ].add_(out_patch_mask)
pbar.update(1)
output = E.div_(W) output = E.div_(W)
return output return output
def on_ui_settings():
import gradio as gr
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
script_callbacks.on_ui_settings(on_ui_settings)

View File

@ -166,7 +166,7 @@ class SwinTransformerBlock(nn.Module):
Args: Args:
dim (int): Number of input channels. dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion. input_resolution (tuple[int]): Input resolution.
num_heads (int): Number of attention heads. num_heads (int): Number of attention heads.
window_size (int): Window size. window_size (int): Window size.
shift_size (int): Shift size for SW-MSA. shift_size (int): Shift size for SW-MSA.

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,107 @@
// Stable Diffusion WebUI - Bracket checker
// Version 1.0
// By Hingashi no Florin/Bwin4L
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
function checkBrackets(evt) {
textArea = evt.target;
tabName = evt.target.parentElement.parentElement.id.split("_")[0];
counterElt = document.querySelector('gradio-app').shadowRoot.querySelector('#' + tabName + '_token_counter');
promptName = evt.target.parentElement.parentElement.id.includes('neg') ? ' negative' : '';
errorStringParen = '(' + tabName + promptName + ' prompt) - Different number of opening and closing parentheses detected.\n';
errorStringSquare = '[' + tabName + promptName + ' prompt] - Different number of opening and closing square brackets detected.\n';
errorStringCurly = '{' + tabName + promptName + ' prompt} - Different number of opening and closing curly brackets detected.\n';
openBracketRegExp = /\(/g;
closeBracketRegExp = /\)/g;
openSquareBracketRegExp = /\[/g;
closeSquareBracketRegExp = /\]/g;
openCurlyBracketRegExp = /\{/g;
closeCurlyBracketRegExp = /\}/g;
totalOpenBracketMatches = 0;
totalCloseBracketMatches = 0;
totalOpenSquareBracketMatches = 0;
totalCloseSquareBracketMatches = 0;
totalOpenCurlyBracketMatches = 0;
totalCloseCurlyBracketMatches = 0;
openBracketMatches = textArea.value.match(openBracketRegExp);
if(openBracketMatches) {
totalOpenBracketMatches = openBracketMatches.length;
}
closeBracketMatches = textArea.value.match(closeBracketRegExp);
if(closeBracketMatches) {
totalCloseBracketMatches = closeBracketMatches.length;
}
openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp);
if(openSquareBracketMatches) {
totalOpenSquareBracketMatches = openSquareBracketMatches.length;
}
closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp);
if(closeSquareBracketMatches) {
totalCloseSquareBracketMatches = closeSquareBracketMatches.length;
}
openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp);
if(openCurlyBracketMatches) {
totalOpenCurlyBracketMatches = openCurlyBracketMatches.length;
}
closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp);
if(closeCurlyBracketMatches) {
totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length;
}
if(totalOpenBracketMatches != totalCloseBracketMatches) {
if(!counterElt.title.includes(errorStringParen)) {
counterElt.title += errorStringParen;
}
} else {
counterElt.title = counterElt.title.replace(errorStringParen, '');
}
if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) {
if(!counterElt.title.includes(errorStringSquare)) {
counterElt.title += errorStringSquare;
}
} else {
counterElt.title = counterElt.title.replace(errorStringSquare, '');
}
if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) {
if(!counterElt.title.includes(errorStringCurly)) {
counterElt.title += errorStringCurly;
}
} else {
counterElt.title = counterElt.title.replace(errorStringCurly, '');
}
if(counterElt.title != '') {
counterElt.style = 'color: #FF5555;';
} else {
counterElt.style = '';
}
}
var shadowRootLoaded = setInterval(function() {
var shadowTextArea = document.querySelector('gradio-app').shadowRoot.querySelectorAll('#txt2img_prompt > label > textarea');
if(shadowTextArea.length < 1) {
return false;
}
clearInterval(shadowRootLoaded);
document.querySelector('gradio-app').shadowRoot.querySelector('#txt2img_prompt').onkeyup = checkBrackets;
document.querySelector('gradio-app').shadowRoot.querySelector('#txt2img_neg_prompt').onkeyup = checkBrackets;
document.querySelector('gradio-app').shadowRoot.querySelector('#img2img_prompt').onkeyup = checkBrackets;
document.querySelector('gradio-app').shadowRoot.querySelector('#img2img_neg_prompt').onkeyup = checkBrackets;
}, 1000);

View File

@ -0,0 +1,50 @@
import random
from modules import script_callbacks, shared
import gradio as gr
art_symbol = '\U0001f3a8' # 🎨
global_prompt = None
related_ids = {"txt2img_prompt", "txt2img_clear_prompt", "img2img_prompt", "img2img_clear_prompt" }
def roll_artist(prompt):
allowed_cats = set([x for x in shared.artist_db.categories() if len(shared.opts.random_artist_categories)==0 or x in shared.opts.random_artist_categories])
artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats])
return prompt + ", " + artist.name if prompt != '' else artist.name
def add_roll_button(prompt):
roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
roll.click(
fn=roll_artist,
_js="update_txt2img_tokens",
inputs=[
prompt,
],
outputs=[
prompt,
]
)
def after_component(component, **kwargs):
global global_prompt
elem_id = kwargs.get('elem_id', None)
if elem_id not in related_ids:
return
if elem_id == "txt2img_prompt":
global_prompt = component
elif elem_id == "txt2img_clear_prompt":
add_roll_button(global_prompt)
elif elem_id == "img2img_prompt":
global_prompt = component
elif elem_id == "img2img_clear_prompt":
add_roll_button(global_prompt)
script_callbacks.on_after_component(after_component)

View File

9
html/footer.html Normal file
View File

@ -0,0 +1,9 @@
<div>
<a href="/docs">API</a>
 • 
<a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui">Github</a>
 • 
<a href="https://gradio.app">Gradio</a>
 • 
<a href="/" onclick="javascript:gradioApp().getElementById('settings_restart_gradio').click(); return false">Reload UI</a>
</div>

392
html/licenses.html Normal file
View File

@ -0,0 +1,392 @@
<style>
#licenses h2 {font-size: 1.2em; font-weight: bold; margin-bottom: 0.2em;}
#licenses small {font-size: 0.95em; opacity: 0.85;}
#licenses pre { margin: 1em 0 2em 0;}
</style>
<h2><a href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">CodeFormer</a></h2>
<small>Parts of CodeFormer code had to be copied to be compatible with GFPGAN.</small>
<pre>
S-Lab License 1.0
Copyright 2022 S-Lab
Redistribution and use for non-commercial purpose in source and
binary forms, with or without modification, are permitted provided
that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
In the event that redistribution and/or use for commercial purpose in
source or binary forms, with or without modification is required,
please contact the contributor(s) of the work.
</pre>
<h2><a href="https://github.com/victorca25/iNNfer/blob/main/LICENSE">ESRGAN</a></h2>
<small>Code for architecture and reading models copied.</small>
<pre>
MIT License
Copyright (c) 2021 victorca25
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
</pre>
<h2><a href="https://github.com/xinntao/Real-ESRGAN/blob/master/LICENSE">Real-ESRGAN</a></h2>
<small>Some code is copied to support ESRGAN models.</small>
<pre>
BSD 3-Clause License
Copyright (c) 2021, Xintao Wang
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
</pre>
<h2><a href="https://github.com/invoke-ai/InvokeAI/blob/main/LICENSE">InvokeAI</a></h2>
<small>Some code for compatibility with OSX is taken from lstein's repository.</small>
<pre>
MIT License
Copyright (c) 2022 InvokeAI Team
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
</pre>
<h2><a href="https://github.com/Hafiidz/latent-diffusion/blob/main/LICENSE">LDSR</a></h2>
<small>Code added by contirubtors, most likely copied from this repository.</small>
<pre>
MIT License
Copyright (c) 2022 Machine Vision and Learning Group, LMU Munich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
</pre>
<h2><a href="https://github.com/pharmapsychotic/clip-interrogator/blob/main/LICENSE">CLIP Interrogator</a></h2>
<small>Some small amounts of code borrowed and reworked.</small>
<pre>
MIT License
Copyright (c) 2022 pharmapsychotic
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
</pre>
<h2><a href="https://github.com/JingyunLiang/SwinIR/blob/main/LICENSE">SwinIR</a></h2>
<small>Code added by contirubtors, most likely copied from this repository.</small>
<pre>
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [2021] [SwinIR Authors]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</pre>

View File

@ -3,12 +3,12 @@ let currentWidth = null;
let currentHeight = null; let currentHeight = null;
let arFrameTimeout = setTimeout(function(){},0); let arFrameTimeout = setTimeout(function(){},0);
function dimensionChange(e,dimname){ function dimensionChange(e, is_width, is_height){
if(dimname == 'Width'){ if(is_width){
currentWidth = e.target.value*1.0 currentWidth = e.target.value*1.0
} }
if(dimname == 'Height'){ if(is_height){
currentHeight = e.target.value*1.0 currentHeight = e.target.value*1.0
} }
@ -18,22 +18,13 @@ function dimensionChange(e,dimname){
return; return;
} }
var img2imgMode = gradioApp().querySelector('#mode_img2img.tabs > div > button.rounded-t-lg.border-gray-200')
if(img2imgMode){
img2imgMode=img2imgMode.innerText
}else{
return;
}
var redrawImage = gradioApp().querySelector('div[data-testid=image] img');
var inpaintImage = gradioApp().querySelector('#img2maskimg div[data-testid=image] img')
var targetElement = null; var targetElement = null;
if(img2imgMode=='img2img' && redrawImage){ var tabIndex = get_tab_index('mode_img2img')
targetElement = redrawImage; if(tabIndex == 0){
}else if(img2imgMode=='Inpaint' && inpaintImage){ targetElement = gradioApp().querySelector('div[data-testid=image] img');
targetElement = inpaintImage; } else if(tabIndex == 1){
targetElement = gradioApp().querySelector('#img2maskimg div[data-testid=image] img');
} }
if(targetElement){ if(targetElement){
@ -98,22 +89,20 @@ onUiUpdate(function(){
var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200")) var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
if(inImg2img){ if(inImg2img){
let inputs = gradioApp().querySelectorAll('input'); let inputs = gradioApp().querySelectorAll('input');
inputs.forEach(function(e){ inputs.forEach(function(e){
let parentLabel = e.parentElement.querySelector('label') var is_width = e.parentElement.id == "img2img_width"
if(parentLabel && parentLabel.innerText){ var is_height = e.parentElement.id == "img2img_height"
if(!e.classList.contains('scrollwatch')){
if(parentLabel.innerText == 'Width' || parentLabel.innerText == 'Height'){ if((is_width || is_height) && !e.classList.contains('scrollwatch')){
e.addEventListener('input', function(e){dimensionChange(e,parentLabel.innerText)} ) e.addEventListener('input', function(e){dimensionChange(e, is_width, is_height)} )
e.classList.add('scrollwatch') e.classList.add('scrollwatch')
} }
if(parentLabel.innerText == 'Width'){ if(is_width){
currentWidth = e.value*1.0 currentWidth = e.value*1.0
} }
if(parentLabel.innerText == 'Height'){ if(is_height){
currentHeight = e.value*1.0 currentHeight = e.value*1.0
} }
}
}
}) })
} }
}); });

177
javascript/contextMenus.js Normal file
View File

@ -0,0 +1,177 @@
contextMenuInit = function(){
let eventListenerApplied=false;
let menuSpecs = new Map();
const uid = function(){
return Date.now().toString(36) + Math.random().toString(36).substr(2);
}
function showContextMenu(event,element,menuEntries){
let posx = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop;
let oldMenu = gradioApp().querySelector('#context-menu')
if(oldMenu){
oldMenu.remove()
}
let tabButton = uiCurrentTab
let baseStyle = window.getComputedStyle(tabButton)
const contextMenu = document.createElement('nav')
contextMenu.id = "context-menu"
contextMenu.style.background = baseStyle.background
contextMenu.style.color = baseStyle.color
contextMenu.style.fontFamily = baseStyle.fontFamily
contextMenu.style.top = posy+'px'
contextMenu.style.left = posx+'px'
const contextMenuList = document.createElement('ul')
contextMenuList.className = 'context-menu-items';
contextMenu.append(contextMenuList);
menuEntries.forEach(function(entry){
let contextMenuEntry = document.createElement('a')
contextMenuEntry.innerHTML = entry['name']
contextMenuEntry.addEventListener("click", function(e) {
entry['func']();
})
contextMenuList.append(contextMenuEntry);
})
gradioApp().getRootNode().appendChild(contextMenu)
let menuWidth = contextMenu.offsetWidth + 4;
let menuHeight = contextMenu.offsetHeight + 4;
let windowWidth = window.innerWidth;
let windowHeight = window.innerHeight;
if ( (windowWidth - posx) < menuWidth ) {
contextMenu.style.left = windowWidth - menuWidth + "px";
}
if ( (windowHeight - posy) < menuHeight ) {
contextMenu.style.top = windowHeight - menuHeight + "px";
}
}
function appendContextMenuOption(targetElementSelector,entryName,entryFunction){
currentItems = menuSpecs.get(targetElementSelector)
if(!currentItems){
currentItems = []
menuSpecs.set(targetElementSelector,currentItems);
}
let newItem = {'id':targetElementSelector+'_'+uid(),
'name':entryName,
'func':entryFunction,
'isNew':true}
currentItems.push(newItem)
return newItem['id']
}
function removeContextMenuOption(uid){
menuSpecs.forEach(function(v,k) {
let index = -1
v.forEach(function(e,ei){if(e['id']==uid){index=ei}})
if(index>=0){
v.splice(index, 1);
}
})
}
function addContextMenuEventListener(){
if(eventListenerApplied){
return;
}
gradioApp().addEventListener("click", function(e) {
let source = e.composedPath()[0]
if(source.id && source.id.indexOf('check_progress')>-1){
return
}
let oldMenu = gradioApp().querySelector('#context-menu')
if(oldMenu){
oldMenu.remove()
}
});
gradioApp().addEventListener("contextmenu", function(e) {
let oldMenu = gradioApp().querySelector('#context-menu')
if(oldMenu){
oldMenu.remove()
}
menuSpecs.forEach(function(v,k) {
if(e.composedPath()[0].matches(k)){
showContextMenu(e,e.composedPath()[0],v)
e.preventDefault()
return
}
})
});
eventListenerApplied=true
}
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
}
initResponse = contextMenuInit();
appendContextMenuOption = initResponse[0];
removeContextMenuOption = initResponse[1];
addContextMenuEventListener = initResponse[2];
(function(){
//Start example Context Menu Items
let generateOnRepeat = function(genbuttonid,interruptbuttonid){
let genbutton = gradioApp().querySelector(genbuttonid);
let interruptbutton = gradioApp().querySelector(interruptbuttonid);
if(!interruptbutton.offsetParent){
genbutton.click();
}
clearInterval(window.generateOnRepeatInterval)
window.generateOnRepeatInterval = setInterval(function(){
if(!interruptbutton.offsetParent){
genbutton.click();
}
},
500)
}
appendContextMenuOption('#txt2img_generate','Generate forever',function(){
generateOnRepeat('#txt2img_generate','#txt2img_interrupt');
})
appendContextMenuOption('#img2img_generate','Generate forever',function(){
generateOnRepeat('#img2img_generate','#img2img_interrupt');
})
let cancelGenerateForever = function(){
clearInterval(window.generateOnRepeatInterval)
}
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#roll','Roll three',
function(){
let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
setTimeout(function(){rollbutton.click()},100)
setTimeout(function(){rollbutton.click()},200)
setTimeout(function(){rollbutton.click()},300)
}
)
})();
//End example Context Menu Items
onUiUpdate(function(){
addContextMenuEventListener()
});

View File

@ -9,11 +9,19 @@ function dropReplaceImage( imgWrap, files ) {
return; return;
} }
const tmpFile = files[0];
imgWrap.querySelector('.modify-upload button + button, .touch-none + div button + button')?.click(); imgWrap.querySelector('.modify-upload button + button, .touch-none + div button + button')?.click();
const callback = () => { const callback = () => {
const fileInput = imgWrap.querySelector('input[type="file"]'); const fileInput = imgWrap.querySelector('input[type="file"]');
if ( fileInput ) { if ( fileInput ) {
fileInput.files = files; if ( files.length === 0 ) {
files = new DataTransfer();
files.items.add(tmpFile);
fileInput.files = files.files;
} else {
fileInput.files = files;
}
fileInput.dispatchEvent(new Event('change')); fileInput.dispatchEvent(new Event('change'));
} }
}; };
@ -43,7 +51,7 @@ function dropReplaceImage( imgWrap, files ) {
window.document.addEventListener('dragover', e => { window.document.addEventListener('dragover', e => {
const target = e.composedPath()[0]; const target = e.composedPath()[0];
const imgWrap = target.closest('[data-testid="image"]'); const imgWrap = target.closest('[data-testid="image"]');
if ( !imgWrap ) { if ( !imgWrap && target.placeholder && target.placeholder.indexOf("Prompt") == -1) {
return; return;
} }
e.stopPropagation(); e.stopPropagation();
@ -53,6 +61,9 @@ window.document.addEventListener('dragover', e => {
window.document.addEventListener('drop', e => { window.document.addEventListener('drop', e => {
const target = e.composedPath()[0]; const target = e.composedPath()[0];
if (target.placeholder.indexOf("Prompt") == -1) {
return;
}
const imgWrap = target.closest('[data-testid="image"]'); const imgWrap = target.closest('[data-testid="image"]');
if ( !imgWrap ) { if ( !imgWrap ) {
return; return;

View File

@ -0,0 +1,75 @@
addEventListener('keydown', (event) => {
let target = event.originalTarget || event.composedPath()[0];
if (!target.matches("#toprow textarea.gr-text-input[placeholder]")) return;
if (! (event.metaKey || event.ctrlKey)) return;
let plus = "ArrowUp"
let minus = "ArrowDown"
if (event.key != plus && event.key != minus) return;
let selectionStart = target.selectionStart;
let selectionEnd = target.selectionEnd;
// If the user hasn't selected anything, let's select their current parenthesis block
if (selectionStart === selectionEnd) {
// Find opening parenthesis around current cursor
const before = target.value.substring(0, selectionStart);
let beforeParen = before.lastIndexOf("(");
if (beforeParen == -1) return;
let beforeParenClose = before.lastIndexOf(")");
while (beforeParenClose !== -1 && beforeParenClose > beforeParen) {
beforeParen = before.lastIndexOf("(", beforeParen - 1);
beforeParenClose = before.lastIndexOf(")", beforeParenClose - 1);
}
// Find closing parenthesis around current cursor
const after = target.value.substring(selectionStart);
let afterParen = after.indexOf(")");
if (afterParen == -1) return;
let afterParenOpen = after.indexOf("(");
while (afterParenOpen !== -1 && afterParen > afterParenOpen) {
afterParen = after.indexOf(")", afterParen + 1);
afterParenOpen = after.indexOf("(", afterParenOpen + 1);
}
if (beforeParen === -1 || afterParen === -1) return;
// Set the selection to the text between the parenthesis
const parenContent = target.value.substring(beforeParen + 1, selectionStart + afterParen);
const lastColon = parenContent.lastIndexOf(":");
selectionStart = beforeParen + 1;
selectionEnd = selectionStart + lastColon;
target.setSelectionRange(selectionStart, selectionEnd);
}
event.preventDefault();
if (selectionStart == 0 || target.value[selectionStart - 1] != "(") {
target.value = target.value.slice(0, selectionStart) +
"(" + target.value.slice(selectionStart, selectionEnd) + ":1.0)" +
target.value.slice(selectionEnd);
target.focus();
target.selectionStart = selectionStart + 1;
target.selectionEnd = selectionEnd + 1;
} else {
end = target.value.slice(selectionEnd + 1).indexOf(")") + 1;
weight = parseFloat(target.value.slice(selectionEnd + 1, selectionEnd + 1 + end));
if (isNaN(weight)) return;
if (event.key == minus) weight -= 0.1;
if (event.key == plus) weight += 0.1;
weight = parseFloat(weight.toPrecision(12));
target.value = target.value.slice(0, selectionEnd + 1) +
weight +
target.value.slice(selectionEnd + 1 + end - 1);
target.focus();
target.selectionStart = selectionStart;
target.selectionEnd = selectionEnd;
}
// Since we've modified a Gradio Textbox component manually, we need to simulate an `input` DOM event to ensure its
// internal Svelte data binding remains in sync.
target.dispatchEvent(new Event("input", { bubbles: true }));
});

35
javascript/extensions.js Normal file
View File

@ -0,0 +1,35 @@
function extensions_apply(_, _){
disable = []
update = []
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){
if(x.name.startsWith("enable_") && ! x.checked)
disable.push(x.name.substr(7))
if(x.name.startsWith("update_") && x.checked)
update.push(x.name.substr(7))
})
restart_reload()
return [JSON.stringify(disable), JSON.stringify(update)]
}
function extensions_check(){
gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){
x.innerHTML = "Loading..."
})
return []
}
function install_extension_from_index(button, url){
button.disabled = "disabled"
button.value = "Installing..."
textarea = gradioApp().querySelector('#extension_to_install textarea')
textarea.value = url
textarea.dispatchEvent(new Event("input", { bubbles: true }))
gradioApp().querySelector('#install_extension_button').click()
}

View File

@ -0,0 +1,33 @@
// attaches listeners to the txt2img and img2img galleries to update displayed generation param text when the image changes
let txt2img_gallery, img2img_gallery, modal = undefined;
onUiUpdate(function(){
if (!txt2img_gallery) {
txt2img_gallery = attachGalleryListeners("txt2img")
}
if (!img2img_gallery) {
img2img_gallery = attachGalleryListeners("img2img")
}
if (!modal) {
modal = gradioApp().getElementById('lightboxModal')
modalObserver.observe(modal, { attributes : true, attributeFilter : ['style'] });
}
});
let modalObserver = new MutationObserver(function(mutations) {
mutations.forEach(function(mutationRecord) {
let selectedTab = gradioApp().querySelector('#tabs div button.bg-white')?.innerText
if (mutationRecord.target.style.display === 'none' && selectedTab === 'txt2img' || selectedTab === 'img2img')
gradioApp().getElementById(selectedTab+"_generation_info_button").click()
});
});
function attachGalleryListeners(tab_name) {
gallery = gradioApp().querySelector('#'+tab_name+'_gallery')
gallery?.addEventListener('click', () => gradioApp().getElementById(tab_name+"_generation_info_button").click());
gallery?.addEventListener('keydown', (e) => {
if (e.keyCode == 37 || e.keyCode == 39) // left or right arrow
gradioApp().getElementById(tab_name+"_generation_info_button").click()
});
return gallery;
}

View File

@ -6,6 +6,7 @@ titles = {
"GFPGAN": "Restore low quality faces using GFPGAN neural network", "GFPGAN": "Restore low quality faces using GFPGAN neural network",
"Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help", "Euler a": "Euler Ancestral - very creative, each can get a completely different picture depending on step count, setting steps to higher than 30-40 does not help",
"DDIM": "Denoising Diffusion Implicit Models - best at inpainting", "DDIM": "Denoising Diffusion Implicit Models - best at inpainting",
"DPM adaptive": "Ignores step count - uses a number of steps determined by the CFG and resolution",
"Batch count": "How many batches of images to create", "Batch count": "How many batches of images to create",
"Batch size": "How many image to create in a single batch", "Batch size": "How many image to create in a single batch",
@ -14,8 +15,11 @@ titles = {
"\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time", "\u{1f3b2}\ufe0f": "Set seed to -1, which will cause a new random number to be used every time",
"\u267b\ufe0f": "Reuse seed from last generation, mostly useful if it was randomed", "\u267b\ufe0f": "Reuse seed from last generation, mostly useful if it was randomed",
"\u{1f3a8}": "Add a random artist to the prompt.", "\u{1f3a8}": "Add a random artist to the prompt.",
"\u2199\ufe0f": "Read generation parameters from prompt into user interface.", "\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.",
"\uD83D\uDCC2": "Open images output directory", "\u{1f4c2}": "Open images output directory",
"\u{1f4be}": "Save style",
"\U0001F5D1": "Clear prompt",
"\u{1f4cb}": "Apply selected styles to current prompt",
"Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt", "Inpaint a part of image": "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt",
"SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back", "SD upscale": "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back",
@ -35,6 +39,7 @@ titles = {
"Denoising strength": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.", "Denoising strength": "Determines how little respect the algorithm should have for image's content. At 0, nothing will change, and at 1 you'll get an unrelated image. With values below 1.0, processing will take less steps than the Sampling Steps slider specifies.",
"Denoising strength change factor": "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.", "Denoising strength change factor": "In loopback mode, on each loop the denoising strength is multiplied by this value. <1 means decreasing variety so your sequence will converge on a fixed picture. >1 means increasing variety so your sequence will become more and more chaotic.",
"Skip": "Stop processing current image and continue processing.",
"Interrupt": "Stop processing images and return any results accumulated so far.", "Interrupt": "Stop processing images and return any results accumulated so far.",
"Save": "Write image to a directory (default - log/images) and generation parameters into csv file.", "Save": "Write image to a directory (default - log/images) and generation parameters into csv file.",
@ -47,6 +52,7 @@ titles = {
"Custom code": "Run Python code. Advanced user only. Must run program with --allow-code for this to work", "Custom code": "Run Python code. Advanced user only. Must run program with --allow-code for this to work",
"Prompt S/R": "Separate a list of words with commas, and the first word will be used as a keyword: script will search for this word in the prompt, and replace it with others", "Prompt S/R": "Separate a list of words with commas, and the first word will be used as a keyword: script will search for this word in the prompt, and replace it with others",
"Prompt order": "Separate a list of words with commas, and the script will make a variation of prompt with those words for their every possible order",
"Tiling": "Produce an image that can be tiled.", "Tiling": "Produce an image that can be tiled.",
"Tile overlap": "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.", "Tile overlap": "For SD upscale, how much overlap in pixels should there be between tiles. Tiles overlap so that when they are merged back into one picture, there is no clearly visible seam.",
@ -58,8 +64,8 @@ titles = {
"Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.", "Interrogate": "Reconstruct prompt from existing image and put it into the prompt field.",
"Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", "Images filename pattern": "Use following tags to define how filenames for images are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
"Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [prompt_words], [date], [datetime], [job_timestamp]; leave empty for default.", "Directory name pattern": "Use following tags to define how subdirectories for images and grids are chosen: [steps], [cfg], [prompt], [prompt_no_styles], [prompt_spaces], [width], [height], [styles], [sampler], [seed], [model_hash], [model_name], [prompt_words], [date], [datetime], [datetime<Format>], [datetime<Format><Time Zone>], [job_timestamp]; leave empty for default.",
"Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle", "Max prompt words": "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle",
"Loopback": "Process an image, use it as an input, repeat.", "Loopback": "Process an image, use it as an input, repeat.",
@ -71,12 +77,30 @@ titles = {
"Create style": "Save current prompts as a style. If you add the token {prompt} to the text, the style use that as placeholder for your prompt when you use the style in the future.", "Create style": "Save current prompts as a style. If you add the token {prompt} to the text, the style use that as placeholder for your prompt when you use the style in the future.",
"Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.", "Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.",
"Inpainting conditioning mask strength": "Only applies to inpainting models. Determines how strongly to mask off the original image for inpainting and img2img. 1.0 means fully masked, which is the default behaviour. 0.0 means a fully unmasked conditioning. Lower values will help preserve the overall composition of the image, but will struggle with large changes.",
"vram": "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).", "vram": "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).",
"Highres. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition", "Highres. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition",
"Scale latent": "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.", "Scale latent": "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.",
"Eta noise seed delta": "If this values is non-zero, it will be added to seed and used to initialize RNG for noises when using samplers with Eta. You can use this to produce even more variation of images, or you can use this to match images of other software if you know what you are doing.",
"Do not add watermark to images": "If this option is enabled, watermark will not be added to created images. Warning: if you do not add watermark, you may be behaving in an unethical manner.",
"Filename word regex": "This regular expression will be used extract words from filename, and they will be joined using the option below into label text used for training. Leave empty to keep filename text as it is.",
"Filename join string": "This string will be used to join split words into a single line if the option above is enabled.",
"Quicksettings list": "List of setting names, separated by commas, for settings that should go to the quick access bar at the top, rather than the usual setting tab. See modules/shared.py for setting names. Requires restarting to apply.",
"Weighted sum": "Result = A * (1 - M) + B * M",
"Add difference": "Result = A + (B - C) * M",
"Learning rate": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
"Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc.",
"Approx NN": "Cheap neural network approximation. Very fast compared to VAE, but produces pictures with 4 times smaller horizontal/vertical resoluton and lower quality.",
"Approx cheap": "Very cheap approximation. Very fast compared to VAE, but produces pictures with 8 times smaller horizontal/vertical resoluton and extremely low quality."
} }

View File

@ -31,8 +31,8 @@ function imageMaskResize() {
wrapper.style.width = `${wW}px`; wrapper.style.width = `${wW}px`;
wrapper.style.height = `${wH}px`; wrapper.style.height = `${wH}px`;
wrapper.style.left = `${(w-wW)/2}px`; wrapper.style.left = `0px`;
wrapper.style.top = `${(h-wH)/2}px`; wrapper.style.top = `0px`;
canvases.forEach( c => { canvases.forEach( c => {
c.style.width = c.style.height = ''; c.style.width = c.style.height = '';
@ -42,4 +42,4 @@ function imageMaskResize() {
}); });
} }
onUiUpdate(() => imageMaskResize()); onUiUpdate(() => imageMaskResize());

19
javascript/imageParams.js Normal file
View File

@ -0,0 +1,19 @@
window.onload = (function(){
window.addEventListener('drop', e => {
const target = e.composedPath()[0];
const idx = selected_gallery_index();
if (target.placeholder.indexOf("Prompt") == -1) return;
let prompt_target = get_tab_index('tabs') == 1 ? "img2img_prompt_image" : "txt2img_prompt_image";
e.stopPropagation();
e.preventDefault();
const imgParent = gradioApp().getElementById(prompt_target);
const files = e.dataTransfer.files;
const fileInput = imgParent.querySelector('input[type="file"]');
if ( fileInput ) {
fileInput.files = files;
fileInput.dispatchEvent(new Event('change'));
}
});
});

View File

@ -1,73 +1,129 @@
// A full size 'lightbox' preview modal shown when left clicking on gallery previews // A full size 'lightbox' preview modal shown when left clicking on gallery previews
function closeModal() { function closeModal() {
gradioApp().getElementById("lightboxModal").style.display = "none"; gradioApp().getElementById("lightboxModal").style.display = "none";
} }
function showModal(event) { function showModal(event) {
const source = event.target || event.srcElement; const source = event.target || event.srcElement;
const modalImage = gradioApp().getElementById("modalImage") const modalImage = gradioApp().getElementById("modalImage")
const lb = gradioApp().getElementById("lightboxModal") const lb = gradioApp().getElementById("lightboxModal")
modalImage.src = source.src modalImage.src = source.src
if (modalImage.style.display === 'none') { if (modalImage.style.display === 'none') {
lb.style.setProperty('background-image', 'url(' + source.src + ')'); lb.style.setProperty('background-image', 'url(' + source.src + ')');
} }
lb.style.display = "block"; lb.style.display = "block";
lb.focus() lb.focus()
event.stopPropagation()
const tabTxt2Img = gradioApp().getElementById("tab_txt2img")
const tabImg2Img = gradioApp().getElementById("tab_img2img")
// show the save button in modal only on txt2img or img2img tabs
if (tabTxt2Img.style.display != "none" || tabImg2Img.style.display != "none") {
gradioApp().getElementById("modal_save").style.display = "inline"
} else {
gradioApp().getElementById("modal_save").style.display = "none"
}
event.stopPropagation()
} }
function negmod(n, m) { function negmod(n, m) {
return ((n % m) + m) % m; return ((n % m) + m) % m;
} }
function modalImageSwitch(offset){ function updateOnBackgroundChange() {
var allgalleryButtons = gradioApp().querySelectorAll(".gallery-item.transition-all") const modalImage = gradioApp().getElementById("modalImage")
var galleryButtons = [] if (modalImage && modalImage.offsetParent) {
allgalleryButtons.forEach(function(elem){ let allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
if(elem.parentElement.offsetParent){ let currentButton = null
galleryButtons.push(elem); allcurrentButtons.forEach(function(elem) {
if (elem.parentElement.offsetParent) {
currentButton = elem;
}
})
if (currentButton?.children?.length > 0 && modalImage.src != currentButton.children[0].src) {
modalImage.src = currentButton.children[0].src;
if (modalImage.style.display === 'none') {
modal.style.setProperty('background-image', `url(${modalImage.src})`)
}
}
} }
}) }
if(galleryButtons.length>1){ function modalImageSwitch(offset) {
var allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2") var allgalleryButtons = gradioApp().querySelectorAll(".gallery-item.transition-all")
var currentButton = null var galleryButtons = []
allcurrentButtons.forEach(function(elem){ allgalleryButtons.forEach(function(elem) {
if(elem.parentElement.offsetParent){ if (elem.parentElement.offsetParent) {
currentButton = elem; galleryButtons.push(elem);
} }
}) })
var result = -1 if (galleryButtons.length > 1) {
galleryButtons.forEach(function(v, i){ if(v==currentButton) { result = i } }) var allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
var currentButton = null
allcurrentButtons.forEach(function(elem) {
if (elem.parentElement.offsetParent) {
currentButton = elem;
}
})
if(result != -1){ var result = -1
nextButton = galleryButtons[negmod((result+offset),galleryButtons.length)] galleryButtons.forEach(function(v, i) {
nextButton.click() if (v == currentButton) {
const modalImage = gradioApp().getElementById("modalImage"); result = i
const modal = gradioApp().getElementById("lightboxModal"); }
modalImage.src = nextButton.children[0].src; })
if (modalImage.style.display === 'none') {
modal.style.setProperty('background-image', `url(${modalImage.src})`) if (result != -1) {
nextButton = galleryButtons[negmod((result + offset), galleryButtons.length)]
nextButton.click()
const modalImage = gradioApp().getElementById("modalImage");
const modal = gradioApp().getElementById("lightboxModal");
modalImage.src = nextButton.children[0].src;
if (modalImage.style.display === 'none') {
modal.style.setProperty('background-image', `url(${modalImage.src})`)
}
setTimeout(function() {
modal.focus()
}, 10)
} }
setTimeout( function(){modal.focus()},10) }
}
}
} }
function modalNextImage(event){ function saveImage(){
modalImageSwitch(1) const tabTxt2Img = gradioApp().getElementById("tab_txt2img")
event.stopPropagation() const tabImg2Img = gradioApp().getElementById("tab_img2img")
const saveTxt2Img = "save_txt2img"
const saveImg2Img = "save_img2img"
if (tabTxt2Img.style.display != "none") {
gradioApp().getElementById(saveTxt2Img).click()
} else if (tabImg2Img.style.display != "none") {
gradioApp().getElementById(saveImg2Img).click()
} else {
console.error("missing implementation for saving modal of this type")
}
} }
function modalPrevImage(event){ function modalSaveImage(event) {
modalImageSwitch(-1) saveImage()
event.stopPropagation() event.stopPropagation()
} }
function modalKeyHandler(event){ function modalNextImage(event) {
modalImageSwitch(1)
event.stopPropagation()
}
function modalPrevImage(event) {
modalImageSwitch(-1)
event.stopPropagation()
}
function modalKeyHandler(event) {
switch (event.key) { switch (event.key) {
case "s":
saveImage()
break;
case "ArrowLeft": case "ArrowLeft":
modalPrevImage(event) modalPrevImage(event)
break; break;
@ -80,21 +136,23 @@ function modalKeyHandler(event){
} }
} }
function showGalleryImage(){ function showGalleryImage() {
setTimeout(function() { setTimeout(function() {
fullImg_preview = gradioApp().querySelectorAll('img.w-full.object-contain') fullImg_preview = gradioApp().querySelectorAll('img.w-full.object-contain')
if(fullImg_preview != null){ if (fullImg_preview != null) {
fullImg_preview.forEach(function function_name(e) { fullImg_preview.forEach(function function_name(e) {
if (e.dataset.modded)
return;
e.dataset.modded = true;
if(e && e.parentElement.tagName == 'DIV'){ if(e && e.parentElement.tagName == 'DIV'){
e.style.cursor='pointer' e.style.cursor='pointer'
e.style.userSelect='none'
e.addEventListener('click', function (evt) { e.addEventListener('click', function (evt) {
if(!opts.js_modal_lightbox) return; if(!opts.js_modal_lightbox) return;
modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initialy_zoomed) modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed)
showModal(evt) showModal(evt)
},true); }, true);
} }
}); });
} }
@ -102,21 +160,21 @@ function showGalleryImage(){
}, 100); }, 100);
} }
function modalZoomSet(modalImage, enable){ function modalZoomSet(modalImage, enable) {
if( enable ){ if (enable) {
modalImage.classList.add('modalImageFullscreen'); modalImage.classList.add('modalImageFullscreen');
} else{ } else {
modalImage.classList.remove('modalImageFullscreen'); modalImage.classList.remove('modalImageFullscreen');
} }
} }
function modalZoomToggle(event){ function modalZoomToggle(event) {
modalImage = gradioApp().getElementById("modalImage"); modalImage = gradioApp().getElementById("modalImage");
modalZoomSet(modalImage, !modalImage.classList.contains('modalImageFullscreen')) modalZoomSet(modalImage, !modalImage.classList.contains('modalImageFullscreen'))
event.stopPropagation() event.stopPropagation()
} }
function modalTileImageToggle(event){ function modalTileImageToggle(event) {
const modalImage = gradioApp().getElementById("modalImage"); const modalImage = gradioApp().getElementById("modalImage");
const modal = gradioApp().getElementById("lightboxModal"); const modal = gradioApp().getElementById("lightboxModal");
const isTiling = modalImage.style.display === 'none'; const isTiling = modalImage.style.display === 'none';
@ -131,17 +189,18 @@ function modalTileImageToggle(event){
event.stopPropagation() event.stopPropagation()
} }
function galleryImageHandler(e){ function galleryImageHandler(e) {
if(e && e.parentElement.tagName == 'BUTTON'){ if (e && e.parentElement.tagName == 'BUTTON') {
e.onclick = showGalleryImage; e.onclick = showGalleryImage;
} }
} }
onUiUpdate(function(){ onUiUpdate(function() {
fullImg_preview = gradioApp().querySelectorAll('img.w-full') fullImg_preview = gradioApp().querySelectorAll('img.w-full')
if(fullImg_preview != null){ if (fullImg_preview != null) {
fullImg_preview.forEach(galleryImageHandler); fullImg_preview.forEach(galleryImageHandler);
} }
updateOnBackgroundChange();
}) })
document.addEventListener("DOMContentLoaded", function() { document.addEventListener("DOMContentLoaded", function() {
@ -149,13 +208,13 @@ document.addEventListener("DOMContentLoaded", function() {
const modal = document.createElement('div') const modal = document.createElement('div')
modal.onclick = closeModal; modal.onclick = closeModal;
modal.id = "lightboxModal"; modal.id = "lightboxModal";
modal.tabIndex=0 modal.tabIndex = 0
modal.addEventListener('keydown', modalKeyHandler, true) modal.addEventListener('keydown', modalKeyHandler, true)
const modalControls = document.createElement('div') const modalControls = document.createElement('div')
modalControls.className = 'modalControls gradio-container'; modalControls.className = 'modalControls gradio-container';
modal.append(modalControls); modal.append(modalControls);
const modalZoom = document.createElement('span') const modalZoom = document.createElement('span')
modalZoom.className = 'modalZoom cursor'; modalZoom.className = 'modalZoom cursor';
modalZoom.innerHTML = '&#10529;' modalZoom.innerHTML = '&#10529;'
@ -170,6 +229,14 @@ document.addEventListener("DOMContentLoaded", function() {
modalTileImage.title = "Preview tiling"; modalTileImage.title = "Preview tiling";
modalControls.appendChild(modalTileImage) modalControls.appendChild(modalTileImage)
const modalSave = document.createElement("span")
modalSave.className = "modalSave cursor"
modalSave.id = "modal_save"
modalSave.innerHTML = "&#x1F5AB;"
modalSave.addEventListener("click", modalSaveImage, true)
modalSave.title = "Save Image(s)"
modalControls.appendChild(modalSave)
const modalClose = document.createElement('span') const modalClose = document.createElement('span')
modalClose.className = 'modalClose cursor'; modalClose.className = 'modalClose cursor';
modalClose.innerHTML = '&times;' modalClose.innerHTML = '&times;'
@ -180,30 +247,30 @@ document.addEventListener("DOMContentLoaded", function() {
const modalImage = document.createElement('img') const modalImage = document.createElement('img')
modalImage.id = 'modalImage'; modalImage.id = 'modalImage';
modalImage.onclick = closeModal; modalImage.onclick = closeModal;
modalImage.tabIndex=0 modalImage.tabIndex = 0
modalImage.addEventListener('keydown', modalKeyHandler, true) modalImage.addEventListener('keydown', modalKeyHandler, true)
modal.appendChild(modalImage) modal.appendChild(modalImage)
const modalPrev = document.createElement('a') const modalPrev = document.createElement('a')
modalPrev.className = 'modalPrev'; modalPrev.className = 'modalPrev';
modalPrev.innerHTML = '&#10094;' modalPrev.innerHTML = '&#10094;'
modalPrev.tabIndex=0 modalPrev.tabIndex = 0
modalPrev.addEventListener('click',modalPrevImage,true); modalPrev.addEventListener('click', modalPrevImage, true);
modalPrev.addEventListener('keydown', modalKeyHandler, true) modalPrev.addEventListener('keydown', modalKeyHandler, true)
modal.appendChild(modalPrev) modal.appendChild(modalPrev)
const modalNext = document.createElement('a') const modalNext = document.createElement('a')
modalNext.className = 'modalNext'; modalNext.className = 'modalNext';
modalNext.innerHTML = '&#10095;' modalNext.innerHTML = '&#10095;'
modalNext.tabIndex=0 modalNext.tabIndex = 0
modalNext.addEventListener('click',modalNextImage,true); modalNext.addEventListener('click', modalNextImage, true);
modalNext.addEventListener('keydown', modalKeyHandler, true) modalNext.addEventListener('keydown', modalKeyHandler, true)
modal.appendChild(modalNext) modal.appendChild(modalNext)
gradioApp().getRootNode().appendChild(modal) gradioApp().getRootNode().appendChild(modal)
document.body.appendChild(modalFragment); document.body.appendChild(modalFragment);
}); });

167
javascript/localization.js Normal file
View File

@ -0,0 +1,167 @@
// localization = {} -- the dict with translations is created by the backend
ignore_ids_for_localization={
setting_sd_hypernetwork: 'OPTION',
setting_sd_model_checkpoint: 'OPTION',
setting_realesrgan_enabled_models: 'OPTION',
modelmerger_primary_model_name: 'OPTION',
modelmerger_secondary_model_name: 'OPTION',
modelmerger_tertiary_model_name: 'OPTION',
train_embedding: 'OPTION',
train_hypernetwork: 'OPTION',
txt2img_style_index: 'OPTION',
txt2img_style2_index: 'OPTION',
img2img_style_index: 'OPTION',
img2img_style2_index: 'OPTION',
setting_random_artist_categories: 'SPAN',
setting_face_restoration_model: 'SPAN',
setting_realesrgan_enabled_models: 'SPAN',
extras_upscaler_1: 'SPAN',
extras_upscaler_2: 'SPAN',
}
re_num = /^[\.\d]+$/
re_emoji = /[\p{Extended_Pictographic}\u{1F3FB}-\u{1F3FF}\u{1F9B0}-\u{1F9B3}]/u
original_lines = {}
translated_lines = {}
function textNodesUnder(el){
var n, a=[], walk=document.createTreeWalker(el,NodeFilter.SHOW_TEXT,null,false);
while(n=walk.nextNode()) a.push(n);
return a;
}
function canBeTranslated(node, text){
if(! text) return false;
if(! node.parentElement) return false;
parentType = node.parentElement.nodeName
if(parentType=='SCRIPT' || parentType=='STYLE' || parentType=='TEXTAREA') return false;
if (parentType=='OPTION' || parentType=='SPAN'){
pnode = node
for(var level=0; level<4; level++){
pnode = pnode.parentElement
if(! pnode) break;
if(ignore_ids_for_localization[pnode.id] == parentType) return false;
}
}
if(re_num.test(text)) return false;
if(re_emoji.test(text)) return false;
return true
}
function getTranslation(text){
if(! text) return undefined
if(translated_lines[text] === undefined){
original_lines[text] = 1
}
tl = localization[text]
if(tl !== undefined){
translated_lines[tl] = 1
}
return tl
}
function processTextNode(node){
text = node.textContent.trim()
if(! canBeTranslated(node, text)) return
tl = getTranslation(text)
if(tl !== undefined){
node.textContent = tl
}
}
function processNode(node){
if(node.nodeType == 3){
processTextNode(node)
return
}
if(node.title){
tl = getTranslation(node.title)
if(tl !== undefined){
node.title = tl
}
}
if(node.placeholder){
tl = getTranslation(node.placeholder)
if(tl !== undefined){
node.placeholder = tl
}
}
textNodesUnder(node).forEach(function(node){
processTextNode(node)
})
}
function dumpTranslations(){
dumped = {}
if (localization.rtl) {
dumped.rtl = true
}
Object.keys(original_lines).forEach(function(text){
if(dumped[text] !== undefined) return
dumped[text] = localization[text] || text
})
return dumped
}
onUiUpdate(function(m){
m.forEach(function(mutation){
mutation.addedNodes.forEach(function(node){
processNode(node)
})
});
})
document.addEventListener("DOMContentLoaded", function() {
processNode(gradioApp())
if (localization.rtl) { // if the language is from right to left,
(new MutationObserver((mutations, observer) => { // wait for the style to load
mutations.forEach(mutation => {
mutation.addedNodes.forEach(node => {
if (node.tagName === 'STYLE') {
observer.disconnect();
for (const x of node.sheet.rules) { // find all rtl media rules
if (Array.from(x.media || []).includes('rtl')) {
x.media.appendMedium('all'); // enable them
}
}
}
})
});
})).observe(gradioApp(), { childList: true });
}
})
function download_localization() {
text = JSON.stringify(dumpTranslations(), null, 4)
var element = document.createElement('a');
element.setAttribute('href', 'data:text/plain;charset=utf-8,' + encodeURIComponent(text));
element.setAttribute('download', "localization.json");
element.style.display = 'none';
document.body.appendChild(element);
element.click();
document.body.removeChild(element);
}

View File

@ -15,7 +15,7 @@ onUiUpdate(function(){
} }
} }
const galleryPreviews = gradioApp().querySelectorAll('img.h-full.w-full.overflow-hidden'); const galleryPreviews = gradioApp().querySelectorAll('div[id^="tab_"][style*="display: block"] img.h-full.w-full.overflow-hidden');
if (galleryPreviews == null) return; if (galleryPreviews == null) return;
@ -36,7 +36,7 @@ onUiUpdate(function(){
const notification = new Notification( const notification = new Notification(
'Stable Diffusion', 'Stable Diffusion',
{ {
body: `Generated ${imgs.size > 1 ? imgs.size - 1 : 1} image${imgs.size > 1 ? 's' : ''}`, body: `Generated ${imgs.size > 1 ? imgs.size - opts.return_grid : 1} image${imgs.size > 1 ? 's' : ''}`,
icon: headImg, icon: headImg,
image: headImg, image: headImg,
} }

View File

@ -1,45 +1,142 @@
// code related to showing and updating progressbar shown as the image is being made // code related to showing and updating progressbar shown as the image is being made
global_progressbars = {} global_progressbars = {}
galleries = {}
galleryObservers = {}
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_interrupt, id_preview, id_gallery){ // this tracks launches of window.setTimeout for progressbar to prevent starting a new timeout when the previous is still running
var progressbar = gradioApp().getElementById(id_progressbar) timeoutIds = {}
function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip, id_interrupt, id_preview, id_gallery){
// gradio 3.8's enlightened approach allows them to create two nested div elements inside each other with same id
// every time you use gr.HTML(elem_id='xxx'), so we handle this here
var progressbar = gradioApp().querySelector("#"+id_progressbar+" #"+id_progressbar)
var progressbarParent
if(progressbar){
progressbarParent = gradioApp().querySelector("#"+id_progressbar)
} else{
progressbar = gradioApp().getElementById(id_progressbar)
progressbarParent = null
}
var skip = id_skip ? gradioApp().getElementById(id_skip) : null
var interrupt = gradioApp().getElementById(id_interrupt) var interrupt = gradioApp().getElementById(id_interrupt)
if(opts.show_progress_in_title && progressbar && progressbar.offsetParent){
if(progressbar.innerText){
let newtitle = '[' + progressbar.innerText.trim() + '] Stable Diffusion';
if(document.title != newtitle){
document.title = newtitle;
}
}else{
let newtitle = 'Stable Diffusion'
if(document.title != newtitle){
document.title = newtitle;
}
}
}
if(progressbar!= null && progressbar != global_progressbars[id_progressbar]){ if(progressbar!= null && progressbar != global_progressbars[id_progressbar]){
global_progressbars[id_progressbar] = progressbar global_progressbars[id_progressbar] = progressbar
var mutationObserver = new MutationObserver(function(m){ var mutationObserver = new MutationObserver(function(m){
if(timeoutIds[id_part]) return;
preview = gradioApp().getElementById(id_preview) preview = gradioApp().getElementById(id_preview)
gallery = gradioApp().getElementById(id_gallery) gallery = gradioApp().getElementById(id_gallery)
if(preview != null && gallery != null){ if(preview != null && gallery != null){
preview.style.width = gallery.clientWidth + "px" preview.style.width = gallery.clientWidth + "px"
preview.style.height = gallery.clientHeight + "px" preview.style.height = gallery.clientHeight + "px"
if(progressbarParent) progressbar.style.width = progressbarParent.clientWidth + "px"
//only watch gallery if there is a generation process going on
check_gallery(id_gallery);
var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0; var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0;
if(!progressDiv){ if(progressDiv){
timeoutIds[id_part] = window.setTimeout(function() {
timeoutIds[id_part] = null
requestMoreProgress(id_part, id_progressbar_span, id_skip, id_interrupt)
}, 500)
} else{
if (skip) {
skip.style.display = "none"
}
interrupt.style.display = "none" interrupt.style.display = "none"
//disconnect observer once generation finished, so user can close selected image if they want
if (galleryObservers[id_gallery]) {
galleryObservers[id_gallery].disconnect();
galleries[id_gallery] = null;
}
} }
} }
window.setTimeout(function(){ requestMoreProgress(id_part, id_progressbar_span, id_interrupt) }, 500)
}); });
mutationObserver.observe( progressbar, { childList:true, subtree:true }) mutationObserver.observe( progressbar, { childList:true, subtree:true })
} }
} }
function check_gallery(id_gallery){
let gallery = gradioApp().getElementById(id_gallery)
// if gallery has no change, no need to setting up observer again.
if (gallery && galleries[id_gallery] !== gallery){
galleries[id_gallery] = gallery;
if(galleryObservers[id_gallery]){
galleryObservers[id_gallery].disconnect();
}
let prevSelectedIndex = selected_gallery_index();
galleryObservers[id_gallery] = new MutationObserver(function (){
let galleryButtons = gradioApp().querySelectorAll('#'+id_gallery+' .gallery-item')
let galleryBtnSelected = gradioApp().querySelector('#'+id_gallery+' .gallery-item.\\!ring-2')
if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) {
// automatically re-open previously selected index (if exists)
activeElement = gradioApp().activeElement;
let scrollX = window.scrollX;
let scrollY = window.scrollY;
galleryButtons[prevSelectedIndex].click();
showGalleryImage();
// When the gallery button is clicked, it gains focus and scrolls itself into view
// We need to scroll back to the previous position
setTimeout(function (){
window.scrollTo(scrollX, scrollY);
}, 50);
if(activeElement){
// i fought this for about an hour; i don't know why the focus is lost or why this helps recover it
// if someone has a better solution please by all means
setTimeout(function (){
activeElement.focus({
preventScroll: true // Refocus the element that was focused before the gallery was opened without scrolling to it
})
}, 1);
}
}
})
galleryObservers[id_gallery].observe( gallery, { childList:true, subtree:false })
}
}
onUiUpdate(function(){ onUiUpdate(function(){
check_progressbar('txt2img', 'txt2img_progressbar', 'txt2img_progress_span', 'txt2img_interrupt', 'txt2img_preview', 'txt2img_gallery') check_progressbar('txt2img', 'txt2img_progressbar', 'txt2img_progress_span', 'txt2img_skip', 'txt2img_interrupt', 'txt2img_preview', 'txt2img_gallery')
check_progressbar('img2img', 'img2img_progressbar', 'img2img_progress_span', 'img2img_interrupt', 'img2img_preview', 'img2img_gallery') check_progressbar('img2img', 'img2img_progressbar', 'img2img_progress_span', 'img2img_skip', 'img2img_interrupt', 'img2img_preview', 'img2img_gallery')
check_progressbar('ti', 'ti_progressbar', 'ti_progress_span', '', 'ti_interrupt', 'ti_preview', 'ti_gallery')
}) })
function requestMoreProgress(id_part, id_progressbar_span, id_interrupt){ function requestMoreProgress(id_part, id_progressbar_span, id_skip, id_interrupt){
btn = gradioApp().getElementById(id_part+"_check_progress"); btn = gradioApp().getElementById(id_part+"_check_progress");
if(btn==null) return; if(btn==null) return;
btn.click(); btn.click();
var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0; var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0;
var skip = id_skip ? gradioApp().getElementById(id_skip) : null
var interrupt = gradioApp().getElementById(id_interrupt) var interrupt = gradioApp().getElementById(id_interrupt)
if(progressDiv && interrupt){ if(progressDiv && interrupt){
if (skip) {
skip.style.display = "block"
}
interrupt.style.display = "block" interrupt.style.display = "block"
} }
} }

View File

@ -0,0 +1,8 @@
function start_training_textual_inversion(){
requestProgress('ti')
gradioApp().querySelector('#ti_error').innerHTML=''
return args_to_array(arguments)
}

View File

@ -1,8 +1,15 @@
// various functions for interation with ui.py not large enough to warrant putting them in separate files // various functions for interaction with ui.py not large enough to warrant putting them in separate files
function set_theme(theme){
gradioURL = window.location.href
if (!gradioURL.includes('?__theme=')) {
window.location.replace(gradioURL + '?__theme=' + theme);
}
}
function selected_gallery_index(){ function selected_gallery_index(){
var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem .gallery-item') var buttons = gradioApp().querySelectorAll('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item')
var button = gradioApp().querySelector('[style="display: block;"].tabitem .gallery-item.\\!ring-2') var button = gradioApp().querySelector('[style="display: block;"].tabitem div[id$=_gallery] .gallery-item.\\!ring-2')
var result = -1 var result = -1
buttons.forEach(function(v, i){ if(v==button) { result = i } }) buttons.forEach(function(v, i){ if(v==button) { result = i } })
@ -12,7 +19,7 @@ function selected_gallery_index(){
function extract_image_from_gallery(gallery){ function extract_image_from_gallery(gallery){
if(gallery.length == 1){ if(gallery.length == 1){
return gallery[0] return [gallery[0]]
} }
index = selected_gallery_index() index = selected_gallery_index()
@ -21,7 +28,7 @@ function extract_image_from_gallery(gallery){
return [null] return [null]
} }
return gallery[index]; return [gallery[index]];
} }
function args_to_array(args){ function args_to_array(args){
@ -33,51 +40,31 @@ function args_to_array(args){
} }
function switch_to_txt2img(){ function switch_to_txt2img(){
gradioApp().querySelectorAll('button')[0].click(); gradioApp().querySelector('#tabs').querySelectorAll('button')[0].click();
return args_to_array(arguments); return args_to_array(arguments);
} }
function switch_to_img2img_img2img(){ function switch_to_img2img(){
gradioApp().querySelectorAll('button')[1].click(); gradioApp().querySelector('#tabs').querySelectorAll('button')[1].click();
gradioApp().getElementById('mode_img2img').querySelectorAll('button')[0].click(); gradioApp().getElementById('mode_img2img').querySelectorAll('button')[0].click();
return args_to_array(arguments); return args_to_array(arguments);
} }
function switch_to_img2img_inpaint(){ function switch_to_inpaint(){
gradioApp().querySelectorAll('button')[1].click(); gradioApp().querySelector('#tabs').querySelectorAll('button')[1].click();
gradioApp().getElementById('mode_img2img').querySelectorAll('button')[1].click(); gradioApp().getElementById('mode_img2img').querySelectorAll('button')[1].click();
return args_to_array(arguments); return args_to_array(arguments);
} }
function switch_to_extras(){ function switch_to_extras(){
gradioApp().querySelectorAll('button')[2].click(); gradioApp().querySelector('#tabs').querySelectorAll('button')[2].click();
return args_to_array(arguments); return args_to_array(arguments);
} }
function extract_image_from_gallery_txt2img(gallery){
switch_to_txt2img()
return extract_image_from_gallery(gallery);
}
function extract_image_from_gallery_img2img(gallery){
switch_to_img2img_img2img()
return extract_image_from_gallery(gallery);
}
function extract_image_from_gallery_inpaint(gallery){
switch_to_img2img_inpaint()
return extract_image_from_gallery(gallery);
}
function extract_image_from_gallery_extras(gallery){
switch_to_extras()
return extract_image_from_gallery(gallery);
}
function get_tab_index(tabId){ function get_tab_index(tabId){
var res = 0 var res = 0
@ -101,7 +88,8 @@ function create_tab_index_args(tabId, args){
} }
function get_extras_tab_index(){ function get_extras_tab_index(){
return create_tab_index_args('mode_extras', arguments) const [,,...args] = [...arguments]
return [get_tab_index('mode_extras'), get_tab_index('extras_resize_mode'), ...args]
} }
function create_submit_args(args){ function create_submit_args(args){
@ -112,7 +100,7 @@ function create_submit_args(args){
// As it is currently, txt2img and img2img send back the previous output args (txt2img_gallery, generation_info, html_info) whenever you generate a new image. // As it is currently, txt2img and img2img send back the previous output args (txt2img_gallery, generation_info, html_info) whenever you generate a new image.
// This can lead to uploading a huge gallery of previously generated images, which leads to an unnecessary delay between submitting and beginning to generate. // This can lead to uploading a huge gallery of previously generated images, which leads to an unnecessary delay between submitting and beginning to generate.
// I don't know why gradio is seding outputs along with inputs, but we can prevent sending the image gallery here, which seems to be an issue for some. // I don't know why gradio is sending outputs along with inputs, but we can prevent sending the image gallery here, which seems to be an issue for some.
// If gradio at some point stops sending outputs, this may break something // If gradio at some point stops sending outputs, this may break something
if(Array.isArray(res[res.length - 3])){ if(Array.isArray(res[res.length - 3])){
res[res.length - 3] = null res[res.length - 3] = null
@ -140,7 +128,16 @@ function submit_img2img(){
function ask_for_style_name(_, prompt_text, negative_prompt_text) { function ask_for_style_name(_, prompt_text, negative_prompt_text) {
name_ = prompt('Style name:') name_ = prompt('Style name:')
return name_ === null ? [null, null, null]: [name_, prompt_text, negative_prompt_text] return [name_, prompt_text, negative_prompt_text]
}
function confirm_clear_prompt(prompt, negative_prompt) {
if(confirm("Delete prompt?")) {
prompt = ""
negative_prompt = ""
}
return [prompt, negative_prompt]
} }
@ -186,25 +183,40 @@ onUiUpdate(function(){
if (!txt2img_textarea) { if (!txt2img_textarea) {
txt2img_textarea = gradioApp().querySelector("#txt2img_prompt > label > textarea"); txt2img_textarea = gradioApp().querySelector("#txt2img_prompt > label > textarea");
txt2img_textarea?.addEventListener("input", () => update_token_counter("txt2img_token_button")); txt2img_textarea?.addEventListener("input", () => update_token_counter("txt2img_token_button"));
txt2img_textarea?.addEventListener("keyup", (event) => submit_prompt(event, "txt2img_generate"));
} }
if (!img2img_textarea) { if (!img2img_textarea) {
img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea"); img2img_textarea = gradioApp().querySelector("#img2img_prompt > label > textarea");
img2img_textarea?.addEventListener("input", () => update_token_counter("img2img_token_button")); img2img_textarea?.addEventListener("input", () => update_token_counter("img2img_token_button"));
img2img_textarea?.addEventListener("keyup", (event) => submit_prompt(event, "img2img_generate"));
} }
show_all_pages = gradioApp().getElementById('settings_show_all_pages')
settings_tabs = gradioApp().querySelector('#settings div')
if(show_all_pages && settings_tabs){
settings_tabs.appendChild(show_all_pages)
show_all_pages.onclick = function(){
gradioApp().querySelectorAll('#settings > div').forEach(function(elem){
elem.style.display = "block";
})
}
}
}) })
let txt2img_textarea, img2img_textarea = undefined; let txt2img_textarea, img2img_textarea = undefined;
let wait_time = 800 let wait_time = 800
let token_timeout; let token_timeout;
function submit_prompt(event, generate_button_id) { function update_txt2img_tokens(...args) {
if (event.altKey && event.keyCode === 13) { update_token_counter("txt2img_token_button")
event.preventDefault(); if (args.length == 2)
gradioApp().getElementById(generate_button_id).click(); return args[0]
return; return args;
} }
function update_img2img_tokens(...args) {
update_token_counter("img2img_token_button")
if (args.length == 2)
return args[0]
return args;
} }
function update_token_counter(button_id) { function update_token_counter(button_id) {
@ -212,3 +224,10 @@ function update_token_counter(button_id) {
clearTimeout(token_timeout); clearTimeout(token_timeout);
token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time); token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time);
} }
function restart_reload(){
document.body.innerHTML='<h1 style="font-family:monospace;margin-top:20%;color:lightgray;text-align:center;">Reloading...</h1>';
setTimeout(function(){location.reload()},2000)
return []
}

286
launch.py
View File

@ -4,43 +4,39 @@ import os
import sys import sys
import importlib.util import importlib.util
import shlex import shlex
import platform
import argparse
import json
dir_repos = "repositories" dir_repos = "repositories"
dir_tmp = "tmp" dir_extensions = "extensions"
python = sys.executable python = sys.executable
git = os.environ.get('GIT', "git") git = os.environ.get('GIT', "git")
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113") index_url = os.environ.get('INDEX_URL', "")
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "a7ec1974d4ccb394c2dca275f42cd97490618924")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
args = shlex.split(commandline_args)
def extract_arg(args, name): def extract_arg(args, name):
return [x for x in args if x != name], name in args return [x for x in args if x != name], name in args
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test') def extract_opt(args, name):
opt = None
is_present = False
if name in args:
is_present = True
idx = args.index(name)
del args[idx]
if idx < len(args) and args[idx][0] != "-":
opt = args[idx]
del args[idx]
return args, is_present, opt
def repo_dir(name): def run(command, desc=None, errdesc=None, custom_env=None):
return os.path.join(dir_repos, name)
def run(command, desc=None, errdesc=None):
if desc is not None: if desc is not None:
print(desc) print(desc)
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, env=os.environ if custom_env is None else custom_env)
if result.returncode != 0: if result.returncode != 0:
@ -55,23 +51,11 @@ stderr: {result.stderr.decode(encoding="utf8", errors="ignore") if len(result.st
return result.stdout.decode(encoding="utf8", errors="ignore") return result.stdout.decode(encoding="utf8", errors="ignore")
def run_python(code, desc=None, errdesc=None):
return run(f'"{python}" -c "{code}"', desc, errdesc)
def run_pip(args, desc=None):
return run(f'"{python}" -m pip {args} --prefer-binary', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
def check_run(command): def check_run(command):
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
return result.returncode == 0 return result.returncode == 0
def check_run_python(code):
return check_run(f'"{python}" -c "{code}"')
def is_installed(package): def is_installed(package):
try: try:
spec = importlib.util.find_spec(package) spec = importlib.util.find_spec(package)
@ -81,10 +65,36 @@ def is_installed(package):
return spec is not None return spec is not None
def repo_dir(name):
return os.path.join(dir_repos, name)
def run_python(code, desc=None, errdesc=None):
return run(f'"{python}" -c "{code}"', desc, errdesc)
def run_pip(args, desc=None):
index_url_line = f' --index-url {index_url}' if index_url != '' else ''
return run(f'"{python}" -m pip {args} --prefer-binary{index_url_line}', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
def check_run_python(code):
return check_run(f'"{python}" -c "{code}"')
def git_clone(url, dir, name, commithash=None): def git_clone(url, dir, name, commithash=None):
# TODO clone into temporary dir and move if successful # TODO clone into temporary dir and move if successful
if os.path.exists(dir): if os.path.exists(dir):
if commithash is None:
return
current_hash = run(f'"{git}" -C {dir} rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}").strip()
if current_hash == commithash:
return
run(f'"{git}" -C {dir} fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}")
run(f'"{git}" -C {dir} checkout {commithash}', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}")
return return
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}") run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}")
@ -92,48 +102,194 @@ def git_clone(url, dir, name, commithash=None):
if commithash is not None: if commithash is not None:
run(f'"{git}" -C {dir} checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}") run(f'"{git}" -C {dir} checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
try: def version_check(commit):
commit = run(f"{git} rev-parse HEAD").strip() try:
except Exception: import requests
commit = "<none>" commits = requests.get('https://api.github.com/repos/AUTOMATIC1111/stable-diffusion-webui/branches/master').json()
if commit != "<none>" and commits['commit']['sha'] != commit:
print(f"Python {sys.version}") print("--------------------------------------------------------")
print(f"Commit hash: {commit}") print("| You are not up to date with the most recent release. |")
print("| Consider running `git pull` to update. |")
print("--------------------------------------------------------")
elif commits['commit']['sha'] == commit:
print("You are up to date with the most recent release.")
else:
print("Not a git clone, can't perform version check.")
except Exception as e:
print("version check failed", e)
if not is_installed("torch") or not is_installed("torchvision"): def run_extension_installer(extension_dir):
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch") path_installer = os.path.join(extension_dir, "install.py")
if not os.path.isfile(path_installer):
return
if not skip_torch_cuda_test: try:
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'") env = os.environ.copy()
env['PYTHONPATH'] = os.path.abspath(".")
if not is_installed("gfpgan"): print(run(f'"{python}" "{path_installer}"', errdesc=f"Error running install.py for extension {extension_dir}", custom_env=env))
run_pip(f"install {gfpgan_package}", "gfpgan") except Exception as e:
print(e, file=sys.stderr)
os.makedirs(dir_repos, exist_ok=True)
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash) def list_extensions(settings_file):
git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash) settings = {}
git_clone("https://github.com/crowsonkb/k-diffusion.git", repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash)
if not is_installed("lpips"): try:
run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer") if os.path.isfile(settings_file):
with open(settings_file, "r", encoding="utf8") as file:
settings = json.load(file)
except Exception as e:
print(e, file=sys.stderr)
run_pip(f"install -r {requirements_file}", "requirements for Web UI") disabled_extensions = set(settings.get('disabled_extensions', []))
sys.argv += args return [x for x in os.listdir(dir_extensions) if x not in disabled_extensions]
if "--exit" in args:
print("Exiting because of --exit argument")
exit(0)
def start_webui(): def run_extensions_installers(settings_file):
print(f"Launching Web UI with arguments: {' '.join(sys.argv[1:])}") if not os.path.isdir(dir_extensions):
return
for dirname_extension in list_extensions(settings_file):
run_extension_installer(os.path.join(dir_extensions, dirname_extension))
def prepare_environment():
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")
xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE', 'https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl')
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
taming_transformers_repo = os.environ.get('TAMING_TRANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
codeformer_repo = os.environ.get('CODEFORMER_REPO', 'https://github.com/sczhou/CodeFormer.git')
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "47b6b607fdd31875c9279cd2f4f16b92e4ea958e")
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "5b3af030dd83e0297272d861c19477735d0317ec")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
sys.argv += shlex.split(commandline_args)
parser = argparse.ArgumentParser()
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default='config.json')
args, _ = parser.parse_known_args(sys.argv)
sys.argv, _ = extract_arg(sys.argv, '-f')
sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test')
sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers')
sys.argv, update_check = extract_arg(sys.argv, '--update-check')
sys.argv, run_tests, test_dir = extract_opt(sys.argv, '--tests')
xformers = '--xformers' in sys.argv
ngrok = '--ngrok' in sys.argv
try:
commit = run(f"{git} rev-parse HEAD").strip()
except Exception:
commit = "<none>"
print(f"Python {sys.version}")
print(f"Commit hash: {commit}")
if not is_installed("torch") or not is_installed("torchvision"):
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch")
if not skip_torch_cuda_test:
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
if not is_installed("gfpgan"):
run_pip(f"install {gfpgan_package}", "gfpgan")
if not is_installed("clip"):
run_pip(f"install {clip_package}", "clip")
if not is_installed("open_clip"):
run_pip(f"install {openclip_package}", "open_clip")
if (not is_installed("xformers") or reinstall_xformers) and xformers:
if platform.system() == "Windows":
if platform.python_version().startswith("3.10"):
run_pip(f"install -U -I --no-deps {xformers_windows_package}", "xformers")
else:
print("Installation of xformers is not supported in this version of Python.")
print("You can also check this and build manually: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers#building-xformers-on-windows-by-duckness")
if not is_installed("xformers"):
exit(0)
elif platform.system() == "Linux":
run_pip("install xformers", "xformers")
if not is_installed("pyngrok") and ngrok:
run_pip("install pyngrok", "ngrok")
os.makedirs(dir_repos, exist_ok=True)
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)
if not is_installed("lpips"):
run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
run_extensions_installers(settings_file=args.ui_settings_file)
if update_check:
version_check(commit)
if "--exit" in sys.argv:
print("Exiting because of --exit argument")
exit(0)
if run_tests:
exitcode = tests(test_dir)
exit(exitcode)
def tests(test_dir):
if "--api" not in sys.argv:
sys.argv.append("--api")
if "--ckpt" not in sys.argv:
sys.argv.append("--ckpt")
sys.argv.append("./test/test_files/empty.pt")
if "--skip-torch-cuda-test" not in sys.argv:
sys.argv.append("--skip-torch-cuda-test")
print(f"Launching Web UI in another process for testing with arguments: {' '.join(sys.argv[1:])}")
with open('test/stdout.txt', "w", encoding="utf8") as stdout, open('test/stderr.txt', "w", encoding="utf8") as stderr:
proc = subprocess.Popen([sys.executable, *sys.argv], stdout=stdout, stderr=stderr)
import test.server_poll
exitcode = test.server_poll.run_tests(proc, test_dir)
print(f"Stopping Web UI process with id {proc.pid}")
proc.kill()
return exitcode
def start():
print(f"Launching {'API server' if '--nowebui' in sys.argv else 'Web UI'} with arguments: {' '.join(sys.argv[1:])}")
import webui import webui
webui.webui() if '--nowebui' in sys.argv:
webui.api_only()
else:
webui.webui()
if __name__ == "__main__": if __name__ == "__main__":
start_webui() prepare_environment()
start()

BIN
models/VAE-approx/model.pt Normal file

Binary file not shown.

View File

462
modules/api/api.py Normal file
View File

@ -0,0 +1,462 @@
import base64
import io
import time
import datetime
import uvicorn
from threading import Lock
from io import BytesIO
from gradio.processing_utils import decode_base64_to_file
from fastapi import APIRouter, Depends, FastAPI, HTTPException, Request, Response
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from secrets import compare_digest
import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.extras import run_extras, run_pnginfo
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image
from modules.sd_models import checkpoints_list, find_checkpoint_config
from modules.realesrgan_model import get_realesrgan_models
from modules import devices
from typing import List
def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
except:
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
def validate_sampler_name(name):
config = sd_samplers.all_samplers_map.get(name, None)
if config is None:
raise HTTPException(status_code=404, detail="Sampler not found")
return name
def setUpscalers(req: dict):
reqDict = vars(req)
reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1)
reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2)
reqDict.pop('upscaler_1')
reqDict.pop('upscaler_2')
return reqDict
def decode_base64_to_image(encoding):
if encoding.startswith("data:image/"):
encoding = encoding.split(";")[1].split(",")[1]
return Image.open(BytesIO(base64.b64decode(encoding)))
def encode_pil_to_base64(image):
with io.BytesIO() as output_bytes:
# Copy any text-only metadata
use_metadata = False
metadata = PngImagePlugin.PngInfo()
for key, value in image.info.items():
if isinstance(key, str) and isinstance(value, str):
metadata.add_text(key, value)
use_metadata = True
image.save(
output_bytes, "PNG", pnginfo=(metadata if use_metadata else None)
)
bytes_data = output_bytes.getvalue()
return base64.b64encode(bytes_data)
def api_middleware(app: FastAPI):
@app.middleware("http")
async def log_and_time(req: Request, call_next):
ts = time.time()
res: Response = await call_next(req)
duration = str(round(time.time() - ts, 4))
res.headers["X-Process-Time"] = duration
endpoint = req.scope.get('path', 'err')
if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'):
print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format(
t = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
code = res.status_code,
ver = req.scope.get('http_version', '0.0'),
cli = req.scope.get('client', ('0:0.0.0', 0))[0],
prot = req.scope.get('scheme', 'err'),
method = req.scope.get('method', 'err'),
endpoint = endpoint,
duration = duration,
))
return res
class Api:
def __init__(self, app: FastAPI, queue_lock: Lock):
if shared.cmd_opts.api_auth:
self.credentials = dict()
for auth in shared.cmd_opts.api_auth.split(","):
user, password = auth.split(":")
self.credentials[user] = password
self.router = APIRouter()
self.app = app
self.queue_lock = queue_lock
api_middleware(self.app)
self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=ProgressResponse)
self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=OptionsModel)
self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=FlagsModel)
self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[SamplerItem])
self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[UpscalerItem])
self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[SDModelItem])
self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[HypernetworkItem])
self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[FaceRestorerItem])
self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[RealesrganItem])
self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[PromptStyleItem])
self.add_api_route("/sdapi/v1/artist-categories", self.get_artists_categories, methods=["GET"], response_model=List[str])
self.add_api_route("/sdapi/v1/artists", self.get_artists, methods=["GET"], response_model=List[ArtistItem])
self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=EmbeddingsResponse)
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=CreateResponse)
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=CreateResponse)
self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=PreprocessResponse)
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=TrainResponse)
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=TrainResponse)
def add_api_route(self, path: str, endpoint, **kwargs):
if shared.cmd_opts.api_auth:
return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
return self.app.add_api_route(path, endpoint, **kwargs)
def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
if credentials.username in self.credentials:
if compare_digest(credentials.password, self.credentials[credentials.username]):
return True
raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
populate = txt2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
"do_not_save_samples": True,
"do_not_save_grid": True
}
)
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
with self.queue_lock:
p = StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **vars(populate))
shared.state.begin()
processed = process_images(p)
shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images))
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
init_images = img2imgreq.init_images
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
mask = img2imgreq.mask
if mask:
mask = decode_base64_to_image(mask)
populate = img2imgreq.copy(update={ # Override __init__ params
"sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
"do_not_save_samples": True,
"do_not_save_grid": True,
"mask": mask
}
)
if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on
args = vars(populate)
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
with self.queue_lock:
p = StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)
p.init_images = [decode_base64_to_image(x) for x in init_images]
shared.state.begin()
processed = process_images(p)
shared.state.end()
b64images = list(map(encode_pil_to_base64, processed.images))
if not img2imgreq.include_init_images:
img2imgreq.init_images = None
img2imgreq.mask = None
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
reqDict = setUpscalers(req)
reqDict['image'] = decode_base64_to_image(reqDict['image'])
with self.queue_lock:
result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
reqDict = setUpscalers(req)
def prepareFiles(file):
file = decode_base64_to_file(file.data, file_path=file.name)
file.orig_name = file.name
return file
reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
reqDict.pop('imageList')
with self.queue_lock:
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
def pnginfoapi(self, req: PNGInfoRequest):
if(not req.image.strip()):
return PNGInfoResponse(info="")
result = run_pnginfo(decode_base64_to_image(req.image.strip()))
return PNGInfoResponse(info=result[1])
def progressapi(self, req: ProgressRequest = Depends()):
# copy from check_progress_call of ui.py
if shared.state.job_count == 0:
return ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict())
# avoid dividing zero
progress = 0.01
if shared.state.job_count > 0:
progress += shared.state.job_no / shared.state.job_count
if shared.state.sampling_steps > 0:
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
time_since_start = time.time() - shared.state.time_start
eta = (time_since_start/progress)
eta_relative = eta-time_since_start
progress = min(progress, 1)
shared.state.set_current_image()
current_image = None
if shared.state.current_image and not req.skip_current_image:
current_image = encode_pil_to_base64(shared.state.current_image)
return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image)
def interrogateapi(self, interrogatereq: InterrogateRequest):
image_b64 = interrogatereq.image
if image_b64 is None:
raise HTTPException(status_code=404, detail="Image not found")
img = decode_base64_to_image(image_b64)
img = img.convert('RGB')
# Override object param
with self.queue_lock:
if interrogatereq.model == "clip":
processed = shared.interrogator.interrogate(img)
elif interrogatereq.model == "deepdanbooru":
processed = deepbooru.model.tag(img)
else:
raise HTTPException(status_code=404, detail="Model not found")
return InterrogateResponse(caption=processed)
def interruptapi(self):
shared.state.interrupt()
return {}
def skip(self):
shared.state.skip()
def get_config(self):
options = {}
for key in shared.opts.data.keys():
metadata = shared.opts.data_labels.get(key)
if(metadata is not None):
options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
else:
options.update({key: shared.opts.data.get(key, None)})
return options
def set_config(self, req: Dict[str, Any]):
for k, v in req.items():
shared.opts.set(k, v)
shared.opts.save(shared.config_filename)
return
def get_cmd_flags(self):
return vars(shared.cmd_opts)
def get_samplers(self):
return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
def get_upscalers(self):
upscalers = []
for upscaler in shared.sd_upscalers:
u = upscaler.scaler
upscalers.append({"name":u.name, "model_name":u.model_name, "model_path":u.model_path, "model_url":u.model_url})
return upscalers
def get_sd_models(self):
return [{"title":x.title, "model_name":x.model_name, "hash":x.hash, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()]
def get_hypernetworks(self):
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]
def get_face_restorers(self):
return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]
def get_realesrgan_models(self):
return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]
def get_prompt_styles(self):
styleList = []
for k in shared.prompt_styles.styles:
style = shared.prompt_styles.styles[k]
styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})
return styleList
def get_artists_categories(self):
return shared.artist_db.cats
def get_artists(self):
return [{"name":x[0], "score":x[1], "category":x[2]} for x in shared.artist_db.artists]
def get_embeddings(self):
db = sd_hijack.model_hijack.embedding_db
def convert_embedding(embedding):
return {
"step": embedding.step,
"sd_checkpoint": embedding.sd_checkpoint,
"sd_checkpoint_name": embedding.sd_checkpoint_name,
"shape": embedding.shape,
"vectors": embedding.vectors,
}
def convert_embeddings(embeddings):
return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}
return {
"loaded": convert_embeddings(db.word_embeddings),
"skipped": convert_embeddings(db.skipped_embeddings),
}
def refresh_checkpoints(self):
shared.refresh_checkpoints()
def create_embedding(self, args: dict):
try:
shared.state.begin()
filename = create_embedding(**args) # create empty embedding
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
shared.state.end()
return CreateResponse(info = "create embedding filename: {filename}".format(filename = filename))
except AssertionError as e:
shared.state.end()
return TrainResponse(info = "create embedding error: {error}".format(error = e))
def create_hypernetwork(self, args: dict):
try:
shared.state.begin()
filename = create_hypernetwork(**args) # create empty embedding
shared.state.end()
return CreateResponse(info = "create hypernetwork filename: {filename}".format(filename = filename))
except AssertionError as e:
shared.state.end()
return TrainResponse(info = "create hypernetwork error: {error}".format(error = e))
def preprocess(self, args: dict):
try:
shared.state.begin()
preprocess(**args) # quick operation unless blip/booru interrogation is enabled
shared.state.end()
return PreprocessResponse(info = 'preprocess complete')
except KeyError as e:
shared.state.end()
return PreprocessResponse(info = "preprocess error: invalid token: {error}".format(error = e))
except AssertionError as e:
shared.state.end()
return PreprocessResponse(info = "preprocess error: {error}".format(error = e))
except FileNotFoundError as e:
shared.state.end()
return PreprocessResponse(info = 'preprocess error: {error}'.format(error = e))
def train_embedding(self, args: dict):
try:
shared.state.begin()
apply_optimizations = shared.opts.training_xattention_optimizations
error = None
filename = ''
if not apply_optimizations:
sd_hijack.undo_optimizations()
try:
embedding, filename = train_embedding(**args) # can take a long time to complete
except Exception as e:
error = e
finally:
if not apply_optimizations:
sd_hijack.apply_optimizations()
shared.state.end()
return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
except AssertionError as msg:
shared.state.end()
return TrainResponse(info = "train embedding error: {msg}".format(msg = msg))
def train_hypernetwork(self, args: dict):
try:
shared.state.begin()
initial_hypernetwork = shared.loaded_hypernetwork
apply_optimizations = shared.opts.training_xattention_optimizations
error = None
filename = ''
if not apply_optimizations:
sd_hijack.undo_optimizations()
try:
hypernetwork, filename = train_hypernetwork(*args)
except Exception as e:
error = e
finally:
shared.loaded_hypernetwork = initial_hypernetwork
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
if not apply_optimizations:
sd_hijack.apply_optimizations()
shared.state.end()
return TrainResponse(info = "train embedding complete: filename: {filename} error: {error}".format(filename = filename, error = error))
except AssertionError as msg:
shared.state.end()
return TrainResponse(info = "train embedding error: {error}".format(error = error))
def launch(self, server_name, port):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port)

261
modules/api/models.py Normal file
View File

@ -0,0 +1,261 @@
import inspect
from pydantic import BaseModel, Field, create_model
from typing import Any, Optional
from typing_extensions import Literal
from inflection import underscore
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
from modules.shared import sd_upscalers, opts, parser
from typing import Dict, List
API_NOT_ALLOWED = [
"self",
"kwargs",
"sd_model",
"outpath_samples",
"outpath_grids",
"sampler_index",
"do_not_save_samples",
"do_not_save_grid",
"extra_generation_params",
"overlay_images",
"do_not_reload_embeddings",
"seed_enable_extras",
"prompt_for_display",
"sampler_noise_scheduler_override",
"ddim_discretize"
]
class ModelDef(BaseModel):
"""Assistance Class for Pydantic Dynamic Model Generation"""
field: str
field_alias: str
field_type: Any
field_value: Any
field_exclude: bool = False
class PydanticModelGenerator:
"""
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
source_data is a snapshot of the default values produced by the class
params are the names of the actual keys required by __init__
"""
def __init__(
self,
model_name: str = None,
class_instance = None,
additional_fields = None,
):
def field_type_generator(k, v):
# field_type = str if not overrides.get(k) else overrides[k]["type"]
# print(k, v.annotation, v.default)
field_type = v.annotation
return Optional[field_type]
def merge_class_params(class_):
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
parameters = {}
for classes in all_classes:
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
return parameters
self._model_name = model_name
self._class_data = merge_class_params(class_instance)
self._model_def = [
ModelDef(
field=underscore(k),
field_alias=k,
field_type=field_type_generator(k, v),
field_value=v.default
)
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
]
for fields in additional_fields:
self._model_def.append(ModelDef(
field=underscore(fields["key"]),
field_alias=fields["key"],
field_type=fields["type"],
field_value=fields["default"],
field_exclude=fields["exclude"] if "exclude" in fields else False))
def generate_model(self):
"""
Creates a pydantic BaseModel
from the json and overrides provided at initialization
"""
fields = {
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias, exclude=d.field_exclude)) for d in self._model_def
}
DynamicModel = create_model(self._model_name, **fields)
DynamicModel.__config__.allow_population_by_field_name = True
DynamicModel.__config__.allow_mutation = True
return DynamicModel
StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingTxt2Img",
StableDiffusionProcessingTxt2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}]
).generate_model()
StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
"StableDiffusionProcessingImg2Img",
StableDiffusionProcessingImg2Img,
[{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}]
).generate_model()
class TextToImageResponse(BaseModel):
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
parameters: dict
info: str
class ImageToImageResponse(BaseModel):
images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
parameters: dict
info: str
class ExtrasBaseRequest(BaseModel):
resize_mode: Literal[0, 1] = Field(default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.")
show_extras_results: bool = Field(default=True, title="Show results", description="Should the backend return the generated image?")
gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False, description="Sets the weight of CodeFormer, values should be between 0 and 1.")
upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=4, description="By how much to upscale the image, only used when resize_mode=0.")
upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1, description="Target width for the upscaler to hit. Only used when resize_mode=1.")
upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1, description="Target height for the upscaler to hit. Only used when resize_mode=1.")
upscaling_crop: bool = Field(default=True, title="Crop to fit", description="Should the upscaler crop the image to fit in the chosen size?")
upscaler_1: str = Field(default="None", title="Main upscaler", description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
upscaler_2: str = Field(default="None", title="Secondary upscaler", description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1, allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
upscale_first: bool = Field(default=False, title="Upscale first", description="Should the upscaler run before restoring faces?")
class ExtraBaseResponse(BaseModel):
html_info: str = Field(title="HTML info", description="A series of HTML tags containing the process info.")
class ExtrasSingleImageRequest(ExtrasBaseRequest):
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
class ExtrasSingleImageResponse(ExtraBaseResponse):
image: str = Field(default=None, title="Image", description="The generated image in base64 format.")
class FileData(BaseModel):
data: str = Field(title="File data", description="Base64 representation of the file")
name: str = Field(title="File name")
class ExtrasBatchImagesRequest(ExtrasBaseRequest):
imageList: List[FileData] = Field(title="Images", description="List of images to work on. Must be Base64 strings")
class ExtrasBatchImagesResponse(ExtraBaseResponse):
images: List[str] = Field(title="Images", description="The generated images in base64 format.")
class PNGInfoRequest(BaseModel):
image: str = Field(title="Image", description="The base64 encoded PNG image")
class PNGInfoResponse(BaseModel):
info: str = Field(title="Image info", description="A string with all the info the image had")
class ProgressRequest(BaseModel):
skip_current_image: bool = Field(default=False, title="Skip current image", description="Skip current image serialization")
class ProgressResponse(BaseModel):
progress: float = Field(title="Progress", description="The progress with a range of 0 to 1")
eta_relative: float = Field(title="ETA in secs")
state: dict = Field(title="State", description="The current state snapshot")
current_image: str = Field(default=None, title="Current image", description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")
class InterrogateRequest(BaseModel):
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
model: str = Field(default="clip", title="Model", description="The interrogate model used.")
class InterrogateResponse(BaseModel):
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")
class TrainResponse(BaseModel):
info: str = Field(title="Train info", description="Response string from train embedding or hypernetwork task.")
class CreateResponse(BaseModel):
info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.")
class PreprocessResponse(BaseModel):
info: str = Field(title="Preprocess info", description="Response string from preprocessing task.")
fields = {}
for key, metadata in opts.data_labels.items():
value = opts.data.get(key)
optType = opts.typemap.get(type(metadata.default), type(value))
if (metadata is not None):
fields.update({key: (Optional[optType], Field(
default=metadata.default ,description=metadata.label))})
else:
fields.update({key: (Optional[optType], Field())})
OptionsModel = create_model("Options", **fields)
flags = {}
_options = vars(parser)['_option_string_actions']
for key in _options:
if(_options[key].dest != 'help'):
flag = _options[key]
_type = str
if _options[key].default is not None: _type = type(_options[key].default)
flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))})
FlagsModel = create_model("Flags", **flags)
class SamplerItem(BaseModel):
name: str = Field(title="Name")
aliases: List[str] = Field(title="Aliases")
options: Dict[str, str] = Field(title="Options")
class UpscalerItem(BaseModel):
name: str = Field(title="Name")
model_name: Optional[str] = Field(title="Model Name")
model_path: Optional[str] = Field(title="Path")
model_url: Optional[str] = Field(title="URL")
class SDModelItem(BaseModel):
title: str = Field(title="Title")
model_name: str = Field(title="Model Name")
hash: str = Field(title="Hash")
filename: str = Field(title="Filename")
config: str = Field(title="Config file")
class HypernetworkItem(BaseModel):
name: str = Field(title="Name")
path: Optional[str] = Field(title="Path")
class FaceRestorerItem(BaseModel):
name: str = Field(title="Name")
cmd_dir: Optional[str] = Field(title="Path")
class RealesrganItem(BaseModel):
name: str = Field(title="Name")
path: Optional[str] = Field(title="Path")
scale: Optional[int] = Field(title="Scale")
class PromptStyleItem(BaseModel):
name: str = Field(title="Name")
prompt: Optional[str] = Field(title="Prompt")
negative_prompt: Optional[str] = Field(title="Negative Prompt")
class ArtistItem(BaseModel):
name: str = Field(title="Name")
score: float = Field(title="Score")
category: str = Field(title="Category")
class EmbeddingItem(BaseModel):
step: Optional[int] = Field(title="Step", description="The number of steps that were used to train this embedding, if available")
sd_checkpoint: Optional[str] = Field(title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available")
sd_checkpoint_name: Optional[str] = Field(title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead")
shape: int = Field(title="Shape", description="The length of each individual vector in the embedding")
vectors: int = Field(title="Vectors", description="The number of vectors in the embedding")
class EmbeddingsResponse(BaseModel):
loaded: Dict[str, EmbeddingItem] = Field(title="Loaded", description="Embeddings loaded for the current model")
skipped: Dict[str, EmbeddingItem] = Field(title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)")

View File

@ -1,102 +0,0 @@
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
def initialize_weights(net_l, scale=1):
if not isinstance(net_l, list):
net_l = [net_l]
for net in net_l:
for m in net.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale # for residual block
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.kaiming_normal_(m.weight, a=0, mode='fan_in')
m.weight.data *= scale
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias.data, 0.0)
def make_layer(block, n_layers):
layers = []
for _ in range(n_layers):
layers.append(block())
return nn.Sequential(*layers)
class ResidualDenseBlock_5C(nn.Module):
def __init__(self, nf=64, gc=32, bias=True):
super(ResidualDenseBlock_5C, self).__init__()
# gc: growth channel, i.e. intermediate channels
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
# initialization
initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
def forward(self, x):
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
class RRDB(nn.Module):
'''Residual in Residual Dense Block'''
def __init__(self, nf, gc=32):
super(RRDB, self).__init__()
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
def forward(self, x):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
class RRDBNet(nn.Module):
def __init__(self, in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4):
super(RRDBNet, self).__init__()
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
self.sf = sf
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
self.RRDB_trunk = make_layer(RRDB_block_f, nb)
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
#### upsampling
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
if self.sf==4:
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
fea = self.conv_first(x)
trunk = self.trunk_conv(self.RRDB_trunk(fea))
fea = fea + trunk
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
if self.sf==4:
fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
out = self.conv_last(self.lrelu(self.HRconv(fea)))
return out

98
modules/call_queue.py Normal file
View File

@ -0,0 +1,98 @@
import html
import sys
import threading
import traceback
import time
from modules import shared
queue_lock = threading.Lock()
def wrap_queued_call(func):
def f(*args, **kwargs):
with queue_lock:
res = func(*args, **kwargs)
return res
return f
def wrap_gradio_gpu_call(func, extra_outputs=None):
def f(*args, **kwargs):
shared.state.begin()
with queue_lock:
res = func(*args, **kwargs)
shared.state.end()
return res
return wrap_gradio_call(f, extra_outputs=extra_outputs, add_stats=True)
def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
def f(*args, extra_outputs_array=extra_outputs, **kwargs):
run_memmon = shared.opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled and add_stats
if run_memmon:
shared.mem_mon.monitor()
t = time.perf_counter()
try:
res = list(func(*args, **kwargs))
except Exception as e:
# When printing out our debug argument list, do not print out more than a MB of text
max_debug_str_len = 131072 # (1024*1024)/8
print("Error completing request", file=sys.stderr)
argStr = f"Arguments: {str(args)} {str(kwargs)}"
print(argStr[:max_debug_str_len], file=sys.stderr)
if len(argStr) > max_debug_str_len:
print(f"(Argument list truncated at {max_debug_str_len}/{len(argStr)} characters)", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
shared.state.job = ""
shared.state.job_count = 0
if extra_outputs_array is None:
extra_outputs_array = [None, '']
res = extra_outputs_array + [f"<div class='error'>{html.escape(type(e).__name__+': '+str(e))}</div>"]
shared.state.skipped = False
shared.state.interrupted = False
shared.state.job_count = 0
if not add_stats:
return tuple(res)
elapsed = time.perf_counter() - t
elapsed_m = int(elapsed // 60)
elapsed_s = elapsed % 60
elapsed_text = f"{elapsed_s:.2f}s"
if elapsed_m > 0:
elapsed_text = f"{elapsed_m}m "+elapsed_text
if run_memmon:
mem_stats = {k: -(v//-(1024*1024)) for k, v in shared.mem_mon.stop().items()}
active_peak = mem_stats['active_peak']
reserved_peak = mem_stats['reserved_peak']
sys_peak = mem_stats['system_peak']
sys_total = mem_stats['total']
sys_pct = round(sys_peak/max(sys_total, 1) * 100, 2)
vram_html = f"<p class='vram'>Torch active/reserved: {active_peak}/{reserved_peak} MiB, <wbr>Sys VRAM: {sys_peak}/{sys_total} MiB ({sys_pct}%)</p>"
else:
vram_html = ''
# last item is always HTML
res[-1] += f"<div class='performance'><p class='time'>Time taken: <wbr>{elapsed_text}</p>{vram_html}</div>"
return tuple(res)
return f

View File

@ -382,7 +382,7 @@ class VQAutoEncoder(nn.Module):
self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
logger.info(f'vqgan is loaded from: {model_path} [params]') logger.info(f'vqgan is loaded from: {model_path} [params]')
else: else:
raise ValueError(f'Wrong params!') raise ValueError('Wrong params!')
def forward(self, x): def forward(self, x):
@ -431,7 +431,7 @@ class VQGANDiscriminator(nn.Module):
elif 'params' in chkpt: elif 'params' in chkpt:
self.load_state_dict(torch.load(model_path, map_location='cpu')['params']) self.load_state_dict(torch.load(model_path, map_location='cpu')['params'])
else: else:
raise ValueError(f'Wrong params!') raise ValueError('Wrong params!')
def forward(self, x): def forward(self, x):
return self.main(x) return self.main(x)

View File

@ -36,6 +36,7 @@ def setup_model(dirname):
from basicsr.utils.download_util import load_file_from_url from basicsr.utils.download_util import load_file_from_url
from basicsr.utils import imwrite, img2tensor, tensor2img from basicsr.utils import imwrite, img2tensor, tensor2img
from facelib.utils.face_restoration_helper import FaceRestoreHelper from facelib.utils.face_restoration_helper import FaceRestoreHelper
from facelib.detection.retinaface import retinaface
from modules.shared import cmd_opts from modules.shared import cmd_opts
net_class = CodeFormer net_class = CodeFormer
@ -65,14 +66,20 @@ def setup_model(dirname):
net.load_state_dict(checkpoint) net.load_state_dict(checkpoint)
net.eval() net.eval()
if hasattr(retinaface, 'device'):
retinaface.device = devices.device_codeformer
face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer) face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer)
self.net = net self.net = net
self.face_helper = face_helper self.face_helper = face_helper
self.net.to(devices.device_codeformer)
return net, face_helper return net, face_helper
def send_model_to(self, device):
self.net.to(device)
self.face_helper.face_det.to(device)
self.face_helper.face_parse.to(device)
def restore(self, np_image, w=None): def restore(self, np_image, w=None):
np_image = np_image[:, :, ::-1] np_image = np_image[:, :, ::-1]
@ -82,6 +89,8 @@ def setup_model(dirname):
if self.net is None or self.face_helper is None: if self.net is None or self.face_helper is None:
return np_image return np_image
self.send_model_to(devices.device_codeformer)
self.face_helper.clean_all() self.face_helper.clean_all()
self.face_helper.read_image(np_image) self.face_helper.read_image(np_image)
self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5)
@ -113,8 +122,10 @@ def setup_model(dirname):
if original_resolution != restored_img.shape[0:2]: if original_resolution != restored_img.shape[0:2]:
restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR) restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR)
self.face_helper.clean_all()
if shared.opts.face_restoration_unload: if shared.opts.face_restoration_unload:
self.net.to(devices.cpu) self.send_model_to(devices.cpu)
return restored_img return restored_img

99
modules/deepbooru.py Normal file
View File

@ -0,0 +1,99 @@
import os
import re
import torch
from PIL import Image
import numpy as np
from modules import modelloader, paths, deepbooru_model, devices, images, shared
re_special = re.compile(r'([\\()])')
class DeepDanbooru:
def __init__(self):
self.model = None
def load(self):
if self.model is not None:
return
files = modelloader.load_models(
model_path=os.path.join(paths.models_path, "torch_deepdanbooru"),
model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt',
ext_filter=[".pt"],
download_name='model-resnet_custom_v3.pt',
)
self.model = deepbooru_model.DeepDanbooruModel()
self.model.load_state_dict(torch.load(files[0], map_location="cpu"))
self.model.eval()
self.model.to(devices.cpu, devices.dtype)
def start(self):
self.load()
self.model.to(devices.device)
def stop(self):
if not shared.opts.interrogate_keep_models_in_memory:
self.model.to(devices.cpu)
devices.torch_gc()
def tag(self, pil_image):
self.start()
res = self.tag_multi(pil_image)
self.stop()
return res
def tag_multi(self, pil_image, force_disable_ranks=False):
threshold = shared.opts.interrogate_deepbooru_score_threshold
use_spaces = shared.opts.deepbooru_use_spaces
use_escape = shared.opts.deepbooru_escape
alpha_sort = shared.opts.deepbooru_sort_alpha
include_ranks = shared.opts.interrogate_return_ranks and not force_disable_ranks
pic = images.resize_image(2, pil_image.convert("RGB"), 512, 512)
a = np.expand_dims(np.array(pic, dtype=np.float32), 0) / 255
with torch.no_grad(), devices.autocast():
x = torch.from_numpy(a).to(devices.device)
y = self.model(x)[0].detach().cpu().numpy()
probability_dict = {}
for tag, probability in zip(self.model.tags, y):
if probability < threshold:
continue
if tag.startswith("rating:"):
continue
probability_dict[tag] = probability
if alpha_sort:
tags = sorted(probability_dict)
else:
tags = [tag for tag, _ in sorted(probability_dict.items(), key=lambda x: -x[1])]
res = []
filtertags = set([x.strip().replace(' ', '_') for x in shared.opts.deepbooru_filter_tags.split(",")])
for tag in [x for x in tags if x not in filtertags]:
probability = probability_dict[tag]
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace('_', ' ')
if use_escape:
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{probability:.3f})"
res.append(tag_outformat)
return ", ".join(res)
model = DeepDanbooru()

676
modules/deepbooru_model.py Normal file
View File

@ -0,0 +1,676 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
class DeepDanbooruModel(nn.Module):
def __init__(self):
super(DeepDanbooruModel, self).__init__()
self.tags = []
self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2))
self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64)
self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2))
self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128)
self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2))
self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2))
self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256)
self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2))
self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2))
self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512)
self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2))
self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2))
self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024)
self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2))
self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False)
def forward(self, *inputs):
t_358, = inputs
t_359 = t_358.permute(*[0, 3, 1, 2])
t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
t_360 = self.n_Conv_0(t_359_padded)
t_361 = F.relu(t_360)
t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
t_362 = self.n_MaxPool_0(t_361)
t_363 = self.n_Conv_1(t_362)
t_364 = self.n_Conv_2(t_362)
t_365 = F.relu(t_364)
t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0)
t_366 = self.n_Conv_3(t_365_padded)
t_367 = F.relu(t_366)
t_368 = self.n_Conv_4(t_367)
t_369 = torch.add(t_368, t_363)
t_370 = F.relu(t_369)
t_371 = self.n_Conv_5(t_370)
t_372 = F.relu(t_371)
t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0)
t_373 = self.n_Conv_6(t_372_padded)
t_374 = F.relu(t_373)
t_375 = self.n_Conv_7(t_374)
t_376 = torch.add(t_375, t_370)
t_377 = F.relu(t_376)
t_378 = self.n_Conv_8(t_377)
t_379 = F.relu(t_378)
t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0)
t_380 = self.n_Conv_9(t_379_padded)
t_381 = F.relu(t_380)
t_382 = self.n_Conv_10(t_381)
t_383 = torch.add(t_382, t_377)
t_384 = F.relu(t_383)
t_385 = self.n_Conv_11(t_384)
t_386 = self.n_Conv_12(t_384)
t_387 = F.relu(t_386)
t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0)
t_388 = self.n_Conv_13(t_387_padded)
t_389 = F.relu(t_388)
t_390 = self.n_Conv_14(t_389)
t_391 = torch.add(t_390, t_385)
t_392 = F.relu(t_391)
t_393 = self.n_Conv_15(t_392)
t_394 = F.relu(t_393)
t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0)
t_395 = self.n_Conv_16(t_394_padded)
t_396 = F.relu(t_395)
t_397 = self.n_Conv_17(t_396)
t_398 = torch.add(t_397, t_392)
t_399 = F.relu(t_398)
t_400 = self.n_Conv_18(t_399)
t_401 = F.relu(t_400)
t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0)
t_402 = self.n_Conv_19(t_401_padded)
t_403 = F.relu(t_402)
t_404 = self.n_Conv_20(t_403)
t_405 = torch.add(t_404, t_399)
t_406 = F.relu(t_405)
t_407 = self.n_Conv_21(t_406)
t_408 = F.relu(t_407)
t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0)
t_409 = self.n_Conv_22(t_408_padded)
t_410 = F.relu(t_409)
t_411 = self.n_Conv_23(t_410)
t_412 = torch.add(t_411, t_406)
t_413 = F.relu(t_412)
t_414 = self.n_Conv_24(t_413)
t_415 = F.relu(t_414)
t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0)
t_416 = self.n_Conv_25(t_415_padded)
t_417 = F.relu(t_416)
t_418 = self.n_Conv_26(t_417)
t_419 = torch.add(t_418, t_413)
t_420 = F.relu(t_419)
t_421 = self.n_Conv_27(t_420)
t_422 = F.relu(t_421)
t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0)
t_423 = self.n_Conv_28(t_422_padded)
t_424 = F.relu(t_423)
t_425 = self.n_Conv_29(t_424)
t_426 = torch.add(t_425, t_420)
t_427 = F.relu(t_426)
t_428 = self.n_Conv_30(t_427)
t_429 = F.relu(t_428)
t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0)
t_430 = self.n_Conv_31(t_429_padded)
t_431 = F.relu(t_430)
t_432 = self.n_Conv_32(t_431)
t_433 = torch.add(t_432, t_427)
t_434 = F.relu(t_433)
t_435 = self.n_Conv_33(t_434)
t_436 = F.relu(t_435)
t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0)
t_437 = self.n_Conv_34(t_436_padded)
t_438 = F.relu(t_437)
t_439 = self.n_Conv_35(t_438)
t_440 = torch.add(t_439, t_434)
t_441 = F.relu(t_440)
t_442 = self.n_Conv_36(t_441)
t_443 = self.n_Conv_37(t_441)
t_444 = F.relu(t_443)
t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0)
t_445 = self.n_Conv_38(t_444_padded)
t_446 = F.relu(t_445)
t_447 = self.n_Conv_39(t_446)
t_448 = torch.add(t_447, t_442)
t_449 = F.relu(t_448)
t_450 = self.n_Conv_40(t_449)
t_451 = F.relu(t_450)
t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0)
t_452 = self.n_Conv_41(t_451_padded)
t_453 = F.relu(t_452)
t_454 = self.n_Conv_42(t_453)
t_455 = torch.add(t_454, t_449)
t_456 = F.relu(t_455)
t_457 = self.n_Conv_43(t_456)
t_458 = F.relu(t_457)
t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0)
t_459 = self.n_Conv_44(t_458_padded)
t_460 = F.relu(t_459)
t_461 = self.n_Conv_45(t_460)
t_462 = torch.add(t_461, t_456)
t_463 = F.relu(t_462)
t_464 = self.n_Conv_46(t_463)
t_465 = F.relu(t_464)
t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0)
t_466 = self.n_Conv_47(t_465_padded)
t_467 = F.relu(t_466)
t_468 = self.n_Conv_48(t_467)
t_469 = torch.add(t_468, t_463)
t_470 = F.relu(t_469)
t_471 = self.n_Conv_49(t_470)
t_472 = F.relu(t_471)
t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0)
t_473 = self.n_Conv_50(t_472_padded)
t_474 = F.relu(t_473)
t_475 = self.n_Conv_51(t_474)
t_476 = torch.add(t_475, t_470)
t_477 = F.relu(t_476)
t_478 = self.n_Conv_52(t_477)
t_479 = F.relu(t_478)
t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0)
t_480 = self.n_Conv_53(t_479_padded)
t_481 = F.relu(t_480)
t_482 = self.n_Conv_54(t_481)
t_483 = torch.add(t_482, t_477)
t_484 = F.relu(t_483)
t_485 = self.n_Conv_55(t_484)
t_486 = F.relu(t_485)
t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0)
t_487 = self.n_Conv_56(t_486_padded)
t_488 = F.relu(t_487)
t_489 = self.n_Conv_57(t_488)
t_490 = torch.add(t_489, t_484)
t_491 = F.relu(t_490)
t_492 = self.n_Conv_58(t_491)
t_493 = F.relu(t_492)
t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0)
t_494 = self.n_Conv_59(t_493_padded)
t_495 = F.relu(t_494)
t_496 = self.n_Conv_60(t_495)
t_497 = torch.add(t_496, t_491)
t_498 = F.relu(t_497)
t_499 = self.n_Conv_61(t_498)
t_500 = F.relu(t_499)
t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0)
t_501 = self.n_Conv_62(t_500_padded)
t_502 = F.relu(t_501)
t_503 = self.n_Conv_63(t_502)
t_504 = torch.add(t_503, t_498)
t_505 = F.relu(t_504)
t_506 = self.n_Conv_64(t_505)
t_507 = F.relu(t_506)
t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0)
t_508 = self.n_Conv_65(t_507_padded)
t_509 = F.relu(t_508)
t_510 = self.n_Conv_66(t_509)
t_511 = torch.add(t_510, t_505)
t_512 = F.relu(t_511)
t_513 = self.n_Conv_67(t_512)
t_514 = F.relu(t_513)
t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0)
t_515 = self.n_Conv_68(t_514_padded)
t_516 = F.relu(t_515)
t_517 = self.n_Conv_69(t_516)
t_518 = torch.add(t_517, t_512)
t_519 = F.relu(t_518)
t_520 = self.n_Conv_70(t_519)
t_521 = F.relu(t_520)
t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0)
t_522 = self.n_Conv_71(t_521_padded)
t_523 = F.relu(t_522)
t_524 = self.n_Conv_72(t_523)
t_525 = torch.add(t_524, t_519)
t_526 = F.relu(t_525)
t_527 = self.n_Conv_73(t_526)
t_528 = F.relu(t_527)
t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0)
t_529 = self.n_Conv_74(t_528_padded)
t_530 = F.relu(t_529)
t_531 = self.n_Conv_75(t_530)
t_532 = torch.add(t_531, t_526)
t_533 = F.relu(t_532)
t_534 = self.n_Conv_76(t_533)
t_535 = F.relu(t_534)
t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0)
t_536 = self.n_Conv_77(t_535_padded)
t_537 = F.relu(t_536)
t_538 = self.n_Conv_78(t_537)
t_539 = torch.add(t_538, t_533)
t_540 = F.relu(t_539)
t_541 = self.n_Conv_79(t_540)
t_542 = F.relu(t_541)
t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0)
t_543 = self.n_Conv_80(t_542_padded)
t_544 = F.relu(t_543)
t_545 = self.n_Conv_81(t_544)
t_546 = torch.add(t_545, t_540)
t_547 = F.relu(t_546)
t_548 = self.n_Conv_82(t_547)
t_549 = F.relu(t_548)
t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0)
t_550 = self.n_Conv_83(t_549_padded)
t_551 = F.relu(t_550)
t_552 = self.n_Conv_84(t_551)
t_553 = torch.add(t_552, t_547)
t_554 = F.relu(t_553)
t_555 = self.n_Conv_85(t_554)
t_556 = F.relu(t_555)
t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0)
t_557 = self.n_Conv_86(t_556_padded)
t_558 = F.relu(t_557)
t_559 = self.n_Conv_87(t_558)
t_560 = torch.add(t_559, t_554)
t_561 = F.relu(t_560)
t_562 = self.n_Conv_88(t_561)
t_563 = F.relu(t_562)
t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0)
t_564 = self.n_Conv_89(t_563_padded)
t_565 = F.relu(t_564)
t_566 = self.n_Conv_90(t_565)
t_567 = torch.add(t_566, t_561)
t_568 = F.relu(t_567)
t_569 = self.n_Conv_91(t_568)
t_570 = F.relu(t_569)
t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0)
t_571 = self.n_Conv_92(t_570_padded)
t_572 = F.relu(t_571)
t_573 = self.n_Conv_93(t_572)
t_574 = torch.add(t_573, t_568)
t_575 = F.relu(t_574)
t_576 = self.n_Conv_94(t_575)
t_577 = F.relu(t_576)
t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0)
t_578 = self.n_Conv_95(t_577_padded)
t_579 = F.relu(t_578)
t_580 = self.n_Conv_96(t_579)
t_581 = torch.add(t_580, t_575)
t_582 = F.relu(t_581)
t_583 = self.n_Conv_97(t_582)
t_584 = F.relu(t_583)
t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0)
t_585 = self.n_Conv_98(t_584_padded)
t_586 = F.relu(t_585)
t_587 = self.n_Conv_99(t_586)
t_588 = self.n_Conv_100(t_582)
t_589 = torch.add(t_587, t_588)
t_590 = F.relu(t_589)
t_591 = self.n_Conv_101(t_590)
t_592 = F.relu(t_591)
t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0)
t_593 = self.n_Conv_102(t_592_padded)
t_594 = F.relu(t_593)
t_595 = self.n_Conv_103(t_594)
t_596 = torch.add(t_595, t_590)
t_597 = F.relu(t_596)
t_598 = self.n_Conv_104(t_597)
t_599 = F.relu(t_598)
t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0)
t_600 = self.n_Conv_105(t_599_padded)
t_601 = F.relu(t_600)
t_602 = self.n_Conv_106(t_601)
t_603 = torch.add(t_602, t_597)
t_604 = F.relu(t_603)
t_605 = self.n_Conv_107(t_604)
t_606 = F.relu(t_605)
t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0)
t_607 = self.n_Conv_108(t_606_padded)
t_608 = F.relu(t_607)
t_609 = self.n_Conv_109(t_608)
t_610 = torch.add(t_609, t_604)
t_611 = F.relu(t_610)
t_612 = self.n_Conv_110(t_611)
t_613 = F.relu(t_612)
t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0)
t_614 = self.n_Conv_111(t_613_padded)
t_615 = F.relu(t_614)
t_616 = self.n_Conv_112(t_615)
t_617 = torch.add(t_616, t_611)
t_618 = F.relu(t_617)
t_619 = self.n_Conv_113(t_618)
t_620 = F.relu(t_619)
t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0)
t_621 = self.n_Conv_114(t_620_padded)
t_622 = F.relu(t_621)
t_623 = self.n_Conv_115(t_622)
t_624 = torch.add(t_623, t_618)
t_625 = F.relu(t_624)
t_626 = self.n_Conv_116(t_625)
t_627 = F.relu(t_626)
t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0)
t_628 = self.n_Conv_117(t_627_padded)
t_629 = F.relu(t_628)
t_630 = self.n_Conv_118(t_629)
t_631 = torch.add(t_630, t_625)
t_632 = F.relu(t_631)
t_633 = self.n_Conv_119(t_632)
t_634 = F.relu(t_633)
t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0)
t_635 = self.n_Conv_120(t_634_padded)
t_636 = F.relu(t_635)
t_637 = self.n_Conv_121(t_636)
t_638 = torch.add(t_637, t_632)
t_639 = F.relu(t_638)
t_640 = self.n_Conv_122(t_639)
t_641 = F.relu(t_640)
t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0)
t_642 = self.n_Conv_123(t_641_padded)
t_643 = F.relu(t_642)
t_644 = self.n_Conv_124(t_643)
t_645 = torch.add(t_644, t_639)
t_646 = F.relu(t_645)
t_647 = self.n_Conv_125(t_646)
t_648 = F.relu(t_647)
t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0)
t_649 = self.n_Conv_126(t_648_padded)
t_650 = F.relu(t_649)
t_651 = self.n_Conv_127(t_650)
t_652 = torch.add(t_651, t_646)
t_653 = F.relu(t_652)
t_654 = self.n_Conv_128(t_653)
t_655 = F.relu(t_654)
t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0)
t_656 = self.n_Conv_129(t_655_padded)
t_657 = F.relu(t_656)
t_658 = self.n_Conv_130(t_657)
t_659 = torch.add(t_658, t_653)
t_660 = F.relu(t_659)
t_661 = self.n_Conv_131(t_660)
t_662 = F.relu(t_661)
t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0)
t_663 = self.n_Conv_132(t_662_padded)
t_664 = F.relu(t_663)
t_665 = self.n_Conv_133(t_664)
t_666 = torch.add(t_665, t_660)
t_667 = F.relu(t_666)
t_668 = self.n_Conv_134(t_667)
t_669 = F.relu(t_668)
t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0)
t_670 = self.n_Conv_135(t_669_padded)
t_671 = F.relu(t_670)
t_672 = self.n_Conv_136(t_671)
t_673 = torch.add(t_672, t_667)
t_674 = F.relu(t_673)
t_675 = self.n_Conv_137(t_674)
t_676 = F.relu(t_675)
t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0)
t_677 = self.n_Conv_138(t_676_padded)
t_678 = F.relu(t_677)
t_679 = self.n_Conv_139(t_678)
t_680 = torch.add(t_679, t_674)
t_681 = F.relu(t_680)
t_682 = self.n_Conv_140(t_681)
t_683 = F.relu(t_682)
t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0)
t_684 = self.n_Conv_141(t_683_padded)
t_685 = F.relu(t_684)
t_686 = self.n_Conv_142(t_685)
t_687 = torch.add(t_686, t_681)
t_688 = F.relu(t_687)
t_689 = self.n_Conv_143(t_688)
t_690 = F.relu(t_689)
t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0)
t_691 = self.n_Conv_144(t_690_padded)
t_692 = F.relu(t_691)
t_693 = self.n_Conv_145(t_692)
t_694 = torch.add(t_693, t_688)
t_695 = F.relu(t_694)
t_696 = self.n_Conv_146(t_695)
t_697 = F.relu(t_696)
t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0)
t_698 = self.n_Conv_147(t_697_padded)
t_699 = F.relu(t_698)
t_700 = self.n_Conv_148(t_699)
t_701 = torch.add(t_700, t_695)
t_702 = F.relu(t_701)
t_703 = self.n_Conv_149(t_702)
t_704 = F.relu(t_703)
t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0)
t_705 = self.n_Conv_150(t_704_padded)
t_706 = F.relu(t_705)
t_707 = self.n_Conv_151(t_706)
t_708 = torch.add(t_707, t_702)
t_709 = F.relu(t_708)
t_710 = self.n_Conv_152(t_709)
t_711 = F.relu(t_710)
t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0)
t_712 = self.n_Conv_153(t_711_padded)
t_713 = F.relu(t_712)
t_714 = self.n_Conv_154(t_713)
t_715 = torch.add(t_714, t_709)
t_716 = F.relu(t_715)
t_717 = self.n_Conv_155(t_716)
t_718 = F.relu(t_717)
t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0)
t_719 = self.n_Conv_156(t_718_padded)
t_720 = F.relu(t_719)
t_721 = self.n_Conv_157(t_720)
t_722 = torch.add(t_721, t_716)
t_723 = F.relu(t_722)
t_724 = self.n_Conv_158(t_723)
t_725 = self.n_Conv_159(t_723)
t_726 = F.relu(t_725)
t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0)
t_727 = self.n_Conv_160(t_726_padded)
t_728 = F.relu(t_727)
t_729 = self.n_Conv_161(t_728)
t_730 = torch.add(t_729, t_724)
t_731 = F.relu(t_730)
t_732 = self.n_Conv_162(t_731)
t_733 = F.relu(t_732)
t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0)
t_734 = self.n_Conv_163(t_733_padded)
t_735 = F.relu(t_734)
t_736 = self.n_Conv_164(t_735)
t_737 = torch.add(t_736, t_731)
t_738 = F.relu(t_737)
t_739 = self.n_Conv_165(t_738)
t_740 = F.relu(t_739)
t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0)
t_741 = self.n_Conv_166(t_740_padded)
t_742 = F.relu(t_741)
t_743 = self.n_Conv_167(t_742)
t_744 = torch.add(t_743, t_738)
t_745 = F.relu(t_744)
t_746 = self.n_Conv_168(t_745)
t_747 = self.n_Conv_169(t_745)
t_748 = F.relu(t_747)
t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0)
t_749 = self.n_Conv_170(t_748_padded)
t_750 = F.relu(t_749)
t_751 = self.n_Conv_171(t_750)
t_752 = torch.add(t_751, t_746)
t_753 = F.relu(t_752)
t_754 = self.n_Conv_172(t_753)
t_755 = F.relu(t_754)
t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0)
t_756 = self.n_Conv_173(t_755_padded)
t_757 = F.relu(t_756)
t_758 = self.n_Conv_174(t_757)
t_759 = torch.add(t_758, t_753)
t_760 = F.relu(t_759)
t_761 = self.n_Conv_175(t_760)
t_762 = F.relu(t_761)
t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0)
t_763 = self.n_Conv_176(t_762_padded)
t_764 = F.relu(t_763)
t_765 = self.n_Conv_177(t_764)
t_766 = torch.add(t_765, t_760)
t_767 = F.relu(t_766)
t_768 = self.n_Conv_178(t_767)
t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:])
t_770 = torch.squeeze(t_769, 3)
t_770 = torch.squeeze(t_770, 2)
t_771 = torch.sigmoid(t_770)
return t_771
def load_state_dict(self, state_dict, **kwargs):
self.tags = state_dict.get('tags', [])
super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'})

View File

@ -1,60 +1,140 @@
import sys, os, shlex
import contextlib
import torch import torch
# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
from modules import errors from modules import errors
from packaging import version
has_mps = getattr(torch, 'has_mps', False)
cpu = torch.device("cpu") # has_mps is only available in nightly pytorch (for now) and macOS 12.3+.
# check `getattr` and try it for compatibility
def has_mps() -> bool:
if not getattr(torch, 'has_mps', False):
return False
try:
torch.zeros(1).to(torch.device("mps"))
return True
except Exception:
return False
def extract_device_id(args, name):
for x in range(len(args)):
if name in args[x]:
return args[x + 1]
return None
def get_cuda_device_string():
from modules import shared
if shared.cmd_opts.device_id is not None:
return f"cuda:{shared.cmd_opts.device_id}"
return "cuda"
def get_optimal_device(): def get_optimal_device():
if torch.cuda.is_available(): if torch.cuda.is_available():
return torch.device("cuda") return torch.device(get_cuda_device_string())
if has_mps: if has_mps():
return torch.device("mps") return torch.device("mps")
return cpu return cpu
def get_device_for(task):
from modules import shared
if task in shared.cmd_opts.use_cpu:
return cpu
return get_optimal_device()
def torch_gc(): def torch_gc():
if torch.cuda.is_available(): if torch.cuda.is_available():
torch.cuda.empty_cache() with torch.cuda.device(get_cuda_device_string()):
torch.cuda.ipc_collect() torch.cuda.empty_cache()
torch.cuda.ipc_collect()
def enable_tf32(): def enable_tf32():
if torch.cuda.is_available(): if torch.cuda.is_available():
# enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't
# see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407
if any([torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())]):
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True
errors.run(enable_tf32, "Enabling TF32") errors.run(enable_tf32, "Enabling TF32")
cpu = torch.device("cpu")
device = get_optimal_device() device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
device_codeformer = cpu if has_mps else device dtype = torch.float16
dtype_vae = torch.float16
def randn(seed, shape): def randn(seed, shape):
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
if device.type == 'mps':
generator = torch.Generator(device=cpu)
generator.manual_seed(seed)
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
return noise
torch.manual_seed(seed) torch.manual_seed(seed)
if device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device) return torch.randn(shape, device=device)
def randn_without_seed(shape): def randn_without_seed(shape):
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
if device.type == 'mps': if device.type == 'mps':
generator = torch.Generator(device=cpu) return torch.randn(shape, device=cpu).to(device)
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
return noise
return torch.randn(shape, device=device) return torch.randn(shape, device=device)
def autocast(disable=False):
from modules import shared
if disable:
return contextlib.nullcontext()
if dtype == torch.float32 or shared.cmd_opts.precision == "full":
return contextlib.nullcontext()
return torch.autocast("cuda")
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
orig_tensor_to = torch.Tensor.to
def tensor_to_fix(self, *args, **kwargs):
if self.device.type != 'mps' and \
((len(args) > 0 and isinstance(args[0], torch.device) and args[0].type == 'mps') or \
(isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')):
self = self.contiguous()
return orig_tensor_to(self, *args, **kwargs)
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
orig_layer_norm = torch.nn.functional.layer_norm
def layer_norm_fix(*args, **kwargs):
if len(args) > 0 and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps':
args = list(args)
args[0] = args[0].contiguous()
return orig_layer_norm(*args, **kwargs)
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
orig_tensor_numpy = torch.Tensor.numpy
def numpy_fix(self, *args, **kwargs):
if self.requires_grad:
self = self.detach()
return orig_tensor_numpy(self, *args, **kwargs)
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
if has_mps() and version.parse(torch.__version__) < version.parse("1.13"):
torch.Tensor.to = tensor_to_fix
torch.nn.functional.layer_norm = layer_norm_fix
torch.Tensor.numpy = numpy_fix

View File

@ -2,9 +2,30 @@ import sys
import traceback import traceback
def print_error_explanation(message):
lines = message.strip().split("\n")
max_len = max([len(x) for x in lines])
print('=' * max_len, file=sys.stderr)
for line in lines:
print(line, file=sys.stderr)
print('=' * max_len, file=sys.stderr)
def display(e: Exception, task):
print(f"{task or 'error'}: {type(e).__name__}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
message = str(e)
if "copying a param with shape torch.Size([640, 1024]) from checkpoint, the shape in current model is torch.Size([640, 768])" in message:
print_error_explanation("""
The most likely cause of this is you are trying to load Stable Diffusion 2.0 model without specifying its connfig file.
See https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20 for how to solve this.
""")
def run(code, task): def run(code, task):
try: try:
code() code()
except Exception as e: except Exception as e:
print(f"{task}: {type(e).__name__}", file=sys.stderr) display(task, e)
print(traceback.format_exc(), file=sys.stderr)

View File

@ -1,80 +0,0 @@
# this file is taken from https://github.com/xinntao/ESRGAN
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
def make_layer(block, n_layers):
layers = []
for _ in range(n_layers):
layers.append(block())
return nn.Sequential(*layers)
class ResidualDenseBlock_5C(nn.Module):
def __init__(self, nf=64, gc=32, bias=True):
super(ResidualDenseBlock_5C, self).__init__()
# gc: growth channel, i.e. intermediate channels
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
# initialization
# mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
def forward(self, x):
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
class RRDB(nn.Module):
'''Residual in Residual Dense Block'''
def __init__(self, nf, gc=32):
super(RRDB, self).__init__()
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
def forward(self, x):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
class RRDBNet(nn.Module):
def __init__(self, in_nc, out_nc, nf, nb, gc=32):
super(RRDBNet, self).__init__()
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
self.RRDB_trunk = make_layer(RRDB_block_f, nb)
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
#### upsampling
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
fea = self.conv_first(x)
trunk = self.trunk_conv(self.RRDB_trunk(fea))
fea = fea + trunk
fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
out = self.conv_last(self.lrelu(self.HRconv(fea)))
return out

View File

@ -5,79 +5,132 @@ import torch
from PIL import Image from PIL import Image
from basicsr.utils.download_util import load_file_from_url from basicsr.utils.download_util import load_file_from_url
import modules.esrgam_model_arch as arch import modules.esrgan_model_arch as arch
from modules import shared, modelloader, images from modules import shared, modelloader, images, devices
from modules.devices import has_mps
from modules.paths import models_path
from modules.upscaler import Upscaler, UpscalerData from modules.upscaler import Upscaler, UpscalerData
from modules.shared import opts from modules.shared import opts
def fix_model_layers(crt_model, pretrained_net):
# this code is adapted from https://github.com/xinntao/ESRGAN
if 'conv_first.weight' in pretrained_net:
return pretrained_net
if 'model.0.weight' not in pretrained_net: def mod2normal(state_dict):
is_realesrgan = "params_ema" in pretrained_net and 'body.0.rdb1.conv1.weight' in pretrained_net["params_ema"] # this code is copied from https://github.com/victorca25/iNNfer
if is_realesrgan: if 'conv_first.weight' in state_dict:
raise Exception("The file is a RealESRGAN model, it can't be used as a ESRGAN model.") crt_net = {}
else: items = []
raise Exception("The file is not a ESRGAN model.") for k, v in state_dict.items():
items.append(k)
crt_net = crt_model.state_dict() crt_net['model.0.weight'] = state_dict['conv_first.weight']
load_net_clean = {} crt_net['model.0.bias'] = state_dict['conv_first.bias']
for k, v in pretrained_net.items():
if k.startswith('module.'):
load_net_clean[k[7:]] = v
else:
load_net_clean[k] = v
pretrained_net = load_net_clean
tbd = [] for k in items.copy():
for k, v in crt_net.items(): if 'RDB' in k:
tbd.append(k) ori_k = k.replace('RRDB_trunk.', 'model.1.sub.')
if '.weight' in k:
ori_k = ori_k.replace('.weight', '.0.weight')
elif '.bias' in k:
ori_k = ori_k.replace('.bias', '.0.bias')
crt_net[ori_k] = state_dict[k]
items.remove(k)
# directly copy crt_net['model.1.sub.23.weight'] = state_dict['trunk_conv.weight']
for k, v in crt_net.items(): crt_net['model.1.sub.23.bias'] = state_dict['trunk_conv.bias']
if k in pretrained_net and pretrained_net[k].size() == v.size(): crt_net['model.3.weight'] = state_dict['upconv1.weight']
crt_net[k] = pretrained_net[k] crt_net['model.3.bias'] = state_dict['upconv1.bias']
tbd.remove(k) crt_net['model.6.weight'] = state_dict['upconv2.weight']
crt_net['model.6.bias'] = state_dict['upconv2.bias']
crt_net['model.8.weight'] = state_dict['HRconv.weight']
crt_net['model.8.bias'] = state_dict['HRconv.bias']
crt_net['model.10.weight'] = state_dict['conv_last.weight']
crt_net['model.10.bias'] = state_dict['conv_last.bias']
state_dict = crt_net
return state_dict
crt_net['conv_first.weight'] = pretrained_net['model.0.weight']
crt_net['conv_first.bias'] = pretrained_net['model.0.bias']
for k in tbd.copy(): def resrgan2normal(state_dict, nb=23):
if 'RDB' in k: # this code is copied from https://github.com/victorca25/iNNfer
ori_k = k.replace('RRDB_trunk.', 'model.1.sub.') if "conv_first.weight" in state_dict and "body.0.rdb1.conv1.weight" in state_dict:
if '.weight' in k: re8x = 0
ori_k = ori_k.replace('.weight', '.0.weight') crt_net = {}
elif '.bias' in k: items = []
ori_k = ori_k.replace('.bias', '.0.bias') for k, v in state_dict.items():
crt_net[k] = pretrained_net[ori_k] items.append(k)
tbd.remove(k)
crt_net['trunk_conv.weight'] = pretrained_net['model.1.sub.23.weight'] crt_net['model.0.weight'] = state_dict['conv_first.weight']
crt_net['trunk_conv.bias'] = pretrained_net['model.1.sub.23.bias'] crt_net['model.0.bias'] = state_dict['conv_first.bias']
crt_net['upconv1.weight'] = pretrained_net['model.3.weight']
crt_net['upconv1.bias'] = pretrained_net['model.3.bias'] for k in items.copy():
crt_net['upconv2.weight'] = pretrained_net['model.6.weight'] if "rdb" in k:
crt_net['upconv2.bias'] = pretrained_net['model.6.bias'] ori_k = k.replace('body.', 'model.1.sub.')
crt_net['HRconv.weight'] = pretrained_net['model.8.weight'] ori_k = ori_k.replace('.rdb', '.RDB')
crt_net['HRconv.bias'] = pretrained_net['model.8.bias'] if '.weight' in k:
crt_net['conv_last.weight'] = pretrained_net['model.10.weight'] ori_k = ori_k.replace('.weight', '.0.weight')
crt_net['conv_last.bias'] = pretrained_net['model.10.bias'] elif '.bias' in k:
ori_k = ori_k.replace('.bias', '.0.bias')
crt_net[ori_k] = state_dict[k]
items.remove(k)
crt_net[f'model.1.sub.{nb}.weight'] = state_dict['conv_body.weight']
crt_net[f'model.1.sub.{nb}.bias'] = state_dict['conv_body.bias']
crt_net['model.3.weight'] = state_dict['conv_up1.weight']
crt_net['model.3.bias'] = state_dict['conv_up1.bias']
crt_net['model.6.weight'] = state_dict['conv_up2.weight']
crt_net['model.6.bias'] = state_dict['conv_up2.bias']
if 'conv_up3.weight' in state_dict:
# modification supporting: https://github.com/ai-forever/Real-ESRGAN/blob/main/RealESRGAN/rrdbnet_arch.py
re8x = 3
crt_net['model.9.weight'] = state_dict['conv_up3.weight']
crt_net['model.9.bias'] = state_dict['conv_up3.bias']
crt_net[f'model.{8+re8x}.weight'] = state_dict['conv_hr.weight']
crt_net[f'model.{8+re8x}.bias'] = state_dict['conv_hr.bias']
crt_net[f'model.{10+re8x}.weight'] = state_dict['conv_last.weight']
crt_net[f'model.{10+re8x}.bias'] = state_dict['conv_last.bias']
state_dict = crt_net
return state_dict
def infer_params(state_dict):
# this code is copied from https://github.com/victorca25/iNNfer
scale2x = 0
scalemin = 6
n_uplayer = 0
plus = False
for block in list(state_dict):
parts = block.split(".")
n_parts = len(parts)
if n_parts == 5 and parts[2] == "sub":
nb = int(parts[3])
elif n_parts == 3:
part_num = int(parts[1])
if (part_num > scalemin
and parts[0] == "model"
and parts[2] == "weight"):
scale2x += 1
if part_num > n_uplayer:
n_uplayer = part_num
out_nc = state_dict[block].shape[0]
if not plus and "conv1x1" in block:
plus = True
nf = state_dict["model.0.weight"].shape[0]
in_nc = state_dict["model.0.weight"].shape[1]
out_nc = out_nc
scale = 2 ** scale2x
return in_nc, out_nc, nf, nb, plus, scale
return crt_net
class UpscalerESRGAN(Upscaler): class UpscalerESRGAN(Upscaler):
def __init__(self, dirname): def __init__(self, dirname):
self.name = "ESRGAN" self.name = "ESRGAN"
self.model_url = "https://drive.google.com/u/0/uc?id=1TPrz5QKd8DHHt1k8SRtm6tMiPjz_Qene&export=download" self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth"
self.model_name = "ESRGAN 4x" self.model_name = "ESRGAN_4x"
self.scalers = [] self.scalers = []
self.user_path = dirname self.user_path = dirname
self.model_path = os.path.join(models_path, self.name)
super().__init__() super().__init__()
model_paths = self.find_models(ext_filter=[".pt", ".pth"]) model_paths = self.find_models(ext_filter=[".pt", ".pth"])
scalers = [] scalers = []
@ -97,7 +150,7 @@ class UpscalerESRGAN(Upscaler):
model = self.load_model(selected_model) model = self.load_model(selected_model)
if model is None: if model is None:
return img return img
model.to(shared.device) model.to(devices.device_esrgan)
img = esrgan_upscale(model, img) img = esrgan_upscale(model, img)
return img return img
@ -112,22 +165,41 @@ class UpscalerESRGAN(Upscaler):
print("Unable to load %s from %s" % (self.model_path, filename)) print("Unable to load %s from %s" % (self.model_path, filename))
return None return None
pretrained_net = torch.load(filename, map_location='cpu' if has_mps else None) state_dict = torch.load(filename, map_location='cpu' if devices.device_esrgan.type == 'mps' else None)
crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32)
pretrained_net = fix_model_layers(crt_model, pretrained_net) if "params_ema" in state_dict:
crt_model.load_state_dict(pretrained_net) state_dict = state_dict["params_ema"]
crt_model.eval() elif "params" in state_dict:
state_dict = state_dict["params"]
num_conv = 16 if "realesr-animevideov3" in filename else 32
model = arch.SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=num_conv, upscale=4, act_type='prelu')
model.load_state_dict(state_dict)
model.eval()
return model
return crt_model if "body.0.rdb1.conv1.weight" in state_dict and "conv_first.weight" in state_dict:
nb = 6 if "RealESRGAN_x4plus_anime_6B" in filename else 23
state_dict = resrgan2normal(state_dict, nb)
elif "conv_first.weight" in state_dict:
state_dict = mod2normal(state_dict)
elif "model.0.weight" not in state_dict:
raise Exception("The file is not a recognized ESRGAN model.")
in_nc, out_nc, nf, nb, plus, mscale = infer_params(state_dict)
model = arch.RRDBNet(in_nc=in_nc, out_nc=out_nc, nf=nf, nb=nb, upscale=mscale, plus=plus)
model.load_state_dict(state_dict)
model.eval()
return model
def upscale_without_tiling(model, img): def upscale_without_tiling(model, img):
img = np.array(img) img = np.array(img)
img = img[:, :, ::-1] img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255 img = np.ascontiguousarray(np.transpose(img, (2, 0, 1))) / 255
img = torch.from_numpy(img).float() img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(shared.device) img = img.unsqueeze(0).to(devices.device_esrgan)
with torch.no_grad(): with torch.no_grad():
output = model(img) output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy() output = output.squeeze().float().cpu().clamp_(0, 1).numpy()

View File

@ -0,0 +1,463 @@
# this file is adapted from https://github.com/victorca25/iNNfer
import math
import functools
import torch
import torch.nn as nn
import torch.nn.functional as F
####################
# RRDBNet Generator
####################
class RRDBNet(nn.Module):
def __init__(self, in_nc, out_nc, nf, nb, nr=3, gc=32, upscale=4, norm_type=None,
act_type='leakyrelu', mode='CNA', upsample_mode='upconv', convtype='Conv2D',
finalact=None, gaussian_noise=False, plus=False):
super(RRDBNet, self).__init__()
n_upscale = int(math.log(upscale, 2))
if upscale == 3:
n_upscale = 1
self.resrgan_scale = 0
if in_nc % 16 == 0:
self.resrgan_scale = 1
elif in_nc != 4 and in_nc % 4 == 0:
self.resrgan_scale = 2
fea_conv = conv_block(in_nc, nf, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
rb_blocks = [RRDB(nf, nr, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
norm_type=norm_type, act_type=act_type, mode='CNA', convtype=convtype,
gaussian_noise=gaussian_noise, plus=plus) for _ in range(nb)]
LR_conv = conv_block(nf, nf, kernel_size=3, norm_type=norm_type, act_type=None, mode=mode, convtype=convtype)
if upsample_mode == 'upconv':
upsample_block = upconv_block
elif upsample_mode == 'pixelshuffle':
upsample_block = pixelshuffle_block
else:
raise NotImplementedError('upsample mode [{:s}] is not found'.format(upsample_mode))
if upscale == 3:
upsampler = upsample_block(nf, nf, 3, act_type=act_type, convtype=convtype)
else:
upsampler = [upsample_block(nf, nf, act_type=act_type, convtype=convtype) for _ in range(n_upscale)]
HR_conv0 = conv_block(nf, nf, kernel_size=3, norm_type=None, act_type=act_type, convtype=convtype)
HR_conv1 = conv_block(nf, out_nc, kernel_size=3, norm_type=None, act_type=None, convtype=convtype)
outact = act(finalact) if finalact else None
self.model = sequential(fea_conv, ShortcutBlock(sequential(*rb_blocks, LR_conv)),
*upsampler, HR_conv0, HR_conv1, outact)
def forward(self, x, outm=None):
if self.resrgan_scale == 1:
feat = pixel_unshuffle(x, scale=4)
elif self.resrgan_scale == 2:
feat = pixel_unshuffle(x, scale=2)
else:
feat = x
return self.model(feat)
class RRDB(nn.Module):
"""
Residual in Residual Dense Block
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
"""
def __init__(self, nf, nr=3, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D',
spectral_norm=False, gaussian_noise=False, plus=False):
super(RRDB, self).__init__()
# This is for backwards compatibility with existing models
if nr == 3:
self.RDB1 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
gaussian_noise=gaussian_noise, plus=plus)
self.RDB2 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
gaussian_noise=gaussian_noise, plus=plus)
self.RDB3 = ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
gaussian_noise=gaussian_noise, plus=plus)
else:
RDB_list = [ResidualDenseBlock_5C(nf, kernel_size, gc, stride, bias, pad_type,
norm_type, act_type, mode, convtype, spectral_norm=spectral_norm,
gaussian_noise=gaussian_noise, plus=plus) for _ in range(nr)]
self.RDBs = nn.Sequential(*RDB_list)
def forward(self, x):
if hasattr(self, 'RDB1'):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
else:
out = self.RDBs(x)
return out * 0.2 + x
class ResidualDenseBlock_5C(nn.Module):
"""
Residual Dense Block
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
"""
def __init__(self, nf=64, kernel_size=3, gc=32, stride=1, bias=1, pad_type='zero',
norm_type=None, act_type='leakyrelu', mode='CNA', convtype='Conv2D',
spectral_norm=False, gaussian_noise=False, plus=False):
super(ResidualDenseBlock_5C, self).__init__()
self.noise = GaussianNoise() if gaussian_noise else None
self.conv1x1 = conv1x1(nf, gc) if plus else None
self.conv1 = conv_block(nf, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
spectral_norm=spectral_norm)
self.conv2 = conv_block(nf+gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
spectral_norm=spectral_norm)
self.conv3 = conv_block(nf+2*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
spectral_norm=spectral_norm)
self.conv4 = conv_block(nf+3*gc, gc, kernel_size, stride, bias=bias, pad_type=pad_type,
norm_type=norm_type, act_type=act_type, mode=mode, convtype=convtype,
spectral_norm=spectral_norm)
if mode == 'CNA':
last_act = None
else:
last_act = act_type
self.conv5 = conv_block(nf+4*gc, nf, 3, stride, bias=bias, pad_type=pad_type,
norm_type=norm_type, act_type=last_act, mode=mode, convtype=convtype,
spectral_norm=spectral_norm)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(torch.cat((x, x1), 1))
if self.conv1x1:
x2 = x2 + self.conv1x1(x)
x3 = self.conv3(torch.cat((x, x1, x2), 1))
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
if self.conv1x1:
x4 = x4 + x2
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
if self.noise:
return self.noise(x5.mul(0.2) + x)
else:
return x5 * 0.2 + x
####################
# ESRGANplus
####################
class GaussianNoise(nn.Module):
def __init__(self, sigma=0.1, is_relative_detach=False):
super().__init__()
self.sigma = sigma
self.is_relative_detach = is_relative_detach
self.noise = torch.tensor(0, dtype=torch.float)
def forward(self, x):
if self.training and self.sigma != 0:
self.noise = self.noise.to(x.device)
scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x
sampled_noise = self.noise.repeat(*x.size()).normal_() * scale
x = x + sampled_noise
return x
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
####################
# SRVGGNetCompact
####################
class SRVGGNetCompact(nn.Module):
"""A compact VGG-style network structure for super-resolution.
This class is copied from https://github.com/xinntao/Real-ESRGAN
"""
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu'):
super(SRVGGNetCompact, self).__init__()
self.num_in_ch = num_in_ch
self.num_out_ch = num_out_ch
self.num_feat = num_feat
self.num_conv = num_conv
self.upscale = upscale
self.act_type = act_type
self.body = nn.ModuleList()
# the first conv
self.body.append(nn.Conv2d(num_in_ch, num_feat, 3, 1, 1))
# the first activation
if act_type == 'relu':
activation = nn.ReLU(inplace=True)
elif act_type == 'prelu':
activation = nn.PReLU(num_parameters=num_feat)
elif act_type == 'leakyrelu':
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.body.append(activation)
# the body structure
for _ in range(num_conv):
self.body.append(nn.Conv2d(num_feat, num_feat, 3, 1, 1))
# activation
if act_type == 'relu':
activation = nn.ReLU(inplace=True)
elif act_type == 'prelu':
activation = nn.PReLU(num_parameters=num_feat)
elif act_type == 'leakyrelu':
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.body.append(activation)
# the last conv
self.body.append(nn.Conv2d(num_feat, num_out_ch * upscale * upscale, 3, 1, 1))
# upsample
self.upsampler = nn.PixelShuffle(upscale)
def forward(self, x):
out = x
for i in range(0, len(self.body)):
out = self.body[i](out)
out = self.upsampler(out)
# add the nearest upsampled image, so that the network learns the residual
base = F.interpolate(x, scale_factor=self.upscale, mode='nearest')
out += base
return out
####################
# Upsampler
####################
class Upsample(nn.Module):
r"""Upsamples a given multi-channel 1D (temporal), 2D (spatial) or 3D (volumetric) data.
The input data is assumed to be of the form
`minibatch x channels x [optional depth] x [optional height] x width`.
"""
def __init__(self, size=None, scale_factor=None, mode="nearest", align_corners=None):
super(Upsample, self).__init__()
if isinstance(scale_factor, tuple):
self.scale_factor = tuple(float(factor) for factor in scale_factor)
else:
self.scale_factor = float(scale_factor) if scale_factor else None
self.mode = mode
self.size = size
self.align_corners = align_corners
def forward(self, x):
return nn.functional.interpolate(x, size=self.size, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners)
def extra_repr(self):
if self.scale_factor is not None:
info = 'scale_factor=' + str(self.scale_factor)
else:
info = 'size=' + str(self.size)
info += ', mode=' + self.mode
return info
def pixel_unshuffle(x, scale):
""" Pixel unshuffle.
Args:
x (Tensor): Input feature with shape (b, c, hh, hw).
scale (int): Downsample ratio.
Returns:
Tensor: the pixel unshuffled feature.
"""
b, c, hh, hw = x.size()
out_channel = c * (scale**2)
assert hh % scale == 0 and hw % scale == 0
h = hh // scale
w = hw // scale
x_view = x.view(b, c, h, scale, w, scale)
return x_view.permute(0, 1, 3, 5, 2, 4).reshape(b, out_channel, h, w)
def pixelshuffle_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
pad_type='zero', norm_type=None, act_type='relu', convtype='Conv2D'):
"""
Pixel shuffle layer
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
Neural Network, CVPR17)
"""
conv = conv_block(in_nc, out_nc * (upscale_factor ** 2), kernel_size, stride, bias=bias,
pad_type=pad_type, norm_type=None, act_type=None, convtype=convtype)
pixel_shuffle = nn.PixelShuffle(upscale_factor)
n = norm(norm_type, out_nc) if norm_type else None
a = act(act_type) if act_type else None
return sequential(conv, pixel_shuffle, n, a)
def upconv_block(in_nc, out_nc, upscale_factor=2, kernel_size=3, stride=1, bias=True,
pad_type='zero', norm_type=None, act_type='relu', mode='nearest', convtype='Conv2D'):
""" Upconv layer """
upscale_factor = (1, upscale_factor, upscale_factor) if convtype == 'Conv3D' else upscale_factor
upsample = Upsample(scale_factor=upscale_factor, mode=mode)
conv = conv_block(in_nc, out_nc, kernel_size, stride, bias=bias,
pad_type=pad_type, norm_type=norm_type, act_type=act_type, convtype=convtype)
return sequential(upsample, conv)
####################
# Basic blocks
####################
def make_layer(basic_block, num_basic_block, **kwarg):
"""Make layers by stacking the same blocks.
Args:
basic_block (nn.module): nn.module class for basic block. (block)
num_basic_block (int): number of blocks. (n_layers)
Returns:
nn.Sequential: Stacked blocks in nn.Sequential.
"""
layers = []
for _ in range(num_basic_block):
layers.append(basic_block(**kwarg))
return nn.Sequential(*layers)
def act(act_type, inplace=True, neg_slope=0.2, n_prelu=1, beta=1.0):
""" activation helper """
act_type = act_type.lower()
if act_type == 'relu':
layer = nn.ReLU(inplace)
elif act_type in ('leakyrelu', 'lrelu'):
layer = nn.LeakyReLU(neg_slope, inplace)
elif act_type == 'prelu':
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
elif act_type == 'tanh': # [-1, 1] range output
layer = nn.Tanh()
elif act_type == 'sigmoid': # [0, 1] range output
layer = nn.Sigmoid()
else:
raise NotImplementedError('activation layer [{:s}] is not found'.format(act_type))
return layer
class Identity(nn.Module):
def __init__(self, *kwargs):
super(Identity, self).__init__()
def forward(self, x, *kwargs):
return x
def norm(norm_type, nc):
""" Return a normalization layer """
norm_type = norm_type.lower()
if norm_type == 'batch':
layer = nn.BatchNorm2d(nc, affine=True)
elif norm_type == 'instance':
layer = nn.InstanceNorm2d(nc, affine=False)
elif norm_type == 'none':
def norm_layer(x): return Identity()
else:
raise NotImplementedError('normalization layer [{:s}] is not found'.format(norm_type))
return layer
def pad(pad_type, padding):
""" padding layer helper """
pad_type = pad_type.lower()
if padding == 0:
return None
if pad_type == 'reflect':
layer = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
layer = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
layer = nn.ZeroPad2d(padding)
else:
raise NotImplementedError('padding layer [{:s}] is not implemented'.format(pad_type))
return layer
def get_valid_padding(kernel_size, dilation):
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
padding = (kernel_size - 1) // 2
return padding
class ShortcutBlock(nn.Module):
""" Elementwise sum the output of a submodule to its input """
def __init__(self, submodule):
super(ShortcutBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = x + self.sub(x)
return output
def __repr__(self):
return 'Identity + \n|' + self.sub.__repr__().replace('\n', '\n|')
def sequential(*args):
""" Flatten Sequential. It unwraps nn.Sequential. """
if len(args) == 1:
if isinstance(args[0], OrderedDict):
raise NotImplementedError('sequential does not support OrderedDict input.')
return args[0] # No sequential is needed.
modules = []
for module in args:
if isinstance(module, nn.Sequential):
for submodule in module.children():
modules.append(submodule)
elif isinstance(module, nn.Module):
modules.append(module)
return nn.Sequential(*modules)
def conv_block(in_nc, out_nc, kernel_size, stride=1, dilation=1, groups=1, bias=True,
pad_type='zero', norm_type=None, act_type='relu', mode='CNA', convtype='Conv2D',
spectral_norm=False):
""" Conv layer with padding, normalization, activation """
assert mode in ['CNA', 'NAC', 'CNAC'], 'Wrong conv mode [{:s}]'.format(mode)
padding = get_valid_padding(kernel_size, dilation)
p = pad(pad_type, padding) if pad_type and pad_type != 'zero' else None
padding = padding if pad_type == 'zero' else 0
if convtype=='PartialConv2D':
c = PartialConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, bias=bias, groups=groups)
elif convtype=='DeformConv2D':
c = DeformConv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, bias=bias, groups=groups)
elif convtype=='Conv3D':
c = nn.Conv3d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, bias=bias, groups=groups)
else:
c = nn.Conv2d(in_nc, out_nc, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, bias=bias, groups=groups)
if spectral_norm:
c = nn.utils.spectral_norm(c)
a = act(act_type) if act_type else None
if 'CNA' in mode:
n = norm(norm_type, out_nc) if norm_type else None
return sequential(p, c, n, a)
elif mode == 'NAC':
if norm_type is None and act_type is not None:
a = act(act_type, inplace=False)
n = norm(norm_type, in_nc) if norm_type else None
return sequential(n, a, p, c)

99
modules/extensions.py Normal file
View File

@ -0,0 +1,99 @@
import os
import sys
import traceback
import git
from modules import paths, shared
extensions = []
extensions_dir = os.path.join(paths.script_path, "extensions")
extensions_builtin_dir = os.path.join(paths.script_path, "extensions-builtin")
def active():
return [x for x in extensions if x.enabled]
class Extension:
def __init__(self, name, path, enabled=True, is_builtin=False):
self.name = name
self.path = path
self.enabled = enabled
self.status = ''
self.can_update = False
self.is_builtin = is_builtin
repo = None
try:
if os.path.exists(os.path.join(path, ".git")):
repo = git.Repo(path)
except Exception:
print(f"Error reading github repository info from {path}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if repo is None or repo.bare:
self.remote = None
else:
try:
self.remote = next(repo.remote().urls, None)
self.status = 'unknown'
except Exception:
self.remote = None
def list_files(self, subdir, extension):
from modules import scripts
dirpath = os.path.join(self.path, subdir)
if not os.path.isdir(dirpath):
return []
res = []
for filename in sorted(os.listdir(dirpath)):
res.append(scripts.ScriptFile(self.path, filename, os.path.join(dirpath, filename)))
res = [x for x in res if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
return res
def check_updates(self):
repo = git.Repo(self.path)
for fetch in repo.remote().fetch("--dry-run"):
if fetch.flags != fetch.HEAD_UPTODATE:
self.can_update = True
self.status = "behind"
return
self.can_update = False
self.status = "latest"
def fetch_and_reset_hard(self):
repo = git.Repo(self.path)
# Fix: `error: Your local changes to the following files would be overwritten by merge`,
# because WSL2 Docker set 755 file permissions instead of 644, this results to the error.
repo.git.fetch('--all')
repo.git.reset('--hard', 'origin')
def list_extensions():
extensions.clear()
if not os.path.isdir(extensions_dir):
return
paths = []
for dirname in [extensions_dir, extensions_builtin_dir]:
if not os.path.isdir(dirname):
return
for extension_dirname in sorted(os.listdir(dirname)):
path = os.path.join(dirname, extension_dirname)
if not os.path.isdir(path):
continue
paths.append((extension_dirname, path, dirname == extensions_builtin_dir))
for dirname, path, is_builtin in paths:
extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions, is_builtin=is_builtin)
extensions.append(extension)

View File

@ -1,4 +1,8 @@
from __future__ import annotations
import math
import os import os
import sys
import traceback
import numpy as np import numpy as np
from PIL import Image from PIL import Image
@ -6,7 +10,11 @@ from PIL import Image
import torch import torch
import tqdm import tqdm
from modules import processing, shared, images, devices, sd_models from typing import Callable, List, OrderedDict, Tuple
from functools import partial
from dataclasses import dataclass
from modules import processing, shared, images, devices, sd_models, sd_samplers
from modules.shared import opts from modules.shared import opts
import modules.gfpgan_model import modules.gfpgan_model
from modules.ui import plaintext_to_html from modules.ui import plaintext_to_html
@ -14,118 +22,217 @@ import modules.codeformer_model
import piexif import piexif
import piexif.helper import piexif.helper
import gradio as gr import gradio as gr
import safetensors.torch
class LruCache(OrderedDict):
@dataclass(frozen=True)
class Key:
image_hash: int
info_hash: int
args_hash: int
@dataclass
class Value:
image: Image.Image
info: str
def __init__(self, max_size: int = 5, *args, **kwargs):
super().__init__(*args, **kwargs)
self._max_size = max_size
def get(self, key: LruCache.Key) -> LruCache.Value:
ret = super().get(key)
if ret is not None:
self.move_to_end(key) # Move to end of eviction list
return ret
def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
self[key] = value
while len(self) > self._max_size:
self.popitem(last=False)
cached_images = {} cached_images: LruCache = LruCache(max_size=5)
def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility): def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
devices.torch_gc() devices.torch_gc()
shared.state.begin()
shared.state.job = 'extras'
imageArr = [] imageArr = []
# Also keep track of original file names # Also keep track of original file names
imageNameArr = [] imageNameArr = []
outputs = []
if extras_mode == 1: if extras_mode == 1:
#convert file to pillow image #convert file to pillow image
for img in image_folder: for img in image_folder:
image = Image.fromarray(np.array(Image.open(img))) image = Image.open(img)
imageArr.append(image) imageArr.append(image)
imageNameArr.append(os.path.splitext(img.orig_name)[0]) imageNameArr.append(os.path.splitext(img.orig_name)[0])
elif extras_mode == 2:
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
if input_dir == '':
return outputs, "Please select an input directory.", ''
image_list = shared.listfiles(input_dir)
for img in image_list:
try:
image = Image.open(img)
except Exception:
continue
imageArr.append(image)
imageNameArr.append(img)
else: else:
imageArr.append(image) imageArr.append(image)
imageNameArr.append(None) imageNameArr.append(None)
outpath = opts.outdir_samples or opts.outdir_extras_samples if extras_mode == 2 and output_dir != '':
outpath = output_dir
else:
outpath = opts.outdir_samples or opts.outdir_extras_samples
# Extra operation definitions
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
shared.state.job = 'extras-gfpgan'
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
res = Image.fromarray(restored_img)
if gfpgan_visibility < 1.0:
res = Image.blend(image, res, gfpgan_visibility)
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
return (res, info)
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
shared.state.job = 'extras-codeformer'
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img)
if codeformer_visibility < 1.0:
res = Image.blend(image, res, codeformer_visibility)
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
return (res, info)
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
shared.state.job = 'extras-upscale'
upscaler = shared.sd_upscalers[scaler_index]
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
if mode == 1 and crop:
cropped = Image.new("RGB", (resize_w, resize_h))
cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
res = cropped
return res
def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
# Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
nonlocal upscaling_resize
if resize_mode == 1:
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
crop_info = " (crop)" if upscaling_crop else ""
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
return (image, info)
@dataclass
class UpscaleParams:
upscaler_idx: int
blend_alpha: float
def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
blended_result: Image.Image = None
image_hash: str = hash(np.array(image.getdata()).tobytes())
for upscaler in params:
upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
upscaling_resize_w, upscaling_resize_h, upscaling_crop)
cache_key = LruCache.Key(image_hash=image_hash,
info_hash=hash(info),
args_hash=hash(upscale_args))
cached_entry = cached_images.get(cache_key)
if cached_entry is None:
res = upscale(image, *upscale_args)
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
cached_images.put(cache_key, LruCache.Value(image=res, info=info))
else:
res, info = cached_entry.image, cached_entry.info
if blended_result is None:
blended_result = res
else:
blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
return (blended_result, info)
# Build a list of operations to run
facefix_ops: List[Callable] = []
facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []
upscale_ops: List[Callable] = []
upscale_ops += [run_prepare_crop] if resize_mode == 1 else []
if upscaling_resize != 0:
step_params: List[UpscaleParams] = []
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))
upscale_ops.append(partial(run_upscalers_blend, step_params))
extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)
outputs = []
for image, image_name in zip(imageArr, imageNameArr): for image, image_name in zip(imageArr, imageNameArr):
if image is None: if image is None:
return outputs, "Please select an input image.", '' return outputs, "Please select an input image.", ''
shared.state.textinfo = f'Processing image {image_name}'
existing_pnginfo = image.info or {} existing_pnginfo = image.info or {}
image = image.convert("RGB") image = image.convert("RGB")
info = "" info = ""
# Run each operation on each image
for op in extras_ops:
image, info = op(image, info)
if gfpgan_visibility > 0: if opts.use_original_name_batch and image_name is not None:
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) basename = os.path.splitext(os.path.basename(image_name))[0]
res = Image.fromarray(restored_img) else:
basename = ''
if gfpgan_visibility < 1.0: if opts.enable_pnginfo: # append info before save
res = Image.blend(image, res, gfpgan_visibility) image.info = existing_pnginfo
image.info["extras"] = info
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n" if save_output:
image = res # Add upscaler name as a suffix.
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
# Add second upscaler if applicable.
if suffix and extras_upscaler_2 and extras_upscaler_2_visibility:
suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}"
if codeformer_visibility > 0: images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight) no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
res = Image.fromarray(restored_img)
if codeformer_visibility < 1.0: if extras_mode != 2 or show_extras_results :
res = Image.blend(image, res, codeformer_visibility) outputs.append(image)
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n" devices.torch_gc()
image = res
if upscaling_resize != 1.0:
def upscale(image, scaler_index, resize):
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
pixels = tuple(np.array(small).flatten().tolist())
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels
c = cached_images.get(key)
if c is None:
upscaler = shared.sd_upscalers[scaler_index]
c = upscaler.scaler.upscale(image, resize, upscaler.data_path)
cached_images[key] = c
return c
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
res = upscale(image, extras_upscaler_1, upscaling_resize)
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
res2 = upscale(image, extras_upscaler_2, upscaling_resize)
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
res = Image.blend(res, res2, extras_upscaler_2_visibility)
image = res
while len(cached_images) > 2:
del cached_images[next(iter(cached_images.keys()))]
images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
forced_filename=image_name if opts.use_original_name_batch else None)
outputs.append(image)
return outputs, plaintext_to_html(info), '' return outputs, plaintext_to_html(info), ''
def clear_cache():
cached_images.clear()
def run_pnginfo(image): def run_pnginfo(image):
if image is None: if image is None:
return '', '', '' return '', '', ''
items = image.info geninfo, items = images.read_info_from_image(image)
geninfo = '' items = {**{'parameters': geninfo}, **items}
if "exif" in image.info:
exif = piexif.load(image.info["exif"])
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
try:
exif_comment = piexif.helper.UserComment.load(exif_comment)
except ValueError:
exif_comment = exif_comment.decode('utf8', errors="ignore")
items['exif comment'] = exif_comment
geninfo = exif_comment
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
'loop', 'background', 'timestamp', 'duration']:
items.pop(field, None)
geninfo = items.get('parameters', geninfo)
info = '' info = ''
for key, text in items.items(): for key, text in items.items():
@ -143,64 +250,116 @@ def run_pnginfo(image):
return '', geninfo, info return '', geninfo, info
def run_modelmerger(primary_model_name, secondary_model_name, interp_method, interp_amount, save_as_half, custom_name): def run_modelmerger(primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format):
# Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation) shared.state.begin()
shared.state.job = 'model-merge'
def weighted_sum(theta0, theta1, alpha): def weighted_sum(theta0, theta1, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1) return ((1 - alpha) * theta0) + (alpha * theta1)
# Smoothstep (https://en.wikipedia.org/wiki/Smoothstep) def get_difference(theta1, theta2):
def sigmoid(theta0, theta1, alpha): return theta1 - theta2
alpha = alpha * alpha * (3 - (2 * alpha))
return theta0 + ((theta1 - theta0) * alpha)
# Inverse Smoothstep (https://en.wikipedia.org/wiki/Smoothstep) def add_difference(theta0, theta1_2_diff, alpha):
def inv_sigmoid(theta0, theta1, alpha): return theta0 + (alpha * theta1_2_diff)
import math
alpha = 0.5 - math.sin(math.asin(1.0 - 2.0 * alpha) / 3.0)
return theta0 + ((theta1 - theta0) * alpha)
primary_model_info = sd_models.checkpoints_list[primary_model_name] primary_model_info = sd_models.checkpoints_list[primary_model_name]
secondary_model_info = sd_models.checkpoints_list[secondary_model_name] secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
tertiary_model_info = sd_models.checkpoints_list.get(tertiary_model_name, None)
print(f"Loading {primary_model_info.filename}...") result_is_inpainting_model = False
primary_model = torch.load(primary_model_info.filename, map_location='cpu')
print(f"Loading {secondary_model_info.filename}...")
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
theta_0 = primary_model['state_dict']
theta_1 = secondary_model['state_dict']
theta_funcs = { theta_funcs = {
"Weighted Sum": weighted_sum, "Weighted sum": (None, weighted_sum),
"Sigmoid": sigmoid, "Add difference": (get_difference, add_difference),
"Inverse Sigmoid": inv_sigmoid,
} }
theta_func = theta_funcs[interp_method] theta_func1, theta_func2 = theta_funcs[interp_method]
if theta_func1 and not tertiary_model_info:
shared.state.textinfo = "Failed: Interpolation method requires a tertiary model."
shared.state.end()
return ["Failed: Interpolation method requires a tertiary model."] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]
shared.state.textinfo = f"Loading {secondary_model_info.filename}..."
print(f"Loading {secondary_model_info.filename}...")
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
if theta_func1:
print(f"Loading {tertiary_model_info.filename}...")
theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')
for key in tqdm.tqdm(theta_1.keys()):
if 'model' in key:
if key in theta_2:
t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
theta_1[key] = theta_func1(theta_1[key], t2)
else:
theta_1[key] = torch.zeros_like(theta_1[key])
del theta_2
shared.state.textinfo = f"Loading {primary_model_info.filename}..."
print(f"Loading {primary_model_info.filename}...")
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
print("Merging...")
print(f"Merging...")
for key in tqdm.tqdm(theta_0.keys()): for key in tqdm.tqdm(theta_0.keys()):
if 'model' in key and key in theta_1: if 'model' in key and key in theta_1:
theta_0[key] = theta_func(theta_0[key], theta_1[key], (float(1.0) - interp_amount)) # Need to reverse the interp_amount to match the desired mix ration in the merged checkpoint a = theta_0[key]
b = theta_1[key]
shared.state.textinfo = f'Merging layer {key}'
# this enables merging an inpainting model (A) with another one (B);
# where normal model would have 4 channels, for latenst space, inpainting model would
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
if a.shape[1] == 4 and b.shape[1] == 9:
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
result_is_inpainting_model = True
else:
theta_0[key] = theta_func2(a, b, multiplier)
if save_as_half: if save_as_half:
theta_0[key] = theta_0[key].half() theta_0[key] = theta_0[key].half()
# I believe this part should be discarded, but I'll leave it for now until I am sure
for key in theta_1.keys(): for key in theta_1.keys():
if 'model' in key and key not in theta_0: if 'model' in key and key not in theta_0:
theta_0[key] = theta_1[key] theta_0[key] = theta_1[key]
if save_as_half: if save_as_half:
theta_0[key] = theta_0[key].half() theta_0[key] = theta_0[key].half()
del theta_1
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
filename = primary_model_info.model_name + '_' + str(round(interp_amount, 2)) + '-' + secondary_model_info.model_name + '_' + str(round((float(1.0) - interp_amount), 2)) + '-' + interp_method.replace(" ", "_") + '-merged.ckpt' filename = \
filename = filename if custom_name == '' else (custom_name + '.ckpt') primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + \
secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + \
interp_method.replace(" ", "_") + \
'-merged.' + \
("inpainting." if result_is_inpainting_model else "") + \
checkpoint_format
filename = filename if custom_name == '' else (custom_name + '.' + checkpoint_format)
output_modelname = os.path.join(ckpt_dir, filename) output_modelname = os.path.join(ckpt_dir, filename)
shared.state.textinfo = f"Saving to {output_modelname}..."
print(f"Saving to {output_modelname}...") print(f"Saving to {output_modelname}...")
torch.save(primary_model, output_modelname)
_, extension = os.path.splitext(output_modelname)
if extension.lower() == ".safetensors":
safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"})
else:
torch.save(theta_0, output_modelname)
sd_models.list_models() sd_models.list_models()
print(f"Checkpoint saved.") print("Checkpoint saved.")
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(3)] shared.state.textinfo = "Checkpoint saved to " + output_modelname
shared.state.end()
return ["Checkpoint saved to " + output_modelname] + [gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)]

View File

@ -1,11 +1,222 @@
import base64
import io
import math
import os
import re import re
import gradio as gr from pathlib import Path
re_param_code = r"\s*([\w ]+):\s*((?:{[^}]*})|(?:[^,]+))(?:,|$)" import gradio as gr
from modules.shared import script_path
from modules import shared, ui_tempdir
import tempfile
from PIL import Image
re_param_code = r'\s*([\w ]+):\s*("(?:\\|\"|[^\"])+"|[^,]*)(?:,|$)'
re_param = re.compile(re_param_code) re_param = re.compile(re_param_code)
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$") re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
re_imagesize = re.compile(r"^(\d+)x(\d+)$") re_imagesize = re.compile(r"^(\d+)x(\d+)$")
re_hypernet_hash = re.compile("\(([0-9a-f]+)\)$")
type_of_gr_update = type(gr.update()) type_of_gr_update = type(gr.update())
paste_fields = {}
bind_list = []
def reset():
paste_fields.clear()
bind_list.clear()
def quote(text):
if ',' not in str(text):
return text
text = str(text)
text = text.replace('\\', '\\\\')
text = text.replace('"', '\\"')
return f'"{text}"'
def image_from_url_text(filedata):
if type(filedata) == list and len(filedata) > 0 and type(filedata[0]) == dict and filedata[0].get("is_file", False):
filedata = filedata[0]
if type(filedata) == dict and filedata.get("is_file", False):
filename = filedata["name"]
is_in_right_dir = ui_tempdir.check_tmp_file(shared.demo, filename)
assert is_in_right_dir, 'trying to open image file outside of allowed directories'
return Image.open(filename)
if type(filedata) == list:
if len(filedata) == 0:
return None
filedata = filedata[0]
if filedata.startswith("data:image/png;base64,"):
filedata = filedata[len("data:image/png;base64,"):]
filedata = base64.decodebytes(filedata.encode('utf-8'))
image = Image.open(io.BytesIO(filedata))
return image
def add_paste_fields(tabname, init_img, fields):
paste_fields[tabname] = {"init_img": init_img, "fields": fields}
# backwards compatibility for existing extensions
import modules.ui
if tabname == 'txt2img':
modules.ui.txt2img_paste_fields = fields
elif tabname == 'img2img':
modules.ui.img2img_paste_fields = fields
def integrate_settings_paste_fields(component_dict):
from modules import ui
settings_map = {
'sd_hypernetwork': 'Hypernet',
'sd_hypernetwork_strength': 'Hypernet strength',
'CLIP_stop_at_last_layers': 'Clip skip',
'inpainting_mask_weight': 'Conditional mask weight',
'sd_model_checkpoint': 'Model hash',
'eta_noise_seed_delta': 'ENSD',
'initial_noise_multiplier': 'Noise multiplier',
}
settings_paste_fields = [
(component_dict[k], lambda d, k=k, v=v: ui.apply_setting(k, d.get(v, None)))
for k, v in settings_map.items()
]
for tabname, info in paste_fields.items():
if info["fields"] is not None:
info["fields"] += settings_paste_fields
def create_buttons(tabs_list):
buttons = {}
for tab in tabs_list:
buttons[tab] = gr.Button(f"Send to {tab}", elem_id=f"{tab}_tab")
return buttons
#if send_generate_info is a tab name, mean generate_info comes from the params fields of the tab
def bind_buttons(buttons, send_image, send_generate_info):
bind_list.append([buttons, send_image, send_generate_info])
def send_image_and_dimensions(x):
if isinstance(x, Image.Image):
img = x
else:
img = image_from_url_text(x)
if shared.opts.send_size and isinstance(img, Image.Image):
w = img.width
h = img.height
else:
w = gr.update()
h = gr.update()
return img, w, h
def run_bind():
for buttons, source_image_component, send_generate_info in bind_list:
for tab in buttons:
button = buttons[tab]
destination_image_component = paste_fields[tab]["init_img"]
fields = paste_fields[tab]["fields"]
destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None)
destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
if source_image_component and destination_image_component:
if isinstance(source_image_component, gr.Gallery):
func = send_image_and_dimensions if destination_width_component else image_from_url_text
jsfunc = "extract_image_from_gallery"
else:
func = send_image_and_dimensions if destination_width_component else lambda x: x
jsfunc = None
button.click(
fn=func,
_js=jsfunc,
inputs=[source_image_component],
outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component],
)
if send_generate_info and fields is not None:
if send_generate_info in paste_fields:
paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else [])
button.click(
fn=lambda *x: x,
inputs=[field for field, name in paste_fields[send_generate_info]["fields"] if name in paste_field_names],
outputs=[field for field, name in fields if name in paste_field_names],
)
else:
connect_paste(button, fields, send_generate_info)
button.click(
fn=None,
_js=f"switch_to_{tab}",
inputs=None,
outputs=None,
)
def find_hypernetwork_key(hypernet_name, hypernet_hash=None):
"""Determines the config parameter name to use for the hypernet based on the parameters in the infotext.
Example: an infotext provides "Hypernet: ke-ta" and "Hypernet hash: 1234abcd". For the "Hypernet" config
parameter this means there should be an entry that looks like "ke-ta-10000(1234abcd)" to set it to.
If the infotext has no hash, then a hypernet with the same name will be selected instead.
"""
hypernet_name = hypernet_name.lower()
if hypernet_hash is not None:
# Try to match the hash in the name
for hypernet_key in shared.hypernetworks.keys():
result = re_hypernet_hash.search(hypernet_key)
if result is not None and result[1] == hypernet_hash:
return hypernet_key
else:
# Fall back to a hypernet with the same name
for hypernet_key in shared.hypernetworks.keys():
if hypernet_key.lower().startswith(hypernet_name):
return hypernet_key
return None
def restore_old_hires_fix_params(res):
"""for infotexts that specify old First pass size parameter, convert it into
width, height, and hr scale"""
firstpass_width = res.get('First pass size-1', None)
firstpass_height = res.get('First pass size-2', None)
if firstpass_width is None or firstpass_height is None:
return
firstpass_width, firstpass_height = int(firstpass_width), int(firstpass_height)
width = int(res.get("Size-1", 512))
height = int(res.get("Size-2", 512))
if firstpass_width == 0 or firstpass_height == 0:
# old algorithm for auto-calculating first pass size
desired_pixel_count = 512 * 512
actual_pixel_count = width * height
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
firstpass_width = math.ceil(scale * width / 64) * 64
firstpass_height = math.ceil(scale * height / 64) * 64
hr_scale = width / firstpass_width if firstpass_width > 0 else height / firstpass_height
res['Size-1'] = firstpass_width
res['Size-2'] = firstpass_height
res['Hires upscale'] = hr_scale
def parse_generation_parameters(x: str): def parse_generation_parameters(x: str):
@ -42,11 +253,8 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
else: else:
prompt += ("" if prompt == "" else "\n") + line prompt += ("" if prompt == "" else "\n") + line
if len(prompt) > 0: res["Prompt"] = prompt
res["Prompt"] = prompt res["Negative prompt"] = negative_prompt
if len(negative_prompt) > 0:
res["Negative prompt"] = negative_prompt
for k, v in re_param.findall(lastline): for k, v in re_param.findall(lastline):
m = re_imagesize.match(v) m = re_imagesize.match(v)
@ -56,11 +264,31 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
else: else:
res[k] = v res[k] = v
# Missing CLIP skip means it was set to 1 (the default)
if "Clip skip" not in res:
res["Clip skip"] = "1"
if "Hypernet strength" not in res:
res["Hypernet strength"] = "1"
if "Hypernet" in res:
hypernet_name = res["Hypernet"]
hypernet_hash = res.get("Hypernet hash", None)
res["Hypernet"] = find_hypernetwork_key(hypernet_name, hypernet_hash)
restore_old_hires_fix_params(res)
return res return res
def connect_paste(button, paste_fields, input_comp, js=None): def connect_paste(button, paste_fields, input_comp, jsfunc=None):
def paste_func(prompt): def paste_func(prompt):
if not prompt and not shared.cmd_opts.hide_ui_dir_config:
filename = os.path.join(script_path, "params.txt")
if os.path.exists(filename):
with open(filename, "r", encoding="utf8") as file:
prompt = file.read()
params = parse_generation_parameters(prompt) params = parse_generation_parameters(prompt)
res = [] res = []
@ -77,7 +305,12 @@ def connect_paste(button, paste_fields, input_comp, js=None):
else: else:
try: try:
valtype = type(output.value) valtype = type(output.value)
val = valtype(v)
if valtype == bool and v == "False":
val = False
else:
val = valtype(v)
res.append(gr.update(value=val)) res.append(gr.update(value=val))
except Exception: except Exception:
res.append(gr.update()) res.append(gr.update())
@ -86,7 +319,9 @@ def connect_paste(button, paste_fields, input_comp, js=None):
button.click( button.click(
fn=paste_func, fn=paste_func,
_js=js, _js=jsfunc,
inputs=[input_comp], inputs=[input_comp],
outputs=[x[0] for x in paste_fields], outputs=[x[0] for x in paste_fields],
) )

View File

@ -21,7 +21,7 @@ def gfpgann():
global loaded_gfpgan_model global loaded_gfpgan_model
global model_path global model_path
if loaded_gfpgan_model is not None: if loaded_gfpgan_model is not None:
loaded_gfpgan_model.gfpgan.to(shared.device) loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan)
return loaded_gfpgan_model return loaded_gfpgan_model
if gfpgan_constructor is None: if gfpgan_constructor is None:
@ -36,23 +36,35 @@ def gfpgann():
else: else:
print("Unable to load gfpgan model!") print("Unable to load gfpgan model!")
return None return None
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None) if hasattr(facexlib.detection.retinaface, 'device'):
model.gfpgan.to(shared.device) facexlib.detection.retinaface.device = devices.device_gfpgan
model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan)
loaded_gfpgan_model = model loaded_gfpgan_model = model
return model return model
def send_model_to(model, device):
model.gfpgan.to(device)
model.face_helper.face_det.to(device)
model.face_helper.face_parse.to(device)
def gfpgan_fix_faces(np_image): def gfpgan_fix_faces(np_image):
model = gfpgann() model = gfpgann()
if model is None: if model is None:
return np_image return np_image
send_model_to(model, devices.device_gfpgan)
np_image_bgr = np_image[:, :, ::-1] np_image_bgr = np_image[:, :, ::-1]
cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True) cropped_faces, restored_faces, gfpgan_output_bgr = model.enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
np_image = gfpgan_output_bgr[:, :, ::-1] np_image = gfpgan_output_bgr[:, :, ::-1]
model.face_helper.clean_all()
if shared.opts.face_restoration_unload: if shared.opts.face_restoration_unload:
model.gfpgan.to(devices.cpu) send_model_to(model, devices.cpu)
return np_image return np_image
@ -97,11 +109,7 @@ def setup_model(dirname):
return "GFPGAN" return "GFPGAN"
def restore(self, np_image): def restore(self, np_image):
np_image_bgr = np_image[:, :, ::-1] return gfpgan_fix_faces(np_image)
cropped_faces, restored_faces, gfpgan_output_bgr = gfpgann().enhance(np_image_bgr, has_aligned=False, only_center_face=False, paste_back=True)
np_image = gfpgan_output_bgr[:, :, ::-1]
return np_image
shared.face_restorers.append(FaceRestorerGFPGAN()) shared.face_restorers.append(FaceRestorerGFPGAN())
except Exception: except Exception:

View File

@ -0,0 +1,667 @@
import csv
import datetime
import glob
import html
import os
import sys
import traceback
import inspect
import modules.textual_inversion.dataset
import torch
import tqdm
from einops import rearrange, repeat
from ldm.util import default
from modules import devices, processing, sd_models, shared, sd_samplers
from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum
from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
from collections import defaultdict, deque
from statistics import stdev, mean
optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
class HypernetworkModule(torch.nn.Module):
multiplier = 1.0
activation_dict = {
"linear": torch.nn.Identity,
"relu": torch.nn.ReLU,
"leakyrelu": torch.nn.LeakyReLU,
"elu": torch.nn.ELU,
"swish": torch.nn.Hardswish,
"tanh": torch.nn.Tanh,
"sigmoid": torch.nn.Sigmoid,
}
activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
add_layer_norm=False, use_dropout=False, activate_output=False, last_layer_dropout=False):
super().__init__()
assert layer_structure is not None, "layer_structure must not be None"
assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
linears = []
for i in range(len(layer_structure) - 1):
# Add a fully-connected layer
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
# Add an activation func except last layer
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
pass
elif activation_func in self.activation_dict:
linears.append(self.activation_dict[activation_func]())
else:
raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
# Add layer normalization
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
# Add dropout except last layer
if use_dropout and (i < len(layer_structure) - 3 or last_layer_dropout and i < len(layer_structure) - 2):
linears.append(torch.nn.Dropout(p=0.3))
self.linear = torch.nn.Sequential(*linears)
if state_dict is not None:
self.fix_old_state_dict(state_dict)
self.load_state_dict(state_dict)
else:
for layer in self.linear:
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
w, b = layer.weight.data, layer.bias.data
if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
normal_(w, mean=0.0, std=0.01)
normal_(b, mean=0.0, std=0)
elif weight_init == 'XavierUniform':
xavier_uniform_(w)
zeros_(b)
elif weight_init == 'XavierNormal':
xavier_normal_(w)
zeros_(b)
elif weight_init == 'KaimingUniform':
kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
zeros_(b)
elif weight_init == 'KaimingNormal':
kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
zeros_(b)
else:
raise KeyError(f"Key {weight_init} is not defined as initialization!")
self.to(devices.device)
def fix_old_state_dict(self, state_dict):
changes = {
'linear1.bias': 'linear.0.bias',
'linear1.weight': 'linear.0.weight',
'linear2.bias': 'linear.1.bias',
'linear2.weight': 'linear.1.weight',
}
for fr, to in changes.items():
x = state_dict.get(fr, None)
if x is None:
continue
del state_dict[fr]
state_dict[to] = x
def forward(self, x):
return x + self.linear(x) * self.multiplier
def trainables(self):
layer_structure = []
for layer in self.linear:
if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer_structure += [layer.weight, layer.bias]
return layer_structure
def apply_strength(value=None):
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
class Hypernetwork:
filename = None
name = None
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
self.filename = None
self.name = name
self.layers = {}
self.step = 0
self.sd_checkpoint = None
self.sd_checkpoint_name = None
self.layer_structure = layer_structure
self.activation_func = activation_func
self.weight_init = weight_init
self.add_layer_norm = add_layer_norm
self.use_dropout = use_dropout
self.activate_output = activate_output
self.last_layer_dropout = kwargs['last_layer_dropout'] if 'last_layer_dropout' in kwargs else True
self.optimizer_name = None
self.optimizer_state_dict = None
for size in enable_sizes or []:
self.layers[size] = (
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
)
self.eval_mode()
def weights(self):
res = []
for k, layers in self.layers.items():
for layer in layers:
res += layer.parameters()
return res
def train_mode(self):
for k, layers in self.layers.items():
for layer in layers:
layer.train()
for param in layer.parameters():
param.requires_grad = True
def eval_mode(self):
for k, layers in self.layers.items():
for layer in layers:
layer.eval()
for param in layer.parameters():
param.requires_grad = False
def save(self, filename):
state_dict = {}
optimizer_saved_dict = {}
for k, v in self.layers.items():
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
state_dict['step'] = self.step
state_dict['name'] = self.name
state_dict['layer_structure'] = self.layer_structure
state_dict['activation_func'] = self.activation_func
state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['weight_initialization'] = self.weight_init
state_dict['use_dropout'] = self.use_dropout
state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
state_dict['activate_output'] = self.activate_output
state_dict['last_layer_dropout'] = self.last_layer_dropout
if self.optimizer_name is not None:
optimizer_saved_dict['optimizer_name'] = self.optimizer_name
torch.save(state_dict, filename)
if shared.opts.save_optimizer_state and self.optimizer_state_dict:
optimizer_saved_dict['hash'] = sd_models.model_hash(filename)
optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
torch.save(optimizer_saved_dict, filename + '.optim')
def load(self, filename):
self.filename = filename
if self.name is None:
self.name = os.path.splitext(os.path.basename(filename))[0]
state_dict = torch.load(filename, map_location='cpu')
self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
print(self.layer_structure)
self.activation_func = state_dict.get('activation_func', None)
print(f"Activation function is {self.activation_func}")
self.weight_init = state_dict.get('weight_initialization', 'Normal')
print(f"Weight initialization is {self.weight_init}")
self.add_layer_norm = state_dict.get('is_layer_norm', False)
print(f"Layer norm is set to {self.add_layer_norm}")
self.use_dropout = state_dict.get('use_dropout', False)
print(f"Dropout usage is set to {self.use_dropout}" )
self.activate_output = state_dict.get('activate_output', True)
print(f"Activate last layer is set to {self.activate_output}")
self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {}
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
print(f"Optimizer name is {self.optimizer_name}")
if sd_models.model_hash(filename) == optimizer_saved_dict.get('hash', None):
self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
else:
self.optimizer_state_dict = None
if self.optimizer_state_dict:
print("Loaded existing optimizer from checkpoint")
else:
print("No saved optimizer exists in checkpoint")
for size, sd in state_dict.items():
if type(size) == int:
self.layers[size] = (
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
self.add_layer_norm, self.use_dropout, self.activate_output, last_layer_dropout=self.last_layer_dropout),
)
self.name = state_dict.get('name', self.name)
self.step = state_dict.get('step', 0)
self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
def list_hypernetworks(path):
res = {}
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True)):
name = os.path.splitext(os.path.basename(filename))[0]
# Prevent a hypothetical "None.pt" from being listed.
if name != "None":
res[name + f"({sd_models.model_hash(filename)})"] = filename
return res
def load_hypernetwork(filename):
path = shared.hypernetworks.get(filename, None)
# Prevent any file named "None.pt" from being loaded.
if path is not None and filename != "None":
print(f"Loading hypernetwork {filename}")
try:
shared.loaded_hypernetwork = Hypernetwork()
shared.loaded_hypernetwork.load(path)
except Exception:
print(f"Error loading hypernetwork {path}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
else:
if shared.loaded_hypernetwork is not None:
print("Unloading hypernetwork")
shared.loaded_hypernetwork = None
def find_closest_hypernetwork_name(search: str):
if not search:
return None
search = search.lower()
applicable = [name for name in shared.hypernetworks if search in name.lower()]
if not applicable:
return None
applicable = sorted(applicable, key=lambda name: len(name))
return applicable[0]
def apply_hypernetwork(hypernetwork, context, layer=None):
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
if hypernetwork_layers is None:
return context, context
if layer is not None:
layer.hyper_k = hypernetwork_layers[0]
layer.hyper_v = hypernetwork_layers[1]
context_k = hypernetwork_layers[0](context)
context_v = hypernetwork_layers[1](context)
return context_k, context_v
def attention_CrossAttention_forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self)
k = self.to_k(context_k)
v = self.to_v(context_v)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if mask is not None:
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)
def stack_conds(conds):
if len(conds) == 1:
return torch.stack(conds)
# same as in reconstruct_multicond_batch
token_count = max([x.shape[0] for x in conds])
for i in range(len(conds)):
if conds[i].shape[0] != token_count:
last_vector = conds[i][-1:]
last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])
conds[i] = torch.vstack([conds[i], last_vector_repeated])
return torch.stack(conds)
def statistics(data):
if len(data) < 2:
std = 0
else:
std = stdev(data)
total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"
recent_data = data[-32:]
if len(recent_data) < 2:
std = 0
else:
std = stdev(recent_data)
recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"
return total_information, recent_information
def report_statistics(loss_info:dict):
keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
for key in keys:
try:
print("Loss statistics for file " + key)
info, recent = statistics(list(loss_info[key]))
print(info)
print(recent)
except Exception as e:
print(e)
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
# Remove illegal characters from name.
name = "".join( x for x in name if (x.isalnum() or x in "._- "))
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
if not overwrite_old:
assert not os.path.exists(fn), f"file {fn} already exists"
if type(layer_structure) == str:
layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
name=name,
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
activation_func=activation_func,
weight_init=weight_init,
add_layer_norm=add_layer_norm,
use_dropout=use_dropout,
)
hypernet.save(fn)
shared.reload_hypernetworks()
return fn
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
save_hypernetwork_every = save_hypernetwork_every or 0
create_image_every = create_image_every or 0
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
shared.loaded_hypernetwork.load(path)
shared.state.job = "train-hypernetwork"
shared.state.textinfo = "Initializing hypernetwork training..."
shared.state.job_count = steps
hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
unload = shared.opts.unload_models_when_training
if save_hypernetwork_every > 0:
hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
os.makedirs(hypernetwork_dir, exist_ok=True)
else:
hypernetwork_dir = None
if create_image_every > 0:
images_dir = os.path.join(log_directory, "images")
os.makedirs(images_dir, exist_ok=True)
else:
images_dir = None
hypernetwork = shared.loaded_hypernetwork
checkpoint = sd_models.select_checkpoint()
initial_step = hypernetwork.step or 0
if initial_step >= steps:
shared.state.textinfo = "Model has already been trained beyond specified max steps"
return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
# dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
pin_memory = shared.opts.pin_memory
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
latent_sampling_method = ds.latent_sampling_method
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
old_parallel_processing_allowed = shared.parallel_processing_allowed
if unload:
shared.parallel_processing_allowed = False
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
weights = hypernetwork.weights()
hypernetwork.train_mode()
# Here we use optimizer from saved HN, or we can specify as UI option.
if hypernetwork.optimizer_name in optimizer_dict:
optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
optimizer_name = hypernetwork.optimizer_name
else:
print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
optimizer_name = 'AdamW'
if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
try:
optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
except RuntimeError as e:
print("Cannot resume from saved optimizer!")
print(e)
scaler = torch.cuda.amp.GradScaler()
batch_size = ds.batch_size
gradient_step = ds.gradient_step
# n steps = batch_size * gradient_step * n image processed
steps_per_epoch = len(ds) // batch_size // gradient_step
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
loss_step = 0
_loss_step = 0 #internal
# size = len(ds.indexes)
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
# losses = torch.zeros((size,))
# previous_mean_losses = [0]
# previous_mean_loss = 0
# print("Mean loss of {} elements".format(size))
steps_without_grad = 0
last_saved_file = "<none>"
last_saved_image = "<none>"
forced_filename = "<none>"
pbar = tqdm.tqdm(total=steps - initial_step)
try:
for i in range((steps-initial_step) * gradient_step):
if scheduler.finished:
break
if shared.state.interrupted:
break
for j, batch in enumerate(dl):
# works as a drop_last=True for gradient accumulation
if j == max_steps_per_epoch:
break
scheduler.apply(optimizer, hypernetwork.step)
if scheduler.finished:
break
if shared.state.interrupted:
break
with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if tag_drop_out != 0 or shuffle_tags:
shared.sd_model.cond_stage_model.to(devices.device)
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
shared.sd_model.cond_stage_model.to(devices.cpu)
else:
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
loss = shared.sd_model(x, c)[0] / gradient_step
del x
del c
_loss_step += loss.item()
scaler.scale(loss).backward()
# go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.7f}")
# scaler.unscale_(optimizer)
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
# torch.nn.utils.clip_grad_norm_(weights, max_norm=1.0)
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
scaler.step(optimizer)
scaler.update()
hypernetwork.step += 1
pbar.update()
optimizer.zero_grad(set_to_none=True)
loss_step = _loss_step
_loss_step = 0
steps_done = hypernetwork.step + 1
epoch_num = hypernetwork.step // steps_per_epoch
epoch_step = hypernetwork.step % steps_per_epoch
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}")
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
# Before saving, change name to match current checkpoint.
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
hypernetwork.optimizer_name = optimizer_name
if shared.opts.save_optimizer_state:
hypernetwork.optimizer_state_dict = optimizer.state_dict()
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
"loss": f"{loss_step:.7f}",
"learn_rate": scheduler.learn_rate
})
if images_dir is not None and steps_done % create_image_every == 0:
forced_filename = f'{hypernetwork_name}-{steps_done}'
last_saved_image = os.path.join(images_dir, forced_filename)
hypernetwork.eval_mode()
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
do_not_save_grid=True,
do_not_save_samples=True,
)
if preview_from_txt2img:
p.prompt = preview_prompt
p.negative_prompt = preview_negative_prompt
p.steps = preview_steps
p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
p.cfg_scale = preview_cfg_scale
p.seed = preview_seed
p.width = preview_width
p.height = preview_height
else:
p.prompt = batch.cond_text[0]
p.steps = 20
p.width = training_width
p.height = training_height
preview_text = p.prompt
processed = processing.process_images(p)
image = processed.images[0] if len(processed.images) > 0 else None
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
hypernetwork.train_mode()
if image is not None:
shared.state.current_image = image
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
shared.state.textinfo = f"""
<p>
Loss: {loss_step:.7f}<br/>
Step: {steps_done}<br/>
Last prompt: {html.escape(batch.cond_text[0])}<br/>
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
except Exception:
print(traceback.format_exc(), file=sys.stderr)
finally:
pbar.leave = False
pbar.close()
hypernetwork.eval_mode()
#report_statistics(loss_dict)
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
hypernetwork.optimizer_name = optimizer_name
if shared.opts.save_optimizer_state:
hypernetwork.optimizer_state_dict = optimizer.state_dict()
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
del optimizer
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
shared.parallel_processing_allowed = old_parallel_processing_allowed
return hypernetwork, filename
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
old_hypernetwork_name = hypernetwork.name
old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
try:
hypernetwork.sd_checkpoint = checkpoint.hash
hypernetwork.sd_checkpoint_name = checkpoint.model_name
hypernetwork.name = hypernetwork_name
hypernetwork.save(filename)
except:
hypernetwork.sd_checkpoint = old_sd_checkpoint
hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
hypernetwork.name = old_hypernetwork_name
raise

View File

@ -0,0 +1,41 @@
import html
import os
import re
import gradio as gr
import modules.hypernetworks.hypernetwork
from modules import devices, sd_hijack, shared
not_available = ["hardswish", "multiheadattention"]
keys = list(x for x in modules.hypernetworks.hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
filename = modules.hypernetworks.hypernetwork.create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure, activation_func, weight_init, add_layer_norm, use_dropout)
return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {filename}", ""
def train_hypernetwork(*args):
initial_hypernetwork = shared.loaded_hypernetwork
assert not shared.cmd_opts.lowvram, 'Training models with lowvram is not possible'
try:
sd_hijack.undo_optimizations()
hypernetwork, filename = modules.hypernetworks.hypernetwork.train_hypernetwork(*args)
res = f"""
Training {'interrupted' if shared.state.interrupted else 'finished'} at {hypernetwork.step} steps.
Hypernetwork saved to {html.escape(filename)}
"""
return res, ""
except Exception:
raise
finally:
shared.loaded_hypernetwork = initial_hypernetwork
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
sd_hijack.apply_optimizations()

View File

@ -1,4 +1,9 @@
import datetime import datetime
import sys
import traceback
import pytz
import io
import math import math
import os import os
from collections import namedtuple from collections import namedtuple
@ -10,8 +15,9 @@ import piexif.helper
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
from fonts.ttf import Roboto from fonts.ttf import Roboto
import string import string
import json
from modules import sd_samplers, shared from modules import sd_samplers, shared, script_callbacks
from modules.shared import opts, cmd_opts from modules.shared import opts, cmd_opts
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
@ -23,17 +29,24 @@ def image_grid(imgs, batch_size=1, rows=None):
rows = opts.n_rows rows = opts.n_rows
elif opts.n_rows == 0: elif opts.n_rows == 0:
rows = batch_size rows = batch_size
elif opts.grid_prevent_empty_spots:
rows = math.floor(math.sqrt(len(imgs)))
while len(imgs) % rows != 0:
rows -= 1
else: else:
rows = math.sqrt(len(imgs)) rows = math.sqrt(len(imgs))
rows = round(rows) rows = round(rows)
cols = math.ceil(len(imgs) / rows) cols = math.ceil(len(imgs) / rows)
w, h = imgs[0].size params = script_callbacks.ImageGridLoopParams(imgs, cols, rows)
grid = Image.new('RGB', size=(cols * w, rows * h), color='black') script_callbacks.image_grid_callback(params)
for i, img in enumerate(imgs): w, h = imgs[0].size
grid.paste(img, box=(i % cols * w, i // cols * h)) grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color='black')
for i, img in enumerate(params.imgs):
grid.paste(img, box=(i % params.cols * w, i // params.cols * h))
return grid return grid
@ -126,8 +139,19 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
lines.append(word) lines.append(word)
return lines return lines
def draw_texts(drawing, draw_x, draw_y, lines): def get_font(fontsize):
try:
return ImageFont.truetype(opts.font or Roboto, fontsize)
except Exception:
return ImageFont.truetype(Roboto, fontsize)
def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize):
for i, line in enumerate(lines): for i, line in enumerate(lines):
fnt = initial_fnt
fontsize = initial_fontsize
while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0:
fontsize -= 1
fnt = get_font(fontsize)
drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center") drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center")
if not line.is_active: if not line.is_active:
@ -138,10 +162,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
fontsize = (width + height) // 25 fontsize = (width + height) // 25
line_spacing = fontsize // 2 line_spacing = fontsize // 2
try: fnt = get_font(fontsize)
fnt = ImageFont.truetype(opts.font or Roboto, fontsize)
except Exception:
fnt = ImageFont.truetype(Roboto, fontsize)
color_active = (0, 0, 0) color_active = (0, 0, 0)
color_inactive = (153, 153, 153) color_inactive = (153, 153, 153)
@ -168,6 +189,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
for line in texts: for line in texts:
bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt) bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt)
line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1]) line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1])
line.allowed_width = allowed_width
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts] hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts]
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in
@ -184,13 +206,13 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
x = pad_left + width * col + width / 2 x = pad_left + width * col + width / 2
y = pad_top / 2 - hor_text_heights[col] / 2 y = pad_top / 2 - hor_text_heights[col] / 2
draw_texts(d, x, y, hor_texts[col]) draw_texts(d, x, y, hor_texts[col], fnt, fontsize)
for row in range(rows): for row in range(rows):
x = pad_left / 2 x = pad_left / 2
y = pad_top + height * row + height / 2 - ver_text_heights[row] / 2 y = pad_top + height * row + height / 2 - ver_text_heights[row] / 2
draw_texts(d, x, y, ver_texts[row]) draw_texts(d, x, y, ver_texts[row], fnt, fontsize)
return result return result
@ -208,16 +230,32 @@ def draw_prompt_matrix(im, width, height, all_prompts):
return draw_grid_annotations(im, width, height, hor_texts, ver_texts) return draw_grid_annotations(im, width, height, hor_texts, ver_texts)
def resize_image(resize_mode, im, width, height): def resize_image(resize_mode, im, width, height, upscaler_name=None):
"""
Resizes an image with the specified resize_mode, width, and height.
Args:
resize_mode: The mode to use when resizing the image.
0: Resize the image to the specified width and height.
1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
im: The image to resize.
width: The width to resize the image to.
height: The height to resize the image to.
upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img.
"""
upscaler_name = upscaler_name or opts.upscaler_for_img2img
def resize(im, w, h): def resize(im, w, h):
if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None" or im.mode == 'L': if upscaler_name is None or upscaler_name == "None" or im.mode == 'L':
return im.resize((w, h), resample=LANCZOS) return im.resize((w, h), resample=LANCZOS)
scale = max(w / im.width, h / im.height) scale = max(w / im.width, h / im.height)
if scale > 1.0: if scale > 1.0:
upscalers = [x for x in shared.sd_upscalers if x.name == opts.upscaler_for_img2img] upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name]
assert len(upscalers) > 0, f"could not find upscaler named {opts.upscaler_for_img2img}" assert len(upscalers) > 0, f"could not find upscaler named {upscaler_name}"
upscaler = upscalers[0] upscaler = upscalers[0]
im = upscaler.scaler.upscale(im, scale, upscaler.data_path) im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
@ -268,10 +306,15 @@ invalid_filename_chars = '<>:"/\\|?*\n'
invalid_filename_prefix = ' ' invalid_filename_prefix = ' '
invalid_filename_postfix = ' .' invalid_filename_postfix = ' .'
re_nonletters = re.compile(r'[\s' + string.punctuation + ']+') re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)")
re_pattern_arg = re.compile(r"(.*)<([^>]*)>$")
max_filename_part_length = 128 max_filename_part_length = 128
def sanitize_filename_part(text, replace_spaces=True): def sanitize_filename_part(text, replace_spaces=True):
if text is None:
return None
if replace_spaces: if replace_spaces:
text = text.replace(' ', '_') text = text.replace(' ', '_')
@ -281,48 +324,105 @@ def sanitize_filename_part(text, replace_spaces=True):
return text return text
def apply_filename_pattern(x, p, seed, prompt): class FilenameGenerator:
max_prompt_words = opts.directories_max_prompt_words replacements = {
'seed': lambda self: self.seed if self.seed is not None else '',
'steps': lambda self: self.p and self.p.steps,
'cfg': lambda self: self.p and self.p.cfg_scale,
'width': lambda self: self.image.width,
'height': lambda self: self.image.height,
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.model_name, replace_spaces=False),
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp),
'prompt': lambda self: sanitize_filename_part(self.prompt),
'prompt_no_styles': lambda self: self.prompt_no_style(),
'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False),
'prompt_words': lambda self: self.prompt_words(),
}
default_time_format = '%Y%m%d%H%M%S'
if seed is not None: def __init__(self, p, seed, prompt, image):
x = x.replace("[seed]", str(seed)) self.p = p
self.seed = seed
self.prompt = prompt
self.image = image
if prompt is not None: def prompt_no_style(self):
x = x.replace("[prompt]", sanitize_filename_part(prompt)) if self.p is None or self.prompt is None:
if "[prompt_no_styles]" in x: return None
prompt_no_style = prompt
for style in shared.prompt_styles.get_style_prompts(p.styles):
if len(style) > 0:
style_parts = [y for y in style.split("{prompt}")]
for part in style_parts:
prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip()
x = x.replace("[prompt_no_styles]", sanitize_filename_part(prompt_no_style, replace_spaces=False))
x = x.replace("[prompt_spaces]", sanitize_filename_part(prompt, replace_spaces=False)) prompt_no_style = self.prompt
if "[prompt_words]" in x: for style in shared.prompt_styles.get_style_prompts(self.p.styles):
words = [x for x in re_nonletters.split(prompt or "") if len(x) > 0] if len(style) > 0:
if len(words) == 0: for part in style.split("{prompt}"):
words = ["empty"] prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
x = x.replace("[prompt_words]", sanitize_filename_part(" ".join(words[0:max_prompt_words]), replace_spaces=False))
if p is not None: prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip()
x = x.replace("[steps]", str(p.steps))
x = x.replace("[cfg]", str(p.cfg_scale))
x = x.replace("[width]", str(p.width))
x = x.replace("[height]", str(p.height))
x = x.replace("[styles]", sanitize_filename_part(", ".join([x for x in p.styles if not x == "None"]), replace_spaces=False))
x = x.replace("[sampler]", sanitize_filename_part(sd_samplers.samplers[p.sampler_index].name, replace_spaces=False))
x = x.replace("[model_hash]", shared.sd_model.sd_model_hash) return sanitize_filename_part(prompt_no_style, replace_spaces=False)
x = x.replace("[date]", datetime.date.today().isoformat())
x = x.replace("[datetime]", datetime.datetime.now().strftime("%Y%m%d%H%M%S"))
x = x.replace("[job_timestamp]", shared.state.job_timestamp)
if cmd_opts.hide_ui_dir_config: def prompt_words(self):
x = re.sub(r'^[\\/]+|\.{2,}[\\/]+|[\\/]+\.{2,}', '', x) words = [x for x in re_nonletters.split(self.prompt or "") if len(x) > 0]
if len(words) == 0:
words = ["empty"]
return sanitize_filename_part(" ".join(words[0:opts.directories_max_prompt_words]), replace_spaces=False)
return x def datetime(self, *args):
time_datetime = datetime.datetime.now()
time_format = args[0] if len(args) > 0 and args[0] != "" else self.default_time_format
try:
time_zone = pytz.timezone(args[1]) if len(args) > 1 else None
except pytz.exceptions.UnknownTimeZoneError as _:
time_zone = None
time_zone_time = time_datetime.astimezone(time_zone)
try:
formatted_time = time_zone_time.strftime(time_format)
except (ValueError, TypeError) as _:
formatted_time = time_zone_time.strftime(self.default_time_format)
return sanitize_filename_part(formatted_time, replace_spaces=False)
def apply(self, x):
res = ''
for m in re_pattern.finditer(x):
text, pattern = m.groups()
res += text
if pattern is None:
continue
pattern_args = []
while True:
m = re_pattern_arg.match(pattern)
if m is None:
break
pattern, arg = m.groups()
pattern_args.insert(0, arg)
fun = self.replacements.get(pattern.lower())
if fun is not None:
try:
replacement = fun(self, *pattern_args)
except Exception:
replacement = None
print(f"Error adding [{pattern}] to filename", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if replacement is not None:
res += str(replacement)
continue
res += f'[{pattern}]'
return res
def get_next_sequence_number(path, basename): def get_next_sequence_number(path, basename):
@ -347,65 +447,126 @@ def get_next_sequence_number(path, basename):
return result + 1 return result + 1
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix=""): def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None):
if short_filename or prompt is None or seed is None: """Save an image.
file_decoration = ""
elif opts.save_to_dirs:
file_decoration = opts.samples_filename_pattern or "[seed]"
else:
file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
if file_decoration != "": Args:
file_decoration = "-" + file_decoration.lower() image (`PIL.Image`):
The image to be saved.
path (`str`):
The directory to save the image. Note, the option `save_to_dirs` will make the image to be saved into a sub directory.
basename (`str`):
The base filename which will be applied to `filename pattern`.
seed, prompt, short_filename,
extension (`str`):
Image file extension, default is `png`.
pngsectionname (`str`):
Specify the name of the section which `info` will be saved in.
info (`str` or `PngImagePlugin.iTXt`):
PNG info chunks.
existing_info (`dict`):
Additional PNG info. `existing_info == {pngsectionname: info, ...}`
no_prompt:
TODO I don't know its meaning.
p (`StableDiffusionProcessing`)
forced_filename (`str`):
If specified, `basename` and filename pattern will be ignored.
save_to_dirs (bool):
If true, the image will be saved into a subdirectory of `path`.
file_decoration = apply_filename_pattern(file_decoration, p, seed, prompt) + suffix Returns: (fullfn, txt_fullfn)
fullfn (`str`):
The full path of the saved imaged.
txt_fullfn (`str` or None):
If a text file is saved for this image, this will be its full path. Otherwise None.
"""
namegen = FilenameGenerator(p, seed, prompt, image)
if extension == 'png' and opts.enable_pnginfo and info is not None: if save_to_dirs is None:
pnginfo = PngImagePlugin.PngInfo() save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
if existing_info is not None:
for k, v in existing_info.items():
pnginfo.add_text(k, str(v))
pnginfo.add_text(pnginfo_section_name, info)
else:
pnginfo = None
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
if save_to_dirs: if save_to_dirs:
dirname = apply_filename_pattern(opts.directories_filename_pattern or "[prompt_words]", p, seed, prompt) dirname = namegen.apply(opts.directories_filename_pattern or "[prompt_words]").lstrip(' ').rstrip('\\ /')
path = os.path.join(path, dirname) path = os.path.join(path, dirname)
os.makedirs(path, exist_ok=True) os.makedirs(path, exist_ok=True)
if forced_filename is None: if forced_filename is None:
basecount = get_next_sequence_number(path, basename) if short_filename or seed is None:
fullfn = "a.png" file_decoration = ""
fullfn_without_extension = "a" elif opts.save_to_dirs:
for i in range(500): file_decoration = opts.samples_filename_pattern or "[seed]"
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}" else:
fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}") file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
fullfn_without_extension = os.path.join(path, f"{fn}{file_decoration}")
if not os.path.exists(fullfn): add_number = opts.save_images_add_number or file_decoration == ''
break
if file_decoration != "" and add_number:
file_decoration = "-" + file_decoration
file_decoration = namegen.apply(file_decoration) + suffix
if add_number:
basecount = get_next_sequence_number(path, basename)
fullfn = None
for i in range(500):
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
if not os.path.exists(fullfn):
break
else:
fullfn = os.path.join(path, f"{file_decoration}.{extension}")
else: else:
fullfn = os.path.join(path, f"{forced_filename}.{extension}") fullfn = os.path.join(path, f"{forced_filename}.{extension}")
fullfn_without_extension = os.path.join(path, forced_filename)
def exif_bytes(): pnginfo = existing_info or {}
return piexif.dump({ if info is not None:
"Exif": { pnginfo[pnginfo_section_name] = info
piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or "", encoding="unicode")
},
})
if extension.lower() in ("jpg", "jpeg", "webp"): params = script_callbacks.ImageSaveParams(image, p, fullfn, pnginfo)
image.save(fullfn, quality=opts.jpeg_quality) script_callbacks.before_image_saved_callback(params)
if opts.enable_pnginfo and info is not None:
piexif.insert(exif_bytes(), fullfn) image = params.image
else: fullfn = params.filename
image.save(fullfn, quality=opts.jpeg_quality, pnginfo=pnginfo) info = params.pnginfo.get(pnginfo_section_name, None)
def _atomically_save_image(image_to_save, filename_without_extension, extension):
# save image with .tmp extension to avoid race condition when another process detects new image in the directory
temp_file_path = filename_without_extension + ".tmp"
image_format = Image.registered_extensions()[extension]
if extension.lower() == '.png':
pnginfo_data = PngImagePlugin.PngInfo()
if opts.enable_pnginfo:
for k, v in params.pnginfo.items():
pnginfo_data.add_text(k, str(v))
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, pnginfo=pnginfo_data)
elif extension.lower() in (".jpg", ".jpeg", ".webp"):
if image_to_save.mode == 'RGBA':
image_to_save = image_to_save.convert("RGB")
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
if opts.enable_pnginfo and info is not None:
exif_bytes = piexif.dump({
"Exif": {
piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or "", encoding="unicode")
},
})
piexif.insert(exif_bytes, temp_file_path)
else:
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
# atomically rename the file with correct extension
os.replace(temp_file_path, filename_without_extension + extension)
fullfn_without_extension, extension = os.path.splitext(params.filename)
_atomically_save_image(image, fullfn_without_extension, extension)
image.already_saved_as = fullfn
target_side_length = 4000 target_side_length = 4000
oversize = image.width > target_side_length or image.height > target_side_length oversize = image.width > target_side_length or image.height > target_side_length
@ -417,12 +578,80 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
elif oversize: elif oversize:
image = image.resize((image.width * target_side_length // image.height, target_side_length), LANCZOS) image = image.resize((image.width * target_side_length // image.height, target_side_length), LANCZOS)
image.save(fullfn_without_extension + ".jpg", quality=opts.jpeg_quality) _atomically_save_image(image, fullfn_without_extension, ".jpg")
if opts.enable_pnginfo and info is not None:
piexif.insert(exif_bytes(), fullfn_without_extension + ".jpg")
if opts.save_txt and info is not None: if opts.save_txt and info is not None:
with open(f"{fullfn_without_extension}.txt", "w", encoding="utf8") as file: txt_fullfn = f"{fullfn_without_extension}.txt"
with open(txt_fullfn, "w", encoding="utf8") as file:
file.write(info + "\n") file.write(info + "\n")
else:
txt_fullfn = None
script_callbacks.image_saved_callback(params)
return fullfn, txt_fullfn
def read_info_from_image(image):
items = image.info or {}
geninfo = items.pop('parameters', None)
if "exif" in items:
exif = piexif.load(items["exif"])
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
try:
exif_comment = piexif.helper.UserComment.load(exif_comment)
except ValueError:
exif_comment = exif_comment.decode('utf8', errors="ignore")
items['exif comment'] = exif_comment
geninfo = exif_comment
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
'loop', 'background', 'timestamp', 'duration']:
items.pop(field, None)
if items.get("Software", None) == "NovelAI":
try:
json_info = json.loads(items["Comment"])
sampler = sd_samplers.samplers_map.get(json_info["sampler"], "Euler a")
geninfo = f"""{items["Description"]}
Negative prompt: {json_info["uc"]}
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
except Exception:
print("Error parsing NovelAI image generation parameters:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return geninfo, items
def image_data(data):
try:
image = Image.open(io.BytesIO(data))
textinfo, _ = read_info_from_image(image)
return textinfo, None
except Exception:
pass
try:
text = data.decode('utf8')
assert len(text) < 10000
return text, None
except Exception:
pass
return '', None
def flatten(img, bgcolor):
"""replaces transparency with bgcolor (example: "#ffffff"), returning an RGB mode image with no transparency"""
if img.mode == "RGBA":
background = Image.new('RGBA', img.size, bgcolor)
background.paste(img, mask=img)
img = background
return img.convert('RGB')

View File

@ -4,9 +4,9 @@ import sys
import traceback import traceback
import numpy as np import numpy as np
from PIL import Image, ImageOps, ImageChops from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops
from modules import devices from modules import devices, sd_samplers
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state from modules.shared import opts, state
import modules.shared as shared import modules.shared as shared
@ -19,22 +19,28 @@ import modules.scripts
def process_batch(p, input_dir, output_dir, args): def process_batch(p, input_dir, output_dir, args):
processing.fix_seed(p) processing.fix_seed(p)
images = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)] images = shared.listfiles(input_dir)
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.") print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
save_normally = output_dir == ''
p.do_not_save_grid = True p.do_not_save_grid = True
p.do_not_save_samples = True p.do_not_save_samples = not save_normally
state.job_count = len(images) * p.n_iter state.job_count = len(images) * p.n_iter
for i, image in enumerate(images): for i, image in enumerate(images):
state.job = f"{i+1} out of {len(images)}" state.job = f"{i+1} out of {len(images)}"
if state.skipped:
state.skipped = False
if state.interrupted: if state.interrupted:
break break
img = Image.open(image) img = Image.open(image)
# Use the EXIF orientation of photos taken by smartphones.
img = ImageOps.exif_transpose(img)
p.init_images = [img] * p.batch_size p.init_images = [img] * p.batch_size
proc = modules.scripts.scripts_img2img.run(p, *args) proc = modules.scripts.scripts_img2img.run(p, *args)
@ -48,27 +54,49 @@ def process_batch(p, input_dir, output_dir, args):
left, right = os.path.splitext(filename) left, right = os.path.splitext(filename)
filename = f"{left}-{n}{right}" filename = f"{left}-{n}{right}"
processed_image.save(os.path.join(output_dir, filename)) if not save_normally:
os.makedirs(output_dir, exist_ok=True)
processed_image.save(os.path.join(output_dir, filename))
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args): def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_with_mask_orig, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
is_inpaint = mode == 1 is_inpaint = mode == 1
is_batch = mode == 2 is_batch = mode == 2
if is_inpaint: if is_inpaint:
# Drawn mask
if mask_mode == 0: if mask_mode == 0:
image = init_img_with_mask['image'] is_mask_sketch = isinstance(init_img_with_mask, dict)
mask = init_img_with_mask['mask'] is_mask_paint = not is_mask_sketch
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1') if is_mask_sketch:
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L') # Sketch: mask iff. not transparent
image = image.convert('RGB') image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
else:
# Color-sketch: mask iff. painted over
image = init_img_with_mask
orig = init_img_with_mask_orig or init_img_with_mask
pred = np.any(np.array(image) != np.array(orig), axis=-1)
mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
blur = ImageFilter.GaussianBlur(mask_blur)
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
image = image.convert("RGB")
# Uploaded mask
else: else:
image = init_img_inpaint image = init_img_inpaint
mask = init_mask_inpaint mask = init_mask_inpaint
# No mask
else: else:
image = init_img image = init_img
mask = None mask = None
# Use the EXIF orientation of photos taken by smartphones.
if image is not None:
image = ImageOps.exif_transpose(image)
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
p = StableDiffusionProcessingImg2Img( p = StableDiffusionProcessingImg2Img(
@ -84,7 +112,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
seed_resize_from_h=seed_resize_from_h, seed_resize_from_h=seed_resize_from_h,
seed_resize_from_w=seed_resize_from_w, seed_resize_from_w=seed_resize_from_w,
seed_enable_extras=seed_enable_extras, seed_enable_extras=seed_enable_extras,
sampler_index=sampler_index, sampler_name=sd_samplers.samplers_for_img2img[sampler_index].name,
batch_size=batch_size, batch_size=batch_size,
n_iter=n_iter, n_iter=n_iter,
steps=steps, steps=steps,
@ -103,7 +131,12 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
inpaint_full_res_padding=inpaint_full_res_padding, inpaint_full_res_padding=inpaint_full_res_padding,
inpainting_mask_invert=inpainting_mask_invert, inpainting_mask_invert=inpainting_mask_invert,
) )
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
p.scripts = modules.scripts.scripts_txt2img
p.script_args = args
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
p.extra_generation_params["Mask blur"] = mask_blur p.extra_generation_params["Mask blur"] = mask_blur
@ -118,10 +151,15 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
if processed is None: if processed is None:
processed = process_images(p) processed = process_images(p)
p.close()
shared.total_tqdm.clear() shared.total_tqdm.clear()
generation_info_js = processed.js() generation_info_js = processed.js()
if opts.samples_log_stdout: if opts.samples_log_stdout:
print(generation_info_js) print(generation_info_js)
return processed.images, generation_info_js, plaintext_to_html(processed.info) if opts.do_not_show_images:
processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments)

5
modules/import_hook.py Normal file
View File

@ -0,0 +1,5 @@
import sys
# this will break any attempt to import xformers which will prevent stability diffusion repo from trying to use it
if "--xformers" not in "".join(sys.argv):
sys.modules["xformers"] = None

View File

@ -1,4 +1,3 @@
import contextlib
import os import os
import sys import sys
import traceback import traceback
@ -11,25 +10,27 @@ from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode from torchvision.transforms.functional import InterpolationMode
import modules.shared as shared import modules.shared as shared
from modules import devices, paths, lowvram from modules import devices, paths, lowvram, modelloader
blip_image_eval_size = 384 blip_image_eval_size = 384
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
clip_model_name = 'ViT-L/14' clip_model_name = 'ViT-L/14'
Category = namedtuple("Category", ["name", "topn", "items"]) Category = namedtuple("Category", ["name", "topn", "items"])
re_topn = re.compile(r"\.top(\d+)\.") re_topn = re.compile(r"\.top(\d+)\.")
class InterrogateModels: class InterrogateModels:
blip_model = None blip_model = None
clip_model = None clip_model = None
clip_preprocess = None clip_preprocess = None
categories = None categories = None
dtype = None dtype = None
running_on_cpu = None
def __init__(self, content_dir): def __init__(self, content_dir):
self.categories = [] self.categories = []
self.running_on_cpu = devices.device_interrogate == torch.device("cpu")
if os.path.exists(content_dir): if os.path.exists(content_dir):
for filename in os.listdir(content_dir): for filename in os.listdir(content_dir):
@ -44,7 +45,14 @@ class InterrogateModels:
def load_blip_model(self): def load_blip_model(self):
import models.blip import models.blip
blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json")) files = modelloader.load_models(
model_path=os.path.join(paths.models_path, "BLIP"),
model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth',
ext_filter=[".pth"],
download_name='model_base_caption_capfilt_large.pth',
)
blip_model = models.blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
blip_model.eval() blip_model.eval()
return blip_model return blip_model
@ -52,26 +60,30 @@ class InterrogateModels:
def load_clip_model(self): def load_clip_model(self):
import clip import clip
model, preprocess = clip.load(clip_model_name) if self.running_on_cpu:
model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.cmd_opts.clip_models_path)
else:
model, preprocess = clip.load(clip_model_name, download_root=shared.cmd_opts.clip_models_path)
model.eval() model.eval()
model = model.to(shared.device) model = model.to(devices.device_interrogate)
return model, preprocess return model, preprocess
def load(self): def load(self):
if self.blip_model is None: if self.blip_model is None:
self.blip_model = self.load_blip_model() self.blip_model = self.load_blip_model()
if not shared.cmd_opts.no_half: if not shared.cmd_opts.no_half and not self.running_on_cpu:
self.blip_model = self.blip_model.half() self.blip_model = self.blip_model.half()
self.blip_model = self.blip_model.to(shared.device) self.blip_model = self.blip_model.to(devices.device_interrogate)
if self.clip_model is None: if self.clip_model is None:
self.clip_model, self.clip_preprocess = self.load_clip_model() self.clip_model, self.clip_preprocess = self.load_clip_model()
if not shared.cmd_opts.no_half: if not shared.cmd_opts.no_half and not self.running_on_cpu:
self.clip_model = self.clip_model.half() self.clip_model = self.clip_model.half()
self.clip_model = self.clip_model.to(shared.device) self.clip_model = self.clip_model.to(devices.device_interrogate)
self.dtype = next(self.clip_model.parameters()).dtype self.dtype = next(self.clip_model.parameters()).dtype
@ -98,11 +110,11 @@ class InterrogateModels:
text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)] text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]
top_count = min(top_count, len(text_array)) top_count = min(top_count, len(text_array))
text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(shared.device) text_tokens = clip.tokenize([text for text in text_array], truncate=True).to(devices.device_interrogate)
text_features = self.clip_model.encode_text(text_tokens).type(self.dtype) text_features = self.clip_model.encode_text(text_tokens).type(self.dtype)
text_features /= text_features.norm(dim=-1, keepdim=True) text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = torch.zeros((1, len(text_array))).to(shared.device) similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate)
for i in range(image_features.shape[0]): for i in range(image_features.shape[0]):
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
similarity /= image_features.shape[0] similarity /= image_features.shape[0]
@ -115,7 +127,7 @@ class InterrogateModels:
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(), transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])(pil_image).unsqueeze(0).type(self.dtype).to(shared.device) ])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
with torch.no_grad(): with torch.no_grad():
caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length) caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length)
@ -123,8 +135,9 @@ class InterrogateModels:
return caption[0] return caption[0]
def interrogate(self, pil_image): def interrogate(self, pil_image):
res = None res = ""
shared.state.begin()
shared.state.job = 'interrogate'
try: try:
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
@ -139,11 +152,10 @@ class InterrogateModels:
res = caption res = caption
cilp_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(shared.device) clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext with torch.no_grad(), devices.autocast():
with torch.no_grad(), precision_scope("cuda"): image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
image_features = self.clip_model.encode_image(cilp_image).type(self.dtype)
image_features /= image_features.norm(dim=-1, keepdim=True) image_features /= image_features.norm(dim=-1, keepdim=True)
@ -155,13 +167,17 @@ class InterrogateModels:
for name, topn, items in self.categories: for name, topn, items in self.categories:
matches = self.rank(image_features, items, top_count=topn) matches = self.rank(image_features, items, top_count=topn)
for match, score in matches: for match, score in matches:
res += ", " + match if shared.opts.interrogate_return_ranks:
res += f", ({match}:{score/100:.3f})"
else:
res += ", " + match
except Exception: except Exception:
print(f"Error interrogating", file=sys.stderr) print("Error interrogating", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
res += "<error>" res += "<error>"
self.unload() self.unload()
shared.state.end()
return res return res

37
modules/localization.py Normal file
View File

@ -0,0 +1,37 @@
import json
import os
import sys
import traceback
localizations = {}
def list_localizations(dirname):
localizations.clear()
for file in os.listdir(dirname):
fn, ext = os.path.splitext(file)
if ext.lower() != ".json":
continue
localizations[fn] = os.path.join(dirname, file)
from modules import scripts
for file in scripts.list_scripts("localizations", ".json"):
fn, ext = os.path.splitext(file.filename)
localizations[fn] = file.path
def localization_js(current_localization_name):
fn = localizations.get(current_localization_name, None)
data = {}
if fn is not None:
try:
with open(fn, "r", encoding="utf8") as file:
data = json.load(file)
except Exception:
print(f"Error loading localization from {fn}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return f"var localization = {json.dumps(data)}\n"

View File

@ -1,9 +1,8 @@
import torch import torch
from modules.devices import get_optimal_device from modules import devices
module_in_gpu = None module_in_gpu = None
cpu = torch.device("cpu") cpu = torch.device("cpu")
device = gpu = get_optimal_device()
def send_everything_to_cpu(): def send_everything_to_cpu():
@ -33,34 +32,49 @@ def setup_for_low_vram(sd_model, use_medvram):
if module_in_gpu is not None: if module_in_gpu is not None:
module_in_gpu.to(cpu) module_in_gpu.to(cpu)
module.to(gpu) module.to(devices.device)
module_in_gpu = module module_in_gpu = module
# see below for register_forward_pre_hook; # see below for register_forward_pre_hook;
# first_stage_model does not use forward(), it uses encode/decode, so register_forward_pre_hook is # first_stage_model does not use forward(), it uses encode/decode, so register_forward_pre_hook is
# useless here, and we just replace those methods # useless here, and we just replace those methods
def first_stage_model_encode_wrap(self, encoder, x):
send_me_to_gpu(self, None)
return encoder(x)
def first_stage_model_decode_wrap(self, decoder, z): first_stage_model = sd_model.first_stage_model
send_me_to_gpu(self, None) first_stage_model_encode = sd_model.first_stage_model.encode
return decoder(z) first_stage_model_decode = sd_model.first_stage_model.decode
# remove three big modules, cond, first_stage, and unet from the model and then def first_stage_model_encode_wrap(x):
send_me_to_gpu(first_stage_model, None)
return first_stage_model_encode(x)
def first_stage_model_decode_wrap(z):
send_me_to_gpu(first_stage_model, None)
return first_stage_model_decode(z)
# for SD1, cond_stage_model is CLIP and its NN is in the tranformer frield, but for SD2, it's open clip, and it's in model field
if hasattr(sd_model.cond_stage_model, 'model'):
sd_model.cond_stage_model.transformer = sd_model.cond_stage_model.model
# remove four big modules, cond, first_stage, depth (if applicable), and unet from the model and then
# send the model to GPU. Then put modules back. the modules will be in CPU. # send the model to GPU. Then put modules back. the modules will be in CPU.
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, getattr(sd_model, 'depth_model', None), sd_model.model
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = None, None, None sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = None, None, None, None
sd_model.to(device) sd_model.to(devices.device)
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = stored sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.depth_model, sd_model.model = stored
# register hooks for those the first two models # register hooks for those the first three models
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu) sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu) sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.encode = lambda x, en=sd_model.first_stage_model.encode: first_stage_model_encode_wrap(sd_model.first_stage_model, en, x) sd_model.first_stage_model.encode = first_stage_model_encode_wrap
sd_model.first_stage_model.decode = lambda z, de=sd_model.first_stage_model.decode: first_stage_model_decode_wrap(sd_model.first_stage_model, de, z) sd_model.first_stage_model.decode = first_stage_model_decode_wrap
if sd_model.depth_model:
sd_model.depth_model.register_forward_pre_hook(send_me_to_gpu)
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
if hasattr(sd_model.cond_stage_model, 'model'):
sd_model.cond_stage_model.model = sd_model.cond_stage_model.transformer
del sd_model.cond_stage_model.transformer
if use_medvram: if use_medvram:
sd_model.model.register_forward_pre_hook(send_me_to_gpu) sd_model.model.register_forward_pre_hook(send_me_to_gpu)
else: else:
@ -70,7 +84,7 @@ def setup_for_low_vram(sd_model, use_medvram):
# so that only one of them is in GPU at a time # so that only one of them is in GPU at a time
stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None
sd_model.model.to(device) sd_model.model.to(devices.device)
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored
# install hooks for bits of third model # install hooks for bits of third model

View File

@ -49,7 +49,7 @@ def expand_crop_region(crop_region, processing_width, processing_height, image_w
ratio_processing = processing_width / processing_height ratio_processing = processing_width / processing_height
if ratio_crop_region > ratio_processing: if ratio_crop_region > ratio_processing:
desired_height = (x2 - x1) * ratio_processing desired_height = (x2 - x1) / ratio_processing
desired_height_diff = int(desired_height - (y2-y1)) desired_height_diff = int(desired_height - (y2-y1))
y1 -= desired_height_diff//2 y1 -= desired_height_diff//2
y2 += desired_height_diff - desired_height_diff//2 y2 += desired_height_diff - desired_height_diff//2

View File

@ -71,10 +71,13 @@ class MemUsageMonitor(threading.Thread):
def read(self): def read(self):
if not self.disabled: if not self.disabled:
free, total = torch.cuda.mem_get_info() free, total = torch.cuda.mem_get_info()
self.data["free"] = free
self.data["total"] = total self.data["total"] = total
torch_stats = torch.cuda.memory_stats(self.device) torch_stats = torch.cuda.memory_stats(self.device)
self.data["active"] = torch_stats["active.all.current"]
self.data["active_peak"] = torch_stats["active_bytes.all.peak"] self.data["active_peak"] = torch_stats["active_bytes.all.peak"]
self.data["reserved"] = torch_stats["reserved_bytes.all.current"]
self.data["reserved_peak"] = torch_stats["reserved_bytes.all.peak"] self.data["reserved_peak"] = torch_stats["reserved_bytes.all.peak"]
self.data["system_peak"] = total - self.data["min_free"] self.data["system_peak"] = total - self.data["min_free"]

View File

@ -5,7 +5,6 @@ import importlib
from urllib.parse import urlparse from urllib.parse import urlparse
from basicsr.utils.download_util import load_file_from_url from basicsr.utils.download_util import load_file_from_url
from modules import shared from modules import shared
from modules.upscaler import Upscaler from modules.upscaler import Upscaler
from modules.paths import script_path, models_path from modules.paths import script_path, models_path
@ -43,7 +42,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None
for place in places: for place in places:
if os.path.exists(place): if os.path.exists(place):
for file in glob.iglob(place + '**/**', recursive=True): for file in glob.iglob(place + '**/**', recursive=True):
full_path = os.path.join(place, file) full_path = file
if os.path.isdir(full_path): if os.path.isdir(full_path):
continue continue
if len(ext_filter) != 0: if len(ext_filter) != 0:
@ -83,9 +82,13 @@ def cleanup_models():
src_path = models_path src_path = models_path
dest_path = os.path.join(models_path, "Stable-diffusion") dest_path = os.path.join(models_path, "Stable-diffusion")
move_files(src_path, dest_path, ".ckpt") move_files(src_path, dest_path, ".ckpt")
move_files(src_path, dest_path, ".safetensors")
src_path = os.path.join(root_path, "ESRGAN") src_path = os.path.join(root_path, "ESRGAN")
dest_path = os.path.join(models_path, "ESRGAN") dest_path = os.path.join(models_path, "ESRGAN")
move_files(src_path, dest_path) move_files(src_path, dest_path)
src_path = os.path.join(models_path, "BSRGAN")
dest_path = os.path.join(models_path, "ESRGAN")
move_files(src_path, dest_path, ".pth")
src_path = os.path.join(root_path, "gfpgan") src_path = os.path.join(root_path, "gfpgan")
dest_path = os.path.join(models_path, "GFPGAN") dest_path = os.path.join(models_path, "GFPGAN")
move_files(src_path, dest_path) move_files(src_path, dest_path)
@ -120,21 +123,45 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None):
pass pass
def load_upscalers(): builtin_upscaler_classes = []
datas = [] forbidden_upscaler_classes = set()
def list_builtin_upscalers():
load_upscalers()
builtin_upscaler_classes.clear()
builtin_upscaler_classes.extend(Upscaler.__subclasses__())
def forbid_loaded_nonbuiltin_upscalers():
for cls in Upscaler.__subclasses__(): for cls in Upscaler.__subclasses__():
if cls not in builtin_upscaler_classes:
forbidden_upscaler_classes.add(cls)
def load_upscalers():
# We can only do this 'magic' method to dynamically load upscalers if they are referenced,
# so we'll try to import any _model.py files before looking in __subclasses__
modules_dir = os.path.join(shared.script_path, "modules")
for file in os.listdir(modules_dir):
if "_model.py" in file:
model_name = file.replace("_model.py", "")
full_model = f"modules.{model_name}_model"
try:
importlib.import_module(full_model)
except:
pass
datas = []
commandline_options = vars(shared.cmd_opts)
for cls in Upscaler.__subclasses__():
if cls in forbidden_upscaler_classes:
continue
name = cls.__name__ name = cls.__name__
module_name = cls.__module__ cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
module = importlib.import_module(module_name) scaler = cls(commandline_options.get(cmd_name, None))
class_ = getattr(module, name) datas += scaler.scalers
cmd_name = f"{name.lower().replace('upscaler', '')}-models-path"
opt_string = None
try:
opt_string = shared.opts.__getattr__(cmd_name)
except:
pass
scaler = class_(opt_string)
for child in scaler.scalers:
datas.append(child)
shared.sd_upscalers = datas shared.sd_upscalers = datas

26
modules/ngrok.py Normal file
View File

@ -0,0 +1,26 @@
from pyngrok import ngrok, conf, exception
def connect(token, port, region):
account = None
if token is None:
token = 'None'
else:
if ':' in token:
# token = authtoken:username:password
account = token.split(':')[1] + ':' + token.split(':')[-1]
token = token.split(':')[0]
config = conf.PyngrokConfig(
auth_token=token, region=region
)
try:
if account is None:
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url
else:
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True, auth=account).public_url
except exception.PyngrokNgrokError:
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
else:
print(f'ngrok connected to localhost:{port}! URL: {public_url}\n'
'You can use this link after the launch is complete.')

View File

@ -1,6 +1,7 @@
import argparse import argparse
import os import os
import sys import sys
import modules.safe
script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
models_path = os.path.join(script_path, "models") models_path = os.path.join(script_path, "models")
@ -8,10 +9,11 @@ sys.path.insert(0, script_path)
# search for directory of stable diffusion in following places # search for directory of stable diffusion in following places
sd_path = None sd_path = None
possible_sd_paths = [os.path.join(script_path, 'repositories/stable-diffusion'), '.', os.path.dirname(script_path)] possible_sd_paths = [os.path.join(script_path, 'repositories/stable-diffusion-stability-ai'), '.', os.path.dirname(script_path)]
for possible_sd_path in possible_sd_paths: for possible_sd_path in possible_sd_paths:
if os.path.exists(os.path.join(possible_sd_path, 'ldm/models/diffusion/ddpm.py')): if os.path.exists(os.path.join(possible_sd_path, 'ldm/models/diffusion/ddpm.py')):
sd_path = os.path.abspath(possible_sd_path) sd_path = os.path.abspath(possible_sd_path)
break
assert sd_path is not None, "Couldn't find Stable Diffusion in any of: " + str(possible_sd_paths) assert sd_path is not None, "Couldn't find Stable Diffusion in any of: " + str(possible_sd_paths)
@ -20,7 +22,6 @@ path_dirs = [
(os.path.join(sd_path, '../taming-transformers'), 'taming', 'Taming Transformers', []), (os.path.join(sd_path, '../taming-transformers'), 'taming', 'Taming Transformers', []),
(os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []), (os.path.join(sd_path, '../CodeFormer'), 'inference_codeformer.py', 'CodeFormer', []),
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []), (os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []),
(os.path.join(sd_path, '../latent-diffusion'), 'LDSR.py', 'LDSR', []),
(os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]), (os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]),
] ]

View File

@ -1,8 +1,8 @@
import contextlib
import json import json
import math import math
import os import os
import sys import sys
import warnings
import torch import torch
import numpy as np import numpy as np
@ -10,18 +10,24 @@ from PIL import Image, ImageFilter, ImageOps
import random import random
import cv2 import cv2
from skimage import exposure from skimage import exposure
from typing import Any, Dict, List, Optional
import modules.sd_hijack import modules.sd_hijack
from modules import devices, prompt_parser, masking from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks
from modules.sd_hijack import model_hijack from modules.sd_hijack import model_hijack
from modules.sd_samplers import samplers, samplers_for_img2img
from modules.shared import opts, cmd_opts, state from modules.shared import opts, cmd_opts, state
import modules.shared as shared import modules.shared as shared
import modules.face_restoration import modules.face_restoration
import modules.images as images import modules.images as images
import modules.styles import modules.styles
import modules.sd_models as sd_models
import modules.sd_vae as sd_vae
import logging import logging
from ldm.data.util import AddMiDaS
from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
from einops import repeat, rearrange
from blendmodes.blend import blendLayers, BlendType
# some of those options should not be changed at all because they would break the model, so I removed them from options. # some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4 opt_C = 4
@ -34,35 +40,81 @@ def setup_color_correction(image):
return correction_target return correction_target
def apply_color_correction(correction, image): def apply_color_correction(correction, original_image):
logging.info("Applying color correction.") logging.info("Applying color correction.")
image = Image.fromarray(cv2.cvtColor(exposure.match_histograms( image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
cv2.cvtColor( cv2.cvtColor(
np.asarray(image), np.asarray(original_image),
cv2.COLOR_RGB2LAB cv2.COLOR_RGB2LAB
), ),
correction, correction,
channel_axis=2 channel_axis=2
), cv2.COLOR_LAB2RGB).astype("uint8")) ), cv2.COLOR_LAB2RGB).astype("uint8"))
image = blendLayers(image, original_image, BlendType.LUMINOSITY)
return image
def apply_overlay(image, paste_loc, index, overlays):
if overlays is None or index >= len(overlays):
return image
overlay = overlays[index]
if paste_loc is not None:
x, y, w, h = paste_loc
base_image = Image.new('RGBA', (overlay.width, overlay.height))
image = images.resize_image(1, image, w, h)
base_image.paste(image, (x, y))
image = base_image
image = image.convert('RGBA')
image.alpha_composite(overlay)
image = image.convert('RGB')
return image return image
class StableDiffusionProcessing: def txt2img_image_conditioning(sd_model, x, width, height):
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None): if sd_model.model.conditioning_key not in {'hybrid', 'concat'}:
# Dummy zero conditioning if we're not using inpainting model.
# Still takes up a bit of memory, but no encoder call.
# Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
# The "masked-image" in this case will just be all zeros since the entire image is masked.
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
# Add the fake full 1s mask to the first dimension.
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
image_conditioning = image_conditioning.to(x.dtype)
return image_conditioning
class StableDiffusionProcessing():
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None):
if sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
self.sd_model = sd_model self.sd_model = sd_model
self.outpath_samples: str = outpath_samples self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids self.outpath_grids: str = outpath_grids
self.prompt: str = prompt self.prompt: str = prompt
self.prompt_for_display: str = None self.prompt_for_display: str = None
self.negative_prompt: str = (negative_prompt or "") self.negative_prompt: str = (negative_prompt or "")
self.styles: str = styles self.styles: list = styles or []
self.seed: int = seed self.seed: int = seed
self.subseed: int = subseed self.subseed: int = subseed
self.subseed_strength: float = subseed_strength self.subseed_strength: float = subseed_strength
self.seed_resize_from_h: int = seed_resize_from_h self.seed_resize_from_h: int = seed_resize_from_h
self.seed_resize_from_w: int = seed_resize_from_w self.seed_resize_from_w: int = seed_resize_from_w
self.sampler_index: int = sampler_index self.sampler_name: str = sampler_name
self.batch_size: int = batch_size self.batch_size: int = batch_size
self.n_iter: int = n_iter self.n_iter: int = n_iter
self.steps: int = steps self.steps: int = steps
@ -76,31 +128,120 @@ class StableDiffusionProcessing:
self.extra_generation_params: dict = extra_generation_params or {} self.extra_generation_params: dict = extra_generation_params or {}
self.overlay_images = overlay_images self.overlay_images = overlay_images
self.eta = eta self.eta = eta
self.do_not_reload_embeddings = do_not_reload_embeddings
self.paste_to = None self.paste_to = None
self.color_corrections = None self.color_corrections = None
self.denoising_strength: float = 0 self.denoising_strength: float = denoising_strength
self.sampler_noise_scheduler_override = None self.sampler_noise_scheduler_override = None
self.ddim_discretize = opts.ddim_discretize self.ddim_discretize = ddim_discretize or opts.ddim_discretize
self.s_churn = opts.s_churn self.s_churn = s_churn or opts.s_churn
self.s_tmin = opts.s_tmin self.s_tmin = s_tmin or opts.s_tmin
self.s_tmax = float('inf') # not representable as a standard ui option self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
self.s_noise = opts.s_noise self.s_noise = s_noise or opts.s_noise
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
self.override_settings_restore_afterwards = override_settings_restore_afterwards
self.is_using_inpainting_conditioning = False
if not seed_enable_extras: if not seed_enable_extras:
self.subseed = -1 self.subseed = -1
self.subseed_strength = 0 self.subseed_strength = 0
self.seed_resize_from_h = 0 self.seed_resize_from_h = 0
self.seed_resize_from_w = 0 self.seed_resize_from_w = 0
self.scripts = None
self.script_args = None
self.all_prompts = None
self.all_negative_prompts = None
self.all_seeds = None
self.all_subseeds = None
self.iteration = 0
def txt2img_image_conditioning(self, x, width=None, height=None):
self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
def depth2img_image_conditioning(self, source_image):
# Use the AddMiDaS helper to Format our source image to suit the MiDaS model
transformer = AddMiDaS(model_type="dpt_hybrid")
transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
conditioning = torch.nn.functional.interpolate(
self.sd_model.depth_model(midas_in),
size=conditioning_image.shape[2:],
mode="bicubic",
align_corners=False,
)
(depth_min, depth_max) = torch.aminmax(conditioning)
conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
return conditioning
def inpainting_image_conditioning(self, source_image, latent_image, image_mask = None):
self.is_using_inpainting_conditioning = True
# Handle the different mask inputs
if image_mask is not None:
if torch.is_tensor(image_mask):
conditioning_mask = image_mask
else:
conditioning_mask = np.array(image_mask.convert("L"))
conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
# Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
conditioning_mask = torch.round(conditioning_mask)
else:
conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
# Create another latent image, this time with a masked version of the original input.
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
conditioning_mask = conditioning_mask.to(source_image.device).to(source_image.dtype)
conditioning_image = torch.lerp(
source_image,
source_image * (1.0 - conditioning_mask),
getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
)
# Encode the new masked image using first stage of network.
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
# Create the concatenated conditioning tensor to be fed to `c_concat`
conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
return image_conditioning
def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
# identify itself with a field common to all models. The conditioning_key is also hybrid.
if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
return self.depth2img_image_conditioning(source_image)
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
# Dummy zero conditioning if we're not using inpainting or depth model.
return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
def init(self, all_prompts, all_seeds, all_subseeds): def init(self, all_prompts, all_seeds, all_subseeds):
pass pass
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
raise NotImplementedError() raise NotImplementedError()
def close(self):
self.sd_model = None
self.sampler = None
class Processed: class Processed:
def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None): def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
self.images = images_list self.images = images_list
self.prompt = p.prompt self.prompt = p.prompt
self.negative_prompt = p.negative_prompt self.negative_prompt = p.negative_prompt
@ -108,10 +249,10 @@ class Processed:
self.subseed = subseed self.subseed = subseed
self.subseed_strength = p.subseed_strength self.subseed_strength = p.subseed_strength
self.info = info self.info = info
self.comments = comments
self.width = p.width self.width = p.width
self.height = p.height self.height = p.height
self.sampler_index = p.sampler_index self.sampler_name = p.sampler_name
self.sampler = samplers[p.sampler_index].name
self.cfg_scale = p.cfg_scale self.cfg_scale = p.cfg_scale
self.steps = p.steps self.steps = p.steps
self.batch_size = p.batch_size self.batch_size = p.batch_size
@ -123,6 +264,9 @@ class Processed:
self.denoising_strength = getattr(p, 'denoising_strength', None) self.denoising_strength = getattr(p, 'denoising_strength', None)
self.extra_generation_params = p.extra_generation_params self.extra_generation_params = p.extra_generation_params
self.index_of_first_image = index_of_first_image self.index_of_first_image = index_of_first_image
self.styles = p.styles
self.job_timestamp = state.job_timestamp
self.clip_skip = opts.CLIP_stop_at_last_layers
self.eta = p.eta self.eta = p.eta
self.ddim_discretize = p.ddim_discretize self.ddim_discretize = p.ddim_discretize
@ -133,19 +277,22 @@ class Processed:
self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0] self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0] self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1 self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
self.all_prompts = all_prompts or [self.prompt] self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
self.all_seeds = all_seeds or [self.seed] self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
self.all_subseeds = all_subseeds or [self.subseed] self.all_seeds = all_seeds or p.all_seeds or [self.seed]
self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
self.infotexts = infotexts or [info] self.infotexts = infotexts or [info]
def js(self): def js(self):
obj = { obj = {
"prompt": self.prompt, "prompt": self.all_prompts[0],
"all_prompts": self.all_prompts, "all_prompts": self.all_prompts,
"negative_prompt": self.negative_prompt, "negative_prompt": self.all_negative_prompts[0],
"all_negative_prompts": self.all_negative_prompts,
"seed": self.seed, "seed": self.seed,
"all_seeds": self.all_seeds, "all_seeds": self.all_seeds,
"subseed": self.subseed, "subseed": self.subseed,
@ -153,8 +300,7 @@ class Processed:
"subseed_strength": self.subseed_strength, "subseed_strength": self.subseed_strength,
"width": self.width, "width": self.width,
"height": self.height, "height": self.height,
"sampler_index": self.sampler_index, "sampler_name": self.sampler_name,
"sampler": self.sampler,
"cfg_scale": self.cfg_scale, "cfg_scale": self.cfg_scale,
"steps": self.steps, "steps": self.steps,
"batch_size": self.batch_size, "batch_size": self.batch_size,
@ -167,11 +313,15 @@ class Processed:
"extra_generation_params": self.extra_generation_params, "extra_generation_params": self.extra_generation_params,
"index_of_first_image": self.index_of_first_image, "index_of_first_image": self.index_of_first_image,
"infotexts": self.infotexts, "infotexts": self.infotexts,
"styles": self.styles,
"job_timestamp": self.job_timestamp,
"clip_skip": self.clip_skip,
"is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
} }
return json.dumps(obj) return json.dumps(obj)
def infotext(self, p: StableDiffusionProcessing, index): def infotext(self, p: StableDiffusionProcessing, index):
return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size) return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
@ -191,13 +341,14 @@ def slerp(val, low, high):
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None): def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
xs = [] xs = []
# if we have multiple seeds, this means we are working with batch size>1; this then # if we have multiple seeds, this means we are working with batch size>1; this then
# enables the generation of additional tensors with noise that the sampler will use during its processing. # enables the generation of additional tensors with noise that the sampler will use during its processing.
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
# produce the same images as with two batches [100], [101]. # produce the same images as with two batches [100], [101].
if p is not None and p.sampler is not None and len(seeds) > 1 and opts.enable_batch_seeds: if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))] sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
else: else:
sampler_noises = None sampler_noises = None
@ -237,6 +388,9 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
if sampler_noises is not None: if sampler_noises is not None:
cnt = p.sampler.number_of_needed_noises(p) cnt = p.sampler.number_of_needed_noises(p)
if eta_noise_seed_delta > 0:
torch.manual_seed(seed + eta_noise_seed_delta)
for j in range(cnt): for j in range(cnt):
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape))) sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
@ -249,107 +403,171 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
return x return x
def decode_first_stage(model, x):
with devices.autocast(disable=x.dtype == devices.dtype_vae):
x = model.decode_first_stage(x)
return x
def get_fixed_seed(seed):
if seed is None or seed == '' or seed == -1:
return int(random.randrange(4294967294))
return seed
def fix_seed(p): def fix_seed(p):
p.seed = int(random.randrange(4294967294)) if p.seed is None or p.seed == '' or p.seed == -1 else p.seed p.seed = get_fixed_seed(p.seed)
p.subseed = int(random.randrange(4294967294)) if p.subseed is None or p.subseed == '' or p.subseed == -1 else p.subseed p.subseed = get_fixed_seed(p.subseed)
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0): def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0):
index = position_in_batch + iteration * p.batch_size index = position_in_batch + iteration * p.batch_size
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
generation_params = { generation_params = {
"Steps": p.steps, "Steps": p.steps,
"Sampler": samplers[p.sampler_index].name, "Sampler": p.sampler_name,
"CFG scale": p.cfg_scale, "CFG scale": p.cfg_scale,
"Seed": all_seeds[index], "Seed": all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None), "Face restoration": (opts.face_restoration_model if p.restore_faces else None),
"Size": f"{p.width}x{p.height}", "Size": f"{p.width}x{p.height}",
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name),
"Hypernet hash": (None if shared.loaded_hypernetwork is None else sd_models.model_hash(shared.loaded_hypernetwork.filename)),
"Hypernet strength": (None if shared.loaded_hypernetwork is None or shared.opts.sd_hypernetwork_strength >= 1 else shared.opts.sd_hypernetwork_strength),
"Batch size": (None if p.batch_size < 2 else p.batch_size), "Batch size": (None if p.batch_size < 2 else p.batch_size),
"Batch pos": (None if p.batch_size < 2 else position_in_batch), "Batch pos": (None if p.batch_size < 2 else position_in_batch),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]), "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None), "Denoising strength": getattr(p, 'denoising_strength', None),
"Eta": (None if p.sampler.eta == p.sampler.default_eta else p.sampler.eta), "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
"Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
} }
generation_params.update(p.extra_generation_params) generation_params.update(p.extra_generation_params)
generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None]) generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else "" negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[index] if p.all_negative_prompts[index] else ""
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip() return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
def process_images(p: StableDiffusionProcessing) -> Processed: def process_images(p: StableDiffusionProcessing) -> Processed:
stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
try:
for k, v in p.override_settings.items():
setattr(opts, k, v)
if k == 'sd_hypernetwork': shared.reload_hypernetworks() # make onchange call for changing hypernet
if k == 'sd_model_checkpoint': sd_models.reload_model_weights() # make onchange call for changing SD model
if k == 'sd_vae': sd_vae.reload_vae_weights() # make onchange call for changing VAE
res = process_images_inner(p)
finally:
# restore opts to original state
if p.override_settings_restore_afterwards:
for k, v in stored_opts.items():
setattr(opts, k, v)
if k == 'sd_hypernetwork': shared.reload_hypernetworks()
if k == 'sd_model_checkpoint': sd_models.reload_model_weights()
if k == 'sd_vae': sd_vae.reload_vae_weights()
return res
def process_images_inner(p: StableDiffusionProcessing) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
if type(p.prompt) == list: if type(p.prompt) == list:
assert(len(p.prompt) > 0) assert(len(p.prompt) > 0)
else: else:
assert p.prompt is not None assert p.prompt is not None
devices.torch_gc() devices.torch_gc()
fix_seed(p) seed = get_fixed_seed(p.seed)
subseed = get_fixed_seed(p.subseed)
os.makedirs(p.outpath_samples, exist_ok=True)
os.makedirs(p.outpath_grids, exist_ok=True)
modules.sd_hijack.model_hijack.apply_circular(p.tiling) modules.sd_hijack.model_hijack.apply_circular(p.tiling)
modules.sd_hijack.model_hijack.clear_comments()
comments = {} comments = {}
shared.prompt_styles.apply_styles(p)
if type(p.prompt) == list: if type(p.prompt) == list:
all_prompts = p.prompt p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, p.styles) for x in p.prompt]
else: else:
all_prompts = p.batch_size * p.n_iter * [p.prompt] p.all_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_styles_to_prompt(p.prompt, p.styles)]
if type(p.seed) == list: if type(p.negative_prompt) == list:
all_seeds = p.seed p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, p.styles) for x in p.negative_prompt]
else: else:
all_seeds = [int(p.seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))] p.all_negative_prompts = p.batch_size * p.n_iter * [shared.prompt_styles.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)]
if type(p.subseed) == list: if type(seed) == list:
all_subseeds = p.subseed p.all_seeds = seed
else: else:
all_subseeds = [int(p.subseed) + x for x in range(len(all_prompts))] p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
if type(subseed) == list:
p.all_subseeds = subseed
else:
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
def infotext(iteration=0, position_in_batch=0): def infotext(iteration=0, position_in_batch=0):
return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch) return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
if os.path.exists(cmd_opts.embeddings_dir): with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
model_hijack.load_textual_inversion_embeddings(cmd_opts.embeddings_dir, p.sd_model) processed = Processed(p, [], p.seed, "")
file.write(processed.infotext(p, 0))
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
if p.scripts is not None:
p.scripts.process(p)
infotexts = [] infotexts = []
output_images = [] output_images = []
precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
ema_scope = (contextlib.nullcontext if cmd_opts.lowvram else p.sd_model.ema_scope) with torch.no_grad(), p.sd_model.ema_scope():
with torch.no_grad(), precision_scope("cuda"), ema_scope(): with devices.autocast():
p.init(all_prompts, all_seeds, all_subseeds) p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
if state.job_count == -1: if state.job_count == -1:
state.job_count = p.n_iter state.job_count = p.n_iter
for n in range(p.n_iter): for n in range(p.n_iter):
p.iteration = n
if state.skipped:
state.skipped = False
if state.interrupted: if state.interrupted:
break break
prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size] prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size] negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
if (len(prompts) == 0): if len(prompts) == 0:
break break
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt]) if p.scripts is not None:
#c = p.sd_model.get_learned_conditioning(prompts) p.scripts.process_batch(p, batch_number=n, prompts=prompts, seeds=seeds, subseeds=subseeds)
uc = prompt_parser.get_learned_conditioning(len(prompts) * [p.negative_prompt], p.steps)
c = prompt_parser.get_learned_conditioning(prompts, p.steps) with devices.autocast():
uc = prompt_parser.get_learned_conditioning(shared.sd_model, negative_prompts, p.steps)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
if len(model_hijack.comments) > 0: if len(model_hijack.comments) > 0:
for comment in model_hijack.comments: for comment in model_hijack.comments:
@ -358,19 +576,22 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if p.n_iter > 1: if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}" shared.state.job = f"Batch {n+1} out of {p.n_iter}"
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength) with devices.autocast():
if state.interrupted: samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
# if we are interruped, sample returns just noise x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
# use the image collected previously in sampler loop x_samples_ddim = torch.stack(x_samples_ddim).float()
samples_ddim = shared.state.current_latent
x_samples_ddim = p.sd_model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
if opts.filter_nsfw: del samples_ddim
import modules.safety as safety
x_samples_ddim = modules.safety.censor_batch(x_samples_ddim) if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
devices.torch_gc()
if p.scripts is not None:
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
for i, x_sample in enumerate(x_samples_ddim): for i, x_sample in enumerate(x_samples_ddim):
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
@ -383,34 +604,31 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
devices.torch_gc() devices.torch_gc()
x_sample = modules.face_restoration.restore_faces(x_sample) x_sample = modules.face_restoration.restore_faces(x_sample)
devices.torch_gc()
image = Image.fromarray(x_sample) image = Image.fromarray(x_sample)
if p.color_corrections is not None and i < len(p.color_corrections): if p.color_corrections is not None and i < len(p.color_corrections):
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction: if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction") image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
images.save_image(image_without_cc, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
image = apply_color_correction(p.color_corrections[i], image) image = apply_color_correction(p.color_corrections[i], image)
if p.overlay_images is not None and i < len(p.overlay_images): image = apply_overlay(image, p.paste_to, i, p.overlay_images)
overlay = p.overlay_images[i]
if p.paste_to is not None:
x, y, w, h = p.paste_to
base_image = Image.new('RGBA', (overlay.width, overlay.height))
image = images.resize_image(1, image, w, h)
base_image.paste(image, (x, y))
image = base_image
image = image.convert('RGBA')
image.alpha_composite(overlay)
image = image.convert('RGB')
if opts.samples_save and not p.do_not_save_samples: if opts.samples_save and not p.do_not_save_samples:
images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p) images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
infotexts.append(infotext(n, i)) text = infotext(n, i)
infotexts.append(text)
if opts.enable_pnginfo:
image.info["parameters"] = text
output_images.append(image) output_images.append(image)
del x_samples_ddim
devices.torch_gc()
state.nextjob() state.nextjob()
p.color_corrections = None p.color_corrections = None
@ -421,29 +639,41 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
grid = images.image_grid(output_images, p.batch_size) grid = images.image_grid(output_images, p.batch_size)
if opts.return_grid: if opts.return_grid:
infotexts.insert(0, infotext()) text = infotext()
infotexts.insert(0, text)
if opts.enable_pnginfo:
grid.info["parameters"] = text
output_images.insert(0, grid) output_images.insert(0, grid)
index_of_first_image = 1 index_of_first_image = 1
if opts.grid_save: if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True) images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
devices.torch_gc() devices.torch_gc()
return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
res = Processed(p, output_images, p.all_seeds[0], infotext(), comments="".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], index_of_first_image=index_of_first_image, infotexts=infotexts)
if p.scripts is not None:
p.scripts.postprocess(p, res)
return res
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
sampler = None sampler = None
firstphase_width = 0
firstphase_height = 0
firstphase_width_truncated = 0
firstphase_height_truncated = 0
def __init__(self, enable_hr=False, scale_latent=True, denoising_strength=0.75, **kwargs): def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
self.enable_hr = enable_hr self.enable_hr = enable_hr
self.scale_latent = scale_latent
self.denoising_strength = denoising_strength self.denoising_strength = denoising_strength
self.hr_scale = hr_scale
self.hr_upscaler = hr_upscaler
if firstphase_width != 0 or firstphase_height != 0:
print("firstphase_width/firstphase_height no longer supported; use hr_scale", file=sys.stderr)
self.hr_scale = self.width / firstphase_width
self.width = firstphase_width
self.height = firstphase_height
def init(self, all_prompts, all_seeds, all_subseeds): def init(self, all_prompts, all_seeds, all_subseeds):
if self.enable_hr: if self.enable_hr:
@ -452,67 +682,86 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
else: else:
state.job_count = state.job_count * 2 state.job_count = state.job_count * 2
desired_pixel_count = 512 * 512 self.extra_generation_params["Hires upscale"] = self.hr_scale
actual_pixel_count = self.width * self.height if self.hr_upscaler is not None:
scale = math.sqrt(desired_pixel_count / actual_pixel_count) self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
self.firstphase_width = math.ceil(scale * self.width / 64) * 64 def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
self.firstphase_height = math.ceil(scale * self.height / 64) * 64 self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
self.firstphase_width_truncated = int(scale * self.width)
self.firstphase_height_truncated = int(scale * self.height)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
self.sampler = samplers[self.sampler_index].constructor(self.sd_model) if self.enable_hr and latent_scale_mode is None:
assert len([x for x in shared.sd_upscalers if x.name == self.hr_upscaler]) > 0, f"could not find upscaler named {self.hr_upscaler}"
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
if not self.enable_hr: if not self.enable_hr:
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
return samples return samples
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) target_width = int(self.width * self.hr_scale)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning) target_height = int(self.height * self.hr_scale)
truncate_x = (self.firstphase_width - self.firstphase_width_truncated) // opt_f def save_intermediate(image, index):
truncate_y = (self.firstphase_height - self.firstphase_height_truncated) // opt_f """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
samples = samples[:, :, truncate_y//2:samples.shape[2]-truncate_y//2, truncate_x//2:samples.shape[3]-truncate_x//2] if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
return
if self.scale_latent: if not isinstance(image, Image.Image):
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") image = sd_samplers.sample_to_image(image, index, approximation=0)
else:
decoded_samples = self.sd_model.decode_first_stage(samples)
if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None": info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear") images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
if latent_scale_mode is not None:
for i in range(samples.shape[0]):
save_intermediate(samples, i)
samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
# Avoid making the inpainting conditioning unless necessary as
# this does need some extra compute to decode / encode the image again.
if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
else: else:
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0) image_conditioning = self.txt2img_image_conditioning(samples)
else:
decoded_samples = decode_first_stage(self.sd_model, samples)
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
batch_images = [] batch_images = []
for i, x_sample in enumerate(lowres_samples): for i, x_sample in enumerate(lowres_samples):
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8) x_sample = x_sample.astype(np.uint8)
image = Image.fromarray(x_sample) image = Image.fromarray(x_sample)
image = images.resize_image(0, image, self.width, self.height)
image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
batch_images.append(image)
decoded_samples = torch.from_numpy(np.array(batch_images)) save_intermediate(image, i)
decoded_samples = decoded_samples.to(shared.device)
decoded_samples = 2. * decoded_samples - 1. image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
batch_images.append(image)
decoded_samples = torch.from_numpy(np.array(batch_images))
decoded_samples = decoded_samples.to(shared.device)
decoded_samples = 2. * decoded_samples - 1.
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples)) samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
shared.state.nextjob() shared.state.nextjob()
self.sampler = samplers[self.sampler_index].constructor(self.sd_model) self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
# GC now before running the next img2img to prevent running out of memory # GC now before running the next img2img to prevent running out of memory
x = None x = None
devices.torch_gc() devices.torch_gc()
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps) samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=image_conditioning)
return samples return samples
@ -520,7 +769,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None sampler = None
def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs): def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
super().__init__(**kwargs) super().__init__(**kwargs)
self.init_images = init_images self.init_images = init_images
@ -528,7 +777,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.denoising_strength: float = denoising_strength self.denoising_strength: float = denoising_strength
self.init_latent = None self.init_latent = None
self.image_mask = mask self.image_mask = mask
#self.image_unblurred_mask = None
self.latent_mask = None self.latent_mask = None
self.mask_for_overlay = None self.mask_for_overlay = None
self.mask_blur = mask_blur self.mask_blur = mask_blur
@ -536,65 +784,68 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.inpaint_full_res = inpaint_full_res self.inpaint_full_res = inpaint_full_res
self.inpaint_full_res_padding = inpaint_full_res_padding self.inpaint_full_res_padding = inpaint_full_res_padding
self.inpainting_mask_invert = inpainting_mask_invert self.inpainting_mask_invert = inpainting_mask_invert
self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
self.mask = None self.mask = None
self.nmask = None self.nmask = None
self.image_conditioning = None
def init(self, all_prompts, all_seeds, all_subseeds): def init(self, all_prompts, all_seeds, all_subseeds):
self.sampler = samplers_for_img2img[self.sampler_index].constructor(self.sd_model) self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
crop_region = None crop_region = None
if self.image_mask is not None: image_mask = self.image_mask
self.image_mask = self.image_mask.convert('L')
if image_mask is not None:
image_mask = image_mask.convert('L')
if self.inpainting_mask_invert: if self.inpainting_mask_invert:
self.image_mask = ImageOps.invert(self.image_mask) image_mask = ImageOps.invert(image_mask)
#self.image_unblurred_mask = self.image_mask
if self.mask_blur > 0: if self.mask_blur > 0:
self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur)) image_mask = image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
if self.inpaint_full_res: if self.inpaint_full_res:
self.mask_for_overlay = self.image_mask self.mask_for_overlay = image_mask
mask = self.image_mask.convert('L') mask = image_mask.convert('L')
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding) crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height) crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
x1, y1, x2, y2 = crop_region x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region) mask = mask.crop(crop_region)
self.image_mask = images.resize_image(2, mask, self.width, self.height) image_mask = images.resize_image(2, mask, self.width, self.height)
self.paste_to = (x1, y1, x2-x1, y2-y1) self.paste_to = (x1, y1, x2-x1, y2-y1)
else: else:
self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height) image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
np_mask = np.array(self.image_mask) np_mask = np.array(image_mask)
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8) np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
self.mask_for_overlay = Image.fromarray(np_mask) self.mask_for_overlay = Image.fromarray(np_mask)
self.overlay_images = [] self.overlay_images = []
latent_mask = self.latent_mask if self.latent_mask is not None else self.image_mask latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
if add_color_corrections: if add_color_corrections:
self.color_corrections = [] self.color_corrections = []
imgs = [] imgs = []
for img in self.init_images: for img in self.init_images:
image = img.convert("RGB") image = images.flatten(img, opts.img2img_background_color)
if crop_region is None: if crop_region is None and self.resize_mode != 3:
image = images.resize_image(self.resize_mode, image, self.width, self.height) image = images.resize_image(self.resize_mode, image, self.width, self.height)
if self.image_mask is not None: if image_mask is not None:
image_masked = Image.new('RGBa', (image.width, image.height)) image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L'))) image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
self.overlay_images.append(image_masked.convert('RGBA')) self.overlay_images.append(image_masked.convert('RGBA'))
# crop_region is not None if we are doing inpaint full res
if crop_region is not None: if crop_region is not None:
image = image.crop(crop_region) image = image.crop(crop_region)
image = images.resize_image(2, image, self.width, self.height) image = images.resize_image(2, image, self.width, self.height)
if self.image_mask is not None: if image_mask is not None:
if self.inpainting_fill != 1: if self.inpainting_fill != 1:
image = masking.fill(image, latent_mask) image = masking.fill(image, latent_mask)
@ -610,6 +861,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0) batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
if self.overlay_images is not None: if self.overlay_images is not None:
self.overlay_images = self.overlay_images * self.batch_size self.overlay_images = self.overlay_images * self.batch_size
if self.color_corrections is not None and len(self.color_corrections) == 1:
self.color_corrections = self.color_corrections * self.batch_size
elif len(imgs) <= self.batch_size: elif len(imgs) <= self.batch_size:
self.batch_size = len(imgs) self.batch_size = len(imgs)
batch_images = np.array(imgs) batch_images = np.array(imgs)
@ -622,7 +877,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image)) self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
if self.image_mask is not None: if self.resize_mode == 3:
self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
if image_mask is not None:
init_mask = latent_mask init_mask = latent_mask
latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2])) latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255 latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
@ -639,12 +897,21 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
elif self.inpainting_fill == 3: elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask self.init_latent = self.init_latent * self.mask
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength): self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning) if self.initial_noise_multiplier != 1.0:
self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
x *= self.initial_noise_multiplier
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None: if self.mask is not None:
samples = samples * self.nmask + self.init_latent * self.mask samples = samples * self.nmask + self.init_latent * self.mask
del x
devices.torch_gc()
return samples return samples

View File

@ -1,19 +1,7 @@
import re import re
from collections import namedtuple from collections import namedtuple
import torch from typing import List
import lark
import modules.shared as shared
re_prompt = re.compile(r'''
(.*?)
\[
([^]:]+):
(?:([^]:]*):)?
([0-9]*\.?[0-9]+)
]
|
(.+)
''', re.X)
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]" # a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
# will be represented with prompt_schedule like this (assuming steps=100): # will be represented with prompt_schedule like this (assuming steps=100):
@ -23,71 +11,117 @@ re_prompt = re.compile(r'''
# [75, 'fantasy landscape with a lake and an oak in background masterful'] # [75, 'fantasy landscape with a lake and an oak in background masterful']
# [100, 'fantasy landscape with a lake and a christmas tree in background masterful'] # [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
schedule_parser = lark.Lark(r"""
!start: (prompt | /[][():]/+)*
prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)*
!emphasized: "(" prompt ")"
| "(" prompt ":" prompt ")"
| "[" prompt "]"
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]"
alternate: "[" prompt ("|" prompt)+ "]"
WHITESPACE: /\s+/
plain: /([^\\\[\]():|]|\\.)+/
%import common.SIGNED_NUMBER -> NUMBER
""")
def get_learned_conditioning_prompt_schedules(prompts, steps): def get_learned_conditioning_prompt_schedules(prompts, steps):
res = [] """
cache = {} >>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0]
>>> g("test")
[[10, 'test']]
>>> g("a [b:3]")
[[3, 'a '], [10, 'a b']]
>>> g("a [b: 3]")
[[3, 'a '], [10, 'a b']]
>>> g("a [[[b]]:2]")
[[2, 'a '], [10, 'a [[b]]']]
>>> g("[(a:2):3]")
[[3, ''], [10, '(a:2)']]
>>> g("a [b : c : 1] d")
[[1, 'a b d'], [10, 'a c d']]
>>> g("a[b:[c:d:2]:1]e")
[[1, 'abe'], [2, 'ace'], [10, 'ade']]
>>> g("a [unbalanced")
[[10, 'a [unbalanced']]
>>> g("a [b:.5] c")
[[5, 'a c'], [10, 'a b c']]
>>> g("a [{b|d{:.5] c") # not handling this right now
[[5, 'a c'], [10, 'a {b|d{ c']]
>>> g("((a][:b:c [d:3]")
[[3, '((a][:b:c '], [10, '((a][:b:c d']]
"""
for prompt in prompts: def collect_steps(steps, tree):
prompt_schedule: list[list[str | int]] = [[steps, ""]] l = [steps]
class CollectSteps(lark.Visitor):
def scheduled(self, tree):
tree.children[-1] = float(tree.children[-1])
if tree.children[-1] < 1:
tree.children[-1] *= steps
tree.children[-1] = min(steps, int(tree.children[-1]))
l.append(tree.children[-1])
def alternate(self, tree):
l.extend(range(1, steps+1))
CollectSteps().visit(tree)
return sorted(set(l))
cached = cache.get(prompt, None) def at_step(step, tree):
if cached is not None: class AtStep(lark.Transformer):
res.append(cached) def scheduled(self, args):
continue before, after, _, when = args
yield before or () if step <= when else after
def alternate(self, args):
yield next(args[(step - 1)%len(args)])
def start(self, args):
def flatten(x):
if type(x) == str:
yield x
else:
for gen in x:
yield from flatten(gen)
return ''.join(flatten(args))
def plain(self, args):
yield args[0].value
def __default__(self, data, children, meta):
for child in children:
yield from child
return AtStep().transform(tree)
for m in re_prompt.finditer(prompt): def get_schedule(prompt):
plaintext = m.group(1) if m.group(5) is None else m.group(5) try:
concept_from = m.group(2) tree = schedule_parser.parse(prompt)
concept_to = m.group(3) except lark.exceptions.LarkError as e:
if concept_to is None: if 0:
concept_to = concept_from import traceback
concept_from = "" traceback.print_exc()
swap_position = float(m.group(4)) if m.group(4) is not None else None return [[steps, prompt]]
return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)]
if swap_position is not None: promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)}
if swap_position < 1: return [promptdict[prompt] for prompt in prompts]
swap_position = swap_position * steps
swap_position = int(min(swap_position, steps))
swap_index = None
found_exact_index = False
for i in range(len(prompt_schedule)):
end_step = prompt_schedule[i][0]
prompt_schedule[i][1] += plaintext
if swap_position is not None and swap_index is None:
if swap_position == end_step:
swap_index = i
found_exact_index = True
if swap_position < end_step:
swap_index = i
if swap_index is not None:
if not found_exact_index:
prompt_schedule.insert(swap_index, [swap_position, prompt_schedule[swap_index][1]])
for i in range(len(prompt_schedule)):
end_step = prompt_schedule[i][0]
must_replace = swap_position < end_step
prompt_schedule[i][1] += concept_to if must_replace else concept_from
res.append(prompt_schedule)
cache[prompt] = prompt_schedule
#for t in prompt_schedule:
# print(t)
return res
ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"]) ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
ScheduledPromptBatch = namedtuple("ScheduledPromptBatch", ["shape", "schedules"])
def get_learned_conditioning(prompts, steps): def get_learned_conditioning(model, prompts, steps):
"""converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
and the sampling step at which this condition is to be replaced by the next one.
Input:
(model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20)
Output:
[
[
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0'))
],
[
ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')),
ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0'))
]
]
"""
res = [] res = []
prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps) prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
@ -101,7 +135,7 @@ def get_learned_conditioning(prompts, steps):
continue continue
texts = [x[1] for x in prompt_schedule] texts = [x[1] for x in prompt_schedule]
conds = shared.sd_model.get_learned_conditioning(texts) conds = model.get_learned_conditioning(texts)
cond_schedule = [] cond_schedule = []
for i, (end_at_step, text) in enumerate(prompt_schedule): for i, (end_at_step, text) in enumerate(prompt_schedule):
@ -110,22 +144,118 @@ def get_learned_conditioning(prompts, steps):
cache[prompt] = cond_schedule cache[prompt] = cond_schedule
res.append(cond_schedule) res.append(cond_schedule)
return ScheduledPromptBatch((len(prompts),) + res[0][0].cond.shape, res) return res
def reconstruct_cond_batch(c: ScheduledPromptBatch, current_step): re_AND = re.compile(r"\bAND\b")
res = torch.zeros(c.shape, device=shared.device, dtype=next(shared.sd_model.parameters()).dtype) re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
for i, cond_schedule in enumerate(c.schedules):
def get_multicond_prompt_list(prompts):
res_indexes = []
prompt_flat_list = []
prompt_indexes = {}
for prompt in prompts:
subprompts = re_AND.split(prompt)
indexes = []
for subprompt in subprompts:
match = re_weight.search(subprompt)
text, weight = match.groups() if match is not None else (subprompt, 1.0)
weight = float(weight) if weight is not None else 1.0
index = prompt_indexes.get(text, None)
if index is None:
index = len(prompt_flat_list)
prompt_flat_list.append(text)
prompt_indexes[text] = index
indexes.append((index, weight))
res_indexes.append(indexes)
return res_indexes, prompt_flat_list, prompt_indexes
class ComposableScheduledPromptConditioning:
def __init__(self, schedules, weight=1.0):
self.schedules: List[ScheduledPromptConditioning] = schedules
self.weight: float = weight
class MulticondLearnedConditioning:
def __init__(self, shape, batch):
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
For each prompt, the list is obtained by splitting the prompt using the AND separator.
https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
"""
res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts)
learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps)
res = []
for indexes in res_indexes:
res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes])
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
param = c[0][0].cond
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
for i, cond_schedule in enumerate(c):
target_index = 0 target_index = 0
for curret_index, (end_at, cond) in enumerate(cond_schedule): for current, (end_at, cond) in enumerate(cond_schedule):
if current_step <= end_at: if current_step <= end_at:
target_index = curret_index target_index = current
break break
res[i] = cond_schedule[target_index].cond res[i] = cond_schedule[target_index].cond
return res return res
def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
param = c.batch[0][0].schedules[0].cond
tensors = []
conds_list = []
for batch_no, composable_prompts in enumerate(c.batch):
conds_for_batch = []
for cond_index, composable_prompt in enumerate(composable_prompts):
target_index = 0
for current, (end_at, cond) in enumerate(composable_prompt.schedules):
if current_step <= end_at:
target_index = current
break
conds_for_batch.append((len(tensors), composable_prompt.weight))
tensors.append(composable_prompt.schedules[target_index].cond)
conds_list.append(conds_for_batch)
# if prompts have wildly different lengths above the limit we'll get tensors fo different shapes
# and won't be able to torch.stack them. So this fixes that.
token_count = max([x.shape[0] for x in tensors])
for i in range(len(tensors)):
if tensors[i].shape[0] != token_count:
last_vector = tensors[i][-1:]
last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1])
tensors[i] = torch.vstack([tensors[i], last_vector_repeated])
return conds_list, torch.stack(tensors).to(device=param.device, dtype=param.dtype)
re_attention = re.compile(r""" re_attention = re.compile(r"""
\\\(| \\\(|
\\\)| \\\)|
@ -145,7 +275,7 @@ re_attention = re.compile(r"""
def parse_prompt_attention(text): def parse_prompt_attention(text):
""" """
Parses a string with attention tokens and returns a list of pairs: text and its assoicated weight. Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
Accepted tokens are: Accepted tokens are:
(abc) - increases attention to abc by a multiplier of 1.1 (abc) - increases attention to abc by a multiplier of 1.1
(abc:3.12) - increases attention to abc by a multiplier of 3.12 (abc:3.12) - increases attention to abc by a multiplier of 3.12
@ -157,23 +287,26 @@ def parse_prompt_attention(text):
\\ - literal character '\' \\ - literal character '\'
anything else - just text anything else - just text
Example: >>> parse_prompt_attention('normal text')
[['normal text', 1.0]]
'a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).' >>> parse_prompt_attention('an (important) word')
[['an ', 1.0], ['important', 1.1], [' word', 1.0]]
produces: >>> parse_prompt_attention('(unbalanced')
[['unbalanced', 1.1]]
[ >>> parse_prompt_attention('\(literal\]')
['a ', 1.0], [['(literal]', 1.0]]
['house', 1.5730000000000004], >>> parse_prompt_attention('(unnecessary)(parens)')
[' ', 1.1], [['unnecessaryparens', 1.1]]
['on', 1.0], >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
[' a ', 1.1], [['a ', 1.0],
['hill', 0.55], ['house', 1.5730000000000004],
[', sun, ', 1.1], [' ', 1.1],
['sky', 1.4641000000000006], ['on', 1.0],
['.', 1.1] [' a ', 1.1],
] ['hill', 0.55],
[', sun, ', 1.1],
['sky', 1.4641000000000006],
['.', 1.1]]
""" """
res = [] res = []
@ -215,4 +348,19 @@ def parse_prompt_attention(text):
if len(res) == 0: if len(res) == 0:
res = [["", 1.0]] res = [["", 1.0]]
# merge runs of identical weights
i = 0
while i + 1 < len(res):
if res[i][1] == res[i + 1][1]:
res[i][0] += res[i + 1][0]
res.pop(i + 1)
else:
i += 1
return res return res
if __name__ == "__main__":
import doctest
doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
else:
import torch # doctest faster

View File

@ -8,14 +8,12 @@ from basicsr.utils.download_util import load_file_from_url
from realesrgan import RealESRGANer from realesrgan import RealESRGANer
from modules.upscaler import Upscaler, UpscalerData from modules.upscaler import Upscaler, UpscalerData
from modules.paths import models_path
from modules.shared import cmd_opts, opts from modules.shared import cmd_opts, opts
class UpscalerRealESRGAN(Upscaler): class UpscalerRealESRGAN(Upscaler):
def __init__(self, path): def __init__(self, path):
self.name = "RealESRGAN" self.name = "RealESRGAN"
self.model_path = os.path.join(models_path, self.name)
self.user_path = path self.user_path = path
super().__init__() super().__init__()
try: try:

192
modules/safe.py Normal file
View File

@ -0,0 +1,192 @@
# this code is adapted from the script contributed by anon from /h/
import io
import pickle
import collections
import sys
import traceback
import torch
import numpy
import _codecs
import zipfile
import re
# PyTorch 1.13 and later have _TypedStorage renamed to TypedStorage
TypedStorage = torch.storage.TypedStorage if hasattr(torch.storage, 'TypedStorage') else torch.storage._TypedStorage
def encode(*args):
out = _codecs.encode(*args)
return out
class RestrictedUnpickler(pickle.Unpickler):
extra_handler = None
def persistent_load(self, saved_id):
assert saved_id[0] == 'storage'
return TypedStorage()
def find_class(self, module, name):
if self.extra_handler is not None:
res = self.extra_handler(module, name)
if res is not None:
return res
if module == 'collections' and name == 'OrderedDict':
return getattr(collections, name)
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter', '_rebuild_device_tensor_from_numpy']:
return getattr(torch._utils, name)
if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage', 'ByteStorage', 'float32']:
return getattr(torch, name)
if module == 'torch.nn.modules.container' and name in ['ParameterDict']:
return getattr(torch.nn.modules.container, name)
if module == 'numpy.core.multiarray' and name in ['scalar', '_reconstruct']:
return getattr(numpy.core.multiarray, name)
if module == 'numpy' and name in ['dtype', 'ndarray']:
return getattr(numpy, name)
if module == '_codecs' and name == 'encode':
return encode
if module == "pytorch_lightning.callbacks" and name == 'model_checkpoint':
import pytorch_lightning.callbacks
return pytorch_lightning.callbacks.model_checkpoint
if module == "pytorch_lightning.callbacks.model_checkpoint" and name == 'ModelCheckpoint':
import pytorch_lightning.callbacks.model_checkpoint
return pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint
if module == "__builtin__" and name == 'set':
return set
# Forbid everything else.
raise Exception(f"global '{module}/{name}' is forbidden")
# Regular expression that accepts 'dirname/version', 'dirname/data.pkl', and 'dirname/data/<number>'
allowed_zip_names_re = re.compile(r"^([^/]+)/((data/\d+)|version|(data\.pkl))$")
data_pkl_re = re.compile(r"^([^/]+)/data\.pkl$")
def check_zip_filenames(filename, names):
for name in names:
if allowed_zip_names_re.match(name):
continue
raise Exception(f"bad file inside {filename}: {name}")
def check_pt(filename, extra_handler):
try:
# new pytorch format is a zip file
with zipfile.ZipFile(filename) as z:
check_zip_filenames(filename, z.namelist())
# find filename of data.pkl in zip file: '<directory name>/data.pkl'
data_pkl_filenames = [f for f in z.namelist() if data_pkl_re.match(f)]
if len(data_pkl_filenames) == 0:
raise Exception(f"data.pkl not found in {filename}")
if len(data_pkl_filenames) > 1:
raise Exception(f"Multiple data.pkl found in {filename}")
with z.open(data_pkl_filenames[0]) as file:
unpickler = RestrictedUnpickler(file)
unpickler.extra_handler = extra_handler
unpickler.load()
except zipfile.BadZipfile:
# if it's not a zip file, it's an olf pytorch format, with five objects written to pickle
with open(filename, "rb") as file:
unpickler = RestrictedUnpickler(file)
unpickler.extra_handler = extra_handler
for i in range(5):
unpickler.load()
def load(filename, *args, **kwargs):
return load_with_extra(filename, extra_handler=global_extra_handler, *args, **kwargs)
def load_with_extra(filename, extra_handler=None, *args, **kwargs):
"""
this function is intended to be used by extensions that want to load models with
some extra classes in them that the usual unpickler would find suspicious.
Use the extra_handler argument to specify a function that takes module and field name as text,
and returns that field's value:
```python
def extra(module, name):
if module == 'collections' and name == 'OrderedDict':
return collections.OrderedDict
return None
safe.load_with_extra('model.pt', extra_handler=extra)
```
The alternative to this is just to use safe.unsafe_torch_load('model.pt'), which as the name implies is
definitely unsafe.
"""
from modules import shared
try:
if not shared.cmd_opts.disable_safe_unpickle:
check_pt(filename, extra_handler)
except pickle.UnpicklingError:
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
print("-----> !!!! The file is most likely corrupted !!!! <-----", file=sys.stderr)
print("You can skip this check with --disable-safe-unpickle commandline argument, but that is not going to help you.\n\n", file=sys.stderr)
return None
except Exception:
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
print("\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
print("You can skip this check with --disable-safe-unpickle commandline argument.\n\n", file=sys.stderr)
return None
return unsafe_torch_load(filename, *args, **kwargs)
class Extra:
"""
A class for temporarily setting the global handler for when you can't explicitly call load_with_extra
(because it's not your code making the torch.load call). The intended use is like this:
```
import torch
from modules import safe
def handler(module, name):
if module == 'torch' and name in ['float64', 'float16']:
return getattr(torch, name)
return None
with safe.Extra(handler):
x = torch.load('model.pt')
```
"""
def __init__(self, handler):
self.handler = handler
def __enter__(self):
global global_extra_handler
assert global_extra_handler is None, 'already inside an Extra() block'
global_extra_handler = self.handler
def __exit__(self, exc_type, exc_val, exc_tb):
global global_extra_handler
global_extra_handler = None
unsafe_torch_load = torch.load
torch.load = load
global_extra_handler = None

View File

@ -1,42 +0,0 @@
import torch
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from transformers import AutoFeatureExtractor
from PIL import Image
import modules.shared as shared
safety_model_id = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor = None
safety_checker = None
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
# check and replace nsfw content
def check_safety(x_image):
global safety_feature_extractor, safety_checker
if safety_feature_extractor is None:
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt")
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values)
return x_checked_image, has_nsfw_concept
def censor_batch(x):
x_samples_ddim_numpy = x.cpu().permute(0, 2, 3, 1).numpy()
x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim_numpy)
x = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
return x

281
modules/script_callbacks.py Normal file
View File

@ -0,0 +1,281 @@
import sys
import traceback
from collections import namedtuple
import inspect
from typing import Optional
from fastapi import FastAPI
from gradio import Blocks
def report_exception(c, job):
print(f"Error executing callback {job} for {c.script}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
class ImageSaveParams:
def __init__(self, image, p, filename, pnginfo):
self.image = image
"""the PIL image itself"""
self.p = p
"""p object with processing parameters; either StableDiffusionProcessing or an object with same fields"""
self.filename = filename
"""name of file that the image would be saved to"""
self.pnginfo = pnginfo
"""dictionary with parameters for image's PNG info data; infotext will have the key 'parameters'"""
class CFGDenoiserParams:
def __init__(self, x, image_cond, sigma, sampling_step, total_sampling_steps):
self.x = x
"""Latent image representation in the process of being denoised"""
self.image_cond = image_cond
"""Conditioning image"""
self.sigma = sigma
"""Current sigma noise step value"""
self.sampling_step = sampling_step
"""Current Sampling step number"""
self.total_sampling_steps = total_sampling_steps
"""Total number of sampling steps planned"""
class UiTrainTabParams:
def __init__(self, txt2img_preview_params):
self.txt2img_preview_params = txt2img_preview_params
class ImageGridLoopParams:
def __init__(self, imgs, cols, rows):
self.imgs = imgs
self.cols = cols
self.rows = rows
ScriptCallback = namedtuple("ScriptCallback", ["script", "callback"])
callback_map = dict(
callbacks_app_started=[],
callbacks_model_loaded=[],
callbacks_ui_tabs=[],
callbacks_ui_train_tabs=[],
callbacks_ui_settings=[],
callbacks_before_image_saved=[],
callbacks_image_saved=[],
callbacks_cfg_denoiser=[],
callbacks_before_component=[],
callbacks_after_component=[],
callbacks_image_grid=[],
)
def clear_callbacks():
for callback_list in callback_map.values():
callback_list.clear()
def app_started_callback(demo: Optional[Blocks], app: FastAPI):
for c in callback_map['callbacks_app_started']:
try:
c.callback(demo, app)
except Exception:
report_exception(c, 'app_started_callback')
def model_loaded_callback(sd_model):
for c in callback_map['callbacks_model_loaded']:
try:
c.callback(sd_model)
except Exception:
report_exception(c, 'model_loaded_callback')
def ui_tabs_callback():
res = []
for c in callback_map['callbacks_ui_tabs']:
try:
res += c.callback() or []
except Exception:
report_exception(c, 'ui_tabs_callback')
return res
def ui_train_tabs_callback(params: UiTrainTabParams):
for c in callback_map['callbacks_ui_train_tabs']:
try:
c.callback(params)
except Exception:
report_exception(c, 'callbacks_ui_train_tabs')
def ui_settings_callback():
for c in callback_map['callbacks_ui_settings']:
try:
c.callback()
except Exception:
report_exception(c, 'ui_settings_callback')
def before_image_saved_callback(params: ImageSaveParams):
for c in callback_map['callbacks_before_image_saved']:
try:
c.callback(params)
except Exception:
report_exception(c, 'before_image_saved_callback')
def image_saved_callback(params: ImageSaveParams):
for c in callback_map['callbacks_image_saved']:
try:
c.callback(params)
except Exception:
report_exception(c, 'image_saved_callback')
def cfg_denoiser_callback(params: CFGDenoiserParams):
for c in callback_map['callbacks_cfg_denoiser']:
try:
c.callback(params)
except Exception:
report_exception(c, 'cfg_denoiser_callback')
def before_component_callback(component, **kwargs):
for c in callback_map['callbacks_before_component']:
try:
c.callback(component, **kwargs)
except Exception:
report_exception(c, 'before_component_callback')
def after_component_callback(component, **kwargs):
for c in callback_map['callbacks_after_component']:
try:
c.callback(component, **kwargs)
except Exception:
report_exception(c, 'after_component_callback')
def image_grid_callback(params: ImageGridLoopParams):
for c in callback_map['callbacks_image_grid']:
try:
c.callback(params)
except Exception:
report_exception(c, 'image_grid')
def add_callback(callbacks, fun):
stack = [x for x in inspect.stack() if x.filename != __file__]
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
callbacks.append(ScriptCallback(filename, fun))
def remove_current_script_callbacks():
stack = [x for x in inspect.stack() if x.filename != __file__]
filename = stack[0].filename if len(stack) > 0 else 'unknown file'
if filename == 'unknown file':
return
for callback_list in callback_map.values():
for callback_to_remove in [cb for cb in callback_list if cb.script == filename]:
callback_list.remove(callback_to_remove)
def remove_callbacks_for_function(callback_func):
for callback_list in callback_map.values():
for callback_to_remove in [cb for cb in callback_list if cb.callback == callback_func]:
callback_list.remove(callback_to_remove)
def on_app_started(callback):
"""register a function to be called when the webui started, the gradio `Block` component and
fastapi `FastAPI` object are passed as the arguments"""
add_callback(callback_map['callbacks_app_started'], callback)
def on_model_loaded(callback):
"""register a function to be called when the stable diffusion model is created; the model is
passed as an argument"""
add_callback(callback_map['callbacks_model_loaded'], callback)
def on_ui_tabs(callback):
"""register a function to be called when the UI is creating new tabs.
The function must either return a None, which means no new tabs to be added, or a list, where
each element is a tuple:
(gradio_component, title, elem_id)
gradio_component is a gradio component to be used for contents of the tab (usually gr.Blocks)
title is tab text displayed to user in the UI
elem_id is HTML id for the tab
"""
add_callback(callback_map['callbacks_ui_tabs'], callback)
def on_ui_train_tabs(callback):
"""register a function to be called when the UI is creating new tabs for the train tab.
Create your new tabs with gr.Tab.
"""
add_callback(callback_map['callbacks_ui_train_tabs'], callback)
def on_ui_settings(callback):
"""register a function to be called before UI settings are populated; add your settings
by using shared.opts.add_option(shared.OptionInfo(...)) """
add_callback(callback_map['callbacks_ui_settings'], callback)
def on_before_image_saved(callback):
"""register a function to be called before an image is saved to a file.
The callback is called with one argument:
- params: ImageSaveParams - parameters the image is to be saved with. You can change fields in this object.
"""
add_callback(callback_map['callbacks_before_image_saved'], callback)
def on_image_saved(callback):
"""register a function to be called after an image is saved to a file.
The callback is called with one argument:
- params: ImageSaveParams - parameters the image was saved with. Changing fields in this object does nothing.
"""
add_callback(callback_map['callbacks_image_saved'], callback)
def on_cfg_denoiser(callback):
"""register a function to be called in the kdiffussion cfg_denoiser method after building the inner model inputs.
The callback is called with one argument:
- params: CFGDenoiserParams - parameters to be passed to the inner model and sampling state details.
"""
add_callback(callback_map['callbacks_cfg_denoiser'], callback)
def on_before_component(callback):
"""register a function to be called before a component is created.
The callback is called with arguments:
- component - gradio component that is about to be created.
- **kwargs - args to gradio.components.IOComponent.__init__ function
Use elem_id/label fields of kwargs to figure out which component it is.
This can be useful to inject your own components somewhere in the middle of vanilla UI.
"""
add_callback(callback_map['callbacks_before_component'], callback)
def on_after_component(callback):
"""register a function to be called after a component is created. See on_before_component for more."""
add_callback(callback_map['callbacks_after_component'], callback)
def on_image_grid(callback):
"""register a function to be called before making an image grid.
The callback is called with one argument:
- params: ImageGridLoopParams - parameters to be used for grid creation. Can be modified.
"""
add_callback(callback_map['callbacks_image_grid'], callback)

34
modules/script_loading.py Normal file
View File

@ -0,0 +1,34 @@
import os
import sys
import traceback
from types import ModuleType
def load_module(path):
with open(path, "r", encoding="utf8") as file:
text = file.read()
compiled = compile(text, path, 'exec')
module = ModuleType(os.path.basename(path))
exec(compiled, module.__dict__)
return module
def preload_extensions(extensions_dir, parser):
if not os.path.isdir(extensions_dir):
return
for dirname in sorted(os.listdir(extensions_dir)):
preload_script = os.path.join(extensions_dir, dirname, "preload.py")
if not os.path.isfile(preload_script):
continue
try:
module = load_module(preload_script)
if hasattr(module, 'preload'):
module.preload(parser)
except Exception:
print(f"Error running preload() for {preload_script}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)

View File

@ -1,83 +1,211 @@
import os import os
import sys import sys
import traceback import traceback
from collections import namedtuple
import modules.ui as ui
import gradio as gr import gradio as gr
from modules.processing import StableDiffusionProcessing from modules.processing import StableDiffusionProcessing
from modules import shared from modules import shared, paths, script_callbacks, extensions, script_loading
AlwaysVisible = object()
class Script: class Script:
filename = None filename = None
args_from = None args_from = None
args_to = None args_to = None
alwayson = False
is_txt2img = False
is_img2img = False
"""A gr.Group component that has all script's UI inside it"""
group = None
infotext_fields = None
"""if set in ui(), this is a list of pairs of gradio component + text; the text will be used when
parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example
"""
# The title of the script. This is what will be displayed in the dropdown menu.
def title(self): def title(self):
"""this function should return the title of the script. This is what will be displayed in the dropdown menu."""
raise NotImplementedError() raise NotImplementedError()
# How the script is displayed in the UI. See https://gradio.app/docs/#components
# for the different UI components you can use and how to create them.
# Most UI components can return a value, such as a boolean for a checkbox.
# The returned values are passed to the run method as parameters.
def ui(self, is_img2img): def ui(self, is_img2img):
"""this function should create gradio UI elements. See https://gradio.app/docs/#components
The return value should be an array of all components that are used in processing.
Values of those returned components will be passed to run() and process() functions.
"""
pass pass
# Determines when the script should be shown in the dropdown menu via the
# returned value. As an example:
# is_img2img is True if the current tab is img2img, and False if it is txt2img.
# Thus, return is_img2img to only show the script on the img2img tab.
def show(self, is_img2img): def show(self, is_img2img):
"""
is_img2img is True if this function is called for the img2img interface, and Fasle otherwise
This function should return:
- False if the script should not be shown in UI at all
- True if the script should be shown in UI if it's selected in the scripts dropdown
- script.AlwaysVisible if the script should be shown in UI at all times
"""
return True return True
# This is where the additional processing is implemented. The parameters include def run(self, p, *args):
# self, the model object "p" (a StableDiffusionProcessing class, see """
# processing.py), and the parameters returned by the ui method. This function is called if the script has been selected in the script dropdown.
# Custom functions can be defined here, and additional libraries can be imported It must do all processing and return the Processed object with results, same as
# to be used in processing. The return value should be a Processed object, which is one returned by processing.process_images.
# what is returned by the process_images method.
def run(self, *args): Usually the processing is done by calling the processing.process_images function.
args contains all values returned by components from ui()
"""
raise NotImplementedError() raise NotImplementedError()
# The description method is currently unused. def process(self, p, *args):
# To add a description that appears when hovering over the title, amend the "titles" """
# dict in script.js to include the script title (returned by title) as a key, and This function is called before processing begins for AlwaysVisible scripts.
# your description as the value. You can modify the processing object (p) here, inject hooks, etc.
args contains all values returned by components from ui()
"""
pass
def process_batch(self, p, *args, **kwargs):
"""
Same as process(), but called for every batch.
**kwargs will have those items:
- batch_number - index of current batch, from 0 to number of batches-1
- prompts - list of prompts for current batch; you can change contents of this list but changing the number of entries will likely break things
- seeds - list of seeds for current batch
- subseeds - list of subseeds for current batch
"""
pass
def postprocess_batch(self, p, *args, **kwargs):
"""
Same as process_batch(), but called for every batch after it has been generated.
**kwargs will have same items as process_batch, and also:
- batch_number - index of current batch, from 0 to number of batches-1
- images - torch tensor with all generated images, with values ranging from 0 to 1;
"""
pass
def postprocess(self, p, processed, *args):
"""
This function is called after processing ends for AlwaysVisible scripts.
args contains all values returned by components from ui()
"""
pass
def before_component(self, component, **kwargs):
"""
Called before a component is created.
Use elem_id/label fields of kwargs to figure out which component it is.
This can be useful to inject your own components somewhere in the middle of vanilla UI.
You can return created components in the ui() function to add them to the list of arguments for your processing functions
"""
pass
def after_component(self, component, **kwargs):
"""
Called after a component is created. Same as above.
"""
pass
def describe(self): def describe(self):
"""unused"""
return "" return ""
current_basedir = paths.script_path
def basedir():
"""returns the base directory for the current script. For scripts in the main scripts directory,
this is the main directory (where webui.py resides), and for scripts in extensions directory
(ie extensions/aesthetic/script/aesthetic.py), this is extension's directory (extensions/aesthetic)
"""
return current_basedir
scripts_data = [] scripts_data = []
ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"])
ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir"])
def load_scripts(basedir): def list_scripts(scriptdirname, extension):
if not os.path.exists(basedir): scripts_list = []
return
for filename in sorted(os.listdir(basedir)): basedir = os.path.join(paths.script_path, scriptdirname)
path = os.path.join(basedir, filename) if os.path.exists(basedir):
for filename in sorted(os.listdir(basedir)):
scripts_list.append(ScriptFile(paths.script_path, filename, os.path.join(basedir, filename)))
if not os.path.isfile(path): for ext in extensions.active():
scripts_list += ext.list_files(scriptdirname, extension)
scripts_list = [x for x in scripts_list if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
return scripts_list
def list_files_with_name(filename):
res = []
dirs = [paths.script_path] + [ext.path for ext in extensions.active()]
for dirpath in dirs:
if not os.path.isdir(dirpath):
continue continue
try: path = os.path.join(dirpath, filename)
with open(path, "r", encoding="utf8") as file: if os.path.isfile(path):
text = file.read() res.append(path)
from types import ModuleType return res
compiled = compile(text, path, 'exec')
module = ModuleType(filename)
exec(compiled, module.__dict__) def load_scripts():
global current_basedir
scripts_data.clear()
script_callbacks.clear_callbacks()
scripts_list = list_scripts("scripts", ".py")
syspath = sys.path
for scriptfile in sorted(scripts_list):
try:
if scriptfile.basedir != paths.script_path:
sys.path = [scriptfile.basedir] + sys.path
current_basedir = scriptfile.basedir
module = script_loading.load_module(scriptfile.path)
for key, script_class in module.__dict__.items(): for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script): if type(script_class) == type and issubclass(script_class, Script):
scripts_data.append((script_class, path)) scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir))
except Exception: except Exception:
print(f"Error loading script: {filename}", file=sys.stderr) print(f"Error loading script: {scriptfile.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr) print(traceback.format_exc(), file=sys.stderr)
finally:
sys.path = syspath
current_basedir = paths.script_path
def wrap_call(func, filename, funcname, *args, default=None, **kwargs): def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try: try:
@ -93,53 +221,94 @@ def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
class ScriptRunner: class ScriptRunner:
def __init__(self): def __init__(self):
self.scripts = [] self.scripts = []
self.selectable_scripts = []
self.alwayson_scripts = []
self.titles = []
self.infotext_fields = []
def setup_ui(self, is_img2img): def initialize_scripts(self, is_img2img):
for script_class, path in scripts_data: self.scripts.clear()
self.alwayson_scripts.clear()
self.selectable_scripts.clear()
for script_class, path, basedir in scripts_data:
script = script_class() script = script_class()
script.filename = path script.filename = path
script.is_txt2img = not is_img2img
script.is_img2img = is_img2img
if not script.show(is_img2img): visibility = script.show(script.is_img2img)
continue
self.scripts.append(script) if visibility == AlwaysVisible:
self.scripts.append(script)
self.alwayson_scripts.append(script)
script.alwayson = True
titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.scripts] elif visibility:
self.scripts.append(script)
self.selectable_scripts.append(script)
dropdown = gr.Dropdown(label="Script", choices=["None"] + titles, value="None", type="index") def setup_ui(self):
inputs = [dropdown] self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
for script in self.scripts: inputs = [None]
inputs_alwayson = [True]
def create_script_ui(script, inputs, inputs_alwayson):
script.args_from = len(inputs) script.args_from = len(inputs)
script.args_to = len(inputs) script.args_to = len(inputs)
controls = wrap_call(script.ui, script.filename, "ui", is_img2img) controls = wrap_call(script.ui, script.filename, "ui", script.is_img2img)
if controls is None: if controls is None:
continue return
for control in controls: for control in controls:
control.custom_script_source = os.path.basename(script.filename) control.custom_script_source = os.path.basename(script.filename)
control.visible = False
if script.infotext_fields is not None:
self.infotext_fields += script.infotext_fields
inputs += controls inputs += controls
inputs_alwayson += [script.alwayson for _ in controls]
script.args_to = len(inputs) script.args_to = len(inputs)
def select_script(script_index): for script in self.alwayson_scripts:
if 0 < script_index <= len(self.scripts): with gr.Group() as group:
script = self.scripts[script_index-1] create_script_ui(script, inputs, inputs_alwayson)
args_from = script.args_from
args_to = script.args_to
else:
args_from = 0
args_to = 0
return [ui.gr_show(True if i == 0 else args_from <= i < args_to) for i in range(len(inputs))] script.group = group
dropdown = gr.Dropdown(label="Script", elem_id="script_list", choices=["None"] + self.titles, value="None", type="index")
dropdown.save_to_config = True
inputs[0] = dropdown
for script in self.selectable_scripts:
with gr.Group(visible=False) as group:
create_script_ui(script, inputs, inputs_alwayson)
script.group = group
def select_script(script_index):
selected_script = self.selectable_scripts[script_index - 1] if script_index>0 else None
return [gr.update(visible=selected_script == s) for s in self.selectable_scripts]
def init_field(title):
"""called when an initial value is set from ui-config.json to show script's UI components"""
if title == 'None':
return
script_index = self.titles.index(title)
self.selectable_scripts[script_index].group.visible = True
dropdown.init_field = init_field
dropdown.change( dropdown.change(
fn=select_script, fn=select_script,
inputs=[dropdown], inputs=[dropdown],
outputs=inputs outputs=[script.group for script in self.selectable_scripts]
) )
return inputs return inputs
@ -150,7 +319,7 @@ class ScriptRunner:
if script_index == 0: if script_index == 0:
return None return None
script = self.scripts[script_index-1] script = self.selectable_scripts[script_index-1]
if script is None: if script is None:
return None return None
@ -162,6 +331,112 @@ class ScriptRunner:
return processed return processed
def process(self, p):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.process(p, *script_args)
except Exception:
print(f"Error running process: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def process_batch(self, p, **kwargs):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.process_batch(p, *script_args, **kwargs)
except Exception:
print(f"Error running process_batch: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def postprocess(self, p, processed):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.postprocess(p, processed, *script_args)
except Exception:
print(f"Error running postprocess: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def postprocess_batch(self, p, images, **kwargs):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.postprocess_batch(p, *script_args, images=images, **kwargs)
except Exception:
print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def before_component(self, component, **kwargs):
for script in self.scripts:
try:
script.before_component(component, **kwargs)
except Exception:
print(f"Error running before_component: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def after_component(self, component, **kwargs):
for script in self.scripts:
try:
script.after_component(component, **kwargs)
except Exception:
print(f"Error running after_component: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def reload_sources(self, cache):
for si, script in list(enumerate(self.scripts)):
args_from = script.args_from
args_to = script.args_to
filename = script.filename
module = cache.get(filename, None)
if module is None:
module = script_loading.load_module(script.filename)
cache[filename] = module
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
self.scripts[si] = script_class()
self.scripts[si].filename = filename
self.scripts[si].args_from = args_from
self.scripts[si].args_to = args_to
scripts_txt2img = ScriptRunner() scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner() scripts_img2img = ScriptRunner()
scripts_current: ScriptRunner = None
def reload_script_body_only():
cache = {}
scripts_txt2img.reload_sources(cache)
scripts_img2img.reload_sources(cache)
def reload_scripts():
global scripts_txt2img, scripts_img2img
load_scripts()
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
def IOComponent_init(self, *args, **kwargs):
if scripts_current is not None:
scripts_current.before_component(self, **kwargs)
script_callbacks.before_component_callback(self, **kwargs)
res = original_IOComponent_init(self, *args, **kwargs)
script_callbacks.after_component_callback(self, **kwargs)
if scripts_current is not None:
scripts_current.after_component(self, **kwargs)
return res
original_IOComponent_init = gr.components.IOComponent.__init__
gr.components.IOComponent.__init__ = IOComponent_init

View File

@ -1,264 +1,114 @@
import math
import os
import sys
import traceback
import torch import torch
import numpy as np from torch.nn.functional import silu
from torch import einsum
from modules import prompt_parser import modules.textual_inversion.textual_inversion
from modules.shared import opts, device, cmd_opts from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr
from modules.sd_hijack_optimizations import invokeAI_mps_available
from ldm.util import default
from einops import rearrange
import ldm.modules.attention import ldm.modules.attention
import ldm.modules.diffusionmodules.model import ldm.modules.diffusionmodules.model
import ldm.modules.diffusionmodules.openaimodel
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
import ldm.modules.encoders.modules
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
# new memory efficient cross attention blocks do not support hypernets and we already
# have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
# silence new console spam from SD2
ldm.modules.attention.print = lambda *args: None
ldm.modules.diffusionmodules.model.print = lambda *args: None
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion def apply_optimizations():
def split_cross_attention_forward_v1(self, x, context=None, mask=None): undo_optimizations()
h = self.heads
q = self.to_q(x) ldm.modules.diffusionmodules.model.nonlinearity = silu
context = default(context, x) ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th
k = self.to_k(context)
v = self.to_v(context) optimization_method = None
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
print("Applying xformers cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
optimization_method = 'xformers'
elif cmd_opts.opt_split_attention_v1:
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
optimization_method = 'V1'
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
if not invokeAI_mps_available and shared.device.type == 'mps':
print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
optimization_method = 'V1'
else:
print("Applying cross attention optimization (InvokeAI).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI
optimization_method = 'InvokeAI'
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
print("Applying cross attention optimization (Doggettx).")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward
optimization_method = 'Doggettx'
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) return optimization_method
for i in range(0, q.shape[0], 2):
end = i + 2
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
s1 *= self.scale
s2 = s1.softmax(dim=-1)
del s1
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
del s2
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1
return self.to_out(r2)
# taken from https://github.com/Doggettx/stable-diffusion def undo_optimizations():
def split_cross_attention_forward(self, x, context=None, mask=None): ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
h = self.heads ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
q_in = self.to_q(x)
context = default(context, x)
k_in = self.to_k(context) * self.scale
v_in = self.to_v(context)
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) def fix_checkpoint():
del q_in, k_in, v_in ldm.modules.attention.BasicTransformerBlock.forward = sd_hijack_checkpoint.BasicTransformerBlock_forward
ldm.modules.diffusionmodules.openaimodel.ResBlock.forward = sd_hijack_checkpoint.ResBlock_forward
ldm.modules.diffusionmodules.openaimodel.AttentionBlock.forward = sd_hijack_checkpoint.AttentionBlock_forward
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
s2 = s1.softmax(dim=-1, dtype=q.dtype)
del s1
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
del q, k, v
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1
return self.to_out(r2)
def nonlinearity_hijack(x):
# swish
t = torch.sigmoid(x)
x *= t
del t
return x
def cross_attention_attnblock_forward(self, x):
h_ = x
h_ = self.norm(h_)
q1 = self.q(h_)
k1 = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q1.shape
q2 = q1.reshape(b, c, h*w)
del q1
q = q2.permute(0, 2, 1) # b,hw,c
del q2
k = k1.reshape(b, c, h*w) # b,c,hw
del k1
h_ = torch.zeros_like(k, device=q.device)
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
mem_required = tensor_size * 2.5
steps = 1
if mem_required > mem_free_total:
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w2 = w1 * (int(c)**(-0.5))
del w1
w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype)
del w2
# attend to values
v1 = v.reshape(b, c, h*w)
w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
del w3
h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
del v1, w4
h2 = h_.reshape(b, c, h, w)
del h_
h3 = self.proj_out(h2)
del h2
h3 += x
return h3
class StableDiffusionModelHijack: class StableDiffusionModelHijack:
ids_lookup = {}
word_embeddings = {}
word_embeddings_checksums = {}
fixes = None fixes = None
comments = [] comments = []
dir_mtime = None
layers = None layers = None
circular_enabled = False circular_enabled = False
clip = None clip = None
optimization_method = None
def load_textual_inversion_embeddings(self, dirname, model): embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir)
mt = os.path.getmtime(dirname)
if self.dir_mtime is not None and mt <= self.dir_mtime:
return
self.dir_mtime = mt
self.ids_lookup.clear()
self.word_embeddings.clear()
tokenizer = model.cond_stage_model.tokenizer
def const_hash(a):
r = 0
for v in a:
r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF
return r
def process_file(path, filename):
name = os.path.splitext(filename)[0]
data = torch.load(path, map_location="cpu")
# textual inversion embeddings
if 'string_to_param' in data:
param_dict = data['string_to_param']
if hasattr(param_dict, '_parameters'):
param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
# diffuser concepts
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
emb = next(iter(data.values()))
if len(emb.shape) == 1:
emb = emb.unsqueeze(0)
self.word_embeddings[name] = emb.detach().to(device)
self.word_embeddings_checksums[name] = f'{const_hash(emb.reshape(-1)*100)&0xffff:04x}'
ids = tokenizer([name], add_special_tokens=False)['input_ids'][0]
first_id = ids[0]
if first_id not in self.ids_lookup:
self.ids_lookup[first_id] = []
self.ids_lookup[first_id].append((ids, name))
for fn in os.listdir(dirname):
try:
fullfn = os.path.join(dirname, fn)
if os.stat(fullfn).st_size == 0:
continue
process_file(fullfn, fn)
except Exception:
print(f"Error loading emedding {fn}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
continue
print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.")
def hijack(self, m): def hijack(self, m):
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
m.cond_stage_model = FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) model_embeddings = m.cond_stage_model.roberta.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self)
m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self)
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder:
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self)
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder:
m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self)
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self)
self.optimization_method = apply_optimizations()
self.clip = m.cond_stage_model self.clip = m.cond_stage_model
if cmd_opts.opt_split_attention_v1: fix_checkpoint()
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()):
ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward
ldm.modules.diffusionmodules.model.nonlinearity = nonlinearity_hijack
ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
def flatten(el): def flatten(el):
flattened = [flatten(children) for children in el.children()] flattened = [flatten(children) for children in el.children()]
@ -270,12 +120,23 @@ class StableDiffusionModelHijack:
self.layers = flatten(m) self.layers = flatten(m)
def undo_hijack(self, m): def undo_hijack(self, m):
if type(m.cond_stage_model) == FrozenCLIPEmbedderWithCustomWords:
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
m.cond_stage_model = m.cond_stage_model.wrapped
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
m.cond_stage_model = m.cond_stage_model.wrapped m.cond_stage_model = m.cond_stage_model.wrapped
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings model_embeddings = m.cond_stage_model.transformer.text_model.embeddings
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes: if type(model_embeddings.token_embedding) == EmbeddingsWithFixes:
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped
elif type(m.cond_stage_model) == sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords:
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
m.cond_stage_model = m.cond_stage_model.wrapped
self.apply_circular(False)
self.layers = None
self.clip = None
def apply_circular(self, enable): def apply_circular(self, enable):
if self.circular_enabled == enable: if self.circular_enabled == enable:
@ -286,223 +147,13 @@ class StableDiffusionModelHijack:
for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]: for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]:
layer.padding_mode = 'circular' if enable else 'zeros' layer.padding_mode = 'circular' if enable else 'zeros'
def clear_comments(self):
self.comments = []
def tokenize(self, text): def tokenize(self, text):
max_length = self.clip.max_length - 2
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text]) _, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
return remade_batch_tokens[0], token_count, max_length
return remade_batch_tokens[0], token_count, sd_hijack_clip.get_target_prompt_token_count(token_count)
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
def __init__(self, wrapped, hijack):
super().__init__()
self.wrapped = wrapped
self.hijack = hijack
self.tokenizer = wrapped.tokenizer
self.max_length = wrapped.max_length
self.token_mults = {}
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens:
mult = 1.0
for c in text:
if c == '[':
mult /= 1.1
if c == ']':
mult *= 1.1
if c == '(':
mult *= 1.1
if c == ')':
mult /= 1.1
if mult != 1.0:
self.token_mults[ident] = mult
def tokenize_line(self, line, used_custom_terms, hijack_comments):
id_start = self.wrapped.tokenizer.bos_token_id
id_end = self.wrapped.tokenizer.eos_token_id
maxlen = self.wrapped.max_length
if opts.enable_emphasis:
parsed = prompt_parser.parse_prompt_attention(line)
else:
parsed = [[line, 1.0]]
tokenized = self.wrapped.tokenizer([text for text, _ in parsed], truncation=False, add_special_tokens=False)["input_ids"]
fixes = []
remade_tokens = []
multipliers = []
for tokens, (text, weight) in zip(tokenized, parsed):
i = 0
while i < len(tokens):
token = tokens[i]
possible_matches = self.hijack.ids_lookup.get(token, None)
if possible_matches is None:
remade_tokens.append(token)
multipliers.append(weight)
else:
found = False
for ids, word in possible_matches:
if tokens[i:i + len(ids)] == ids:
emb_len = int(self.hijack.word_embeddings[word].shape[0])
fixes.append((len(remade_tokens), word))
remade_tokens += [0] * emb_len
multipliers += [weight] * emb_len
i += len(ids) - 1
found = True
used_custom_terms.append((word, self.hijack.word_embeddings_checksums[word]))
break
if not found:
remade_tokens.append(token)
multipliers.append(weight)
i += 1
if len(remade_tokens) > maxlen - 2:
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
ovf = remade_tokens[maxlen - 2:]
overflowing_words = [vocab.get(int(x), "") for x in ovf]
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
token_count = len(remade_tokens)
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
return remade_tokens, fixes, multipliers, token_count
def process_text(self, texts):
used_custom_terms = []
remade_batch_tokens = []
hijack_comments = []
hijack_fixes = []
token_count = 0
cache = {}
batch_multipliers = []
for line in texts:
if line in cache:
remade_tokens, fixes, multipliers = cache[line]
else:
remade_tokens, fixes, multipliers, token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
cache[line] = (remade_tokens, fixes, multipliers)
remade_batch_tokens.append(remade_tokens)
hijack_fixes.append(fixes)
batch_multipliers.append(multipliers)
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
def process_text_old(self, text):
id_start = self.wrapped.tokenizer.bos_token_id
id_end = self.wrapped.tokenizer.eos_token_id
maxlen = self.wrapped.max_length
used_custom_terms = []
remade_batch_tokens = []
overflowing_words = []
hijack_comments = []
hijack_fixes = []
token_count = 0
cache = {}
batch_tokens = self.wrapped.tokenizer(text, truncation=False, add_special_tokens=False)["input_ids"]
batch_multipliers = []
for tokens in batch_tokens:
tuple_tokens = tuple(tokens)
if tuple_tokens in cache:
remade_tokens, fixes, multipliers = cache[tuple_tokens]
else:
fixes = []
remade_tokens = []
multipliers = []
mult = 1.0
i = 0
while i < len(tokens):
token = tokens[i]
possible_matches = self.hijack.ids_lookup.get(token, None)
mult_change = self.token_mults.get(token) if opts.enable_emphasis else None
if mult_change is not None:
mult *= mult_change
elif possible_matches is None:
remade_tokens.append(token)
multipliers.append(mult)
else:
found = False
for ids, word in possible_matches:
if tokens[i:i+len(ids)] == ids:
emb_len = int(self.hijack.word_embeddings[word].shape[0])
fixes.append((len(remade_tokens), word))
remade_tokens += [0] * emb_len
multipliers += [mult] * emb_len
i += len(ids) - 1
found = True
used_custom_terms.append((word, self.hijack.word_embeddings_checksums[word]))
break
if not found:
remade_tokens.append(token)
multipliers.append(mult)
i += 1
if len(remade_tokens) > maxlen - 2:
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
ovf = remade_tokens[maxlen - 2:]
overflowing_words = [vocab.get(int(x), "") for x in ovf]
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
token_count = len(remade_tokens)
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end]
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
remade_batch_tokens.append(remade_tokens)
hijack_fixes.append(fixes)
batch_multipliers.append(multipliers)
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
def forward(self, text):
if opts.use_old_emphasis_implementation:
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
else:
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
self.hijack.fixes = hijack_fixes
self.hijack.comments = hijack_comments
if len(used_custom_terms) > 0:
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
tokens = torch.asarray(remade_batch_tokens).to(device)
outputs = self.wrapped.transformer(input_ids=tokens)
z = outputs.last_hidden_state
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
batch_multipliers = torch.asarray(batch_multipliers).to(device)
original_mean = z.mean()
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
new_mean = z.mean()
z *= original_mean / new_mean
return z
class EmbeddingsWithFixes(torch.nn.Module): class EmbeddingsWithFixes(torch.nn.Module):
@ -517,14 +168,19 @@ class EmbeddingsWithFixes(torch.nn.Module):
inputs_embeds = self.wrapped(input_ids) inputs_embeds = self.wrapped(input_ids)
if batch_fixes is not None: if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
for fixes, tensor in zip(batch_fixes, inputs_embeds): return inputs_embeds
for offset, word in fixes:
emb = self.embeddings.word_embeddings[word]
emb_len = min(tensor.shape[0]-offset-1, emb.shape[0])
tensor[offset+1:offset+1+emb_len] = self.embeddings.word_embeddings[word][0:emb_len]
return inputs_embeds vecs = []
for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes:
emb = embedding.vec
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])
vecs.append(tensor)
return torch.stack(vecs)
def add_circular_option_to_conv_2d(): def add_circular_option_to_conv_2d():
@ -537,3 +193,19 @@ def add_circular_option_to_conv_2d():
model_hijack = StableDiffusionModelHijack() model_hijack = StableDiffusionModelHijack()
def register_buffer(self, name, attr):
"""
Fix register buffer bug for Mac OS.
"""
if type(attr) == torch.Tensor:
if attr.device != devices.device:
attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None))
setattr(self, name, attr)
ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer
ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer

View File

@ -0,0 +1,10 @@
from torch.utils.checkpoint import checkpoint
def BasicTransformerBlock_forward(self, x, context=None):
return checkpoint(self._forward, x, context)
def AttentionBlock_forward(self, x):
return checkpoint(self._forward, x)
def ResBlock_forward(self, x, emb):
return checkpoint(self._forward, x, emb)

303
modules/sd_hijack_clip.py Normal file
View File

@ -0,0 +1,303 @@
import math
import torch
from modules import prompt_parser, devices
from modules.shared import opts
def get_target_prompt_token_count(token_count):
return math.ceil(max(token_count, 1) / 75) * 75
class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
def __init__(self, wrapped, hijack):
super().__init__()
self.wrapped = wrapped
self.hijack = hijack
def tokenize(self, texts):
raise NotImplementedError
def encode_with_transformers(self, tokens):
raise NotImplementedError
def encode_embedding_init_text(self, init_text, nvpt):
raise NotImplementedError
def tokenize_line(self, line, used_custom_terms, hijack_comments):
if opts.enable_emphasis:
parsed = prompt_parser.parse_prompt_attention(line)
else:
parsed = [[line, 1.0]]
tokenized = self.tokenize([text for text, _ in parsed])
fixes = []
remade_tokens = []
multipliers = []
last_comma = -1
for tokens, (text, weight) in zip(tokenized, parsed):
i = 0
while i < len(tokens):
token = tokens[i]
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
if token == self.comma_token:
last_comma = len(remade_tokens)
elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
last_comma += 1
reloc_tokens = remade_tokens[last_comma:]
reloc_mults = multipliers[last_comma:]
remade_tokens = remade_tokens[:last_comma]
length = len(remade_tokens)
rem = int(math.ceil(length / 75)) * 75 - length
remade_tokens += [self.id_end] * rem + reloc_tokens
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
if embedding is None:
remade_tokens.append(token)
multipliers.append(weight)
i += 1
else:
emb_len = int(embedding.vec.shape[0])
iteration = len(remade_tokens) // 75
if (len(remade_tokens) + emb_len) // 75 != iteration:
rem = (75 * (iteration + 1) - len(remade_tokens))
remade_tokens += [self.id_end] * rem
multipliers += [1.0] * rem
iteration += 1
fixes.append((iteration, (len(remade_tokens) % 75, embedding)))
remade_tokens += [0] * emb_len
multipliers += [weight] * emb_len
used_custom_terms.append((embedding.name, embedding.checksum()))
i += embedding_length_in_tokens
token_count = len(remade_tokens)
prompt_target_length = get_target_prompt_token_count(token_count)
tokens_to_add = prompt_target_length - len(remade_tokens)
remade_tokens = remade_tokens + [self.id_end] * tokens_to_add
multipliers = multipliers + [1.0] * tokens_to_add
return remade_tokens, fixes, multipliers, token_count
def process_text(self, texts):
used_custom_terms = []
remade_batch_tokens = []
hijack_comments = []
hijack_fixes = []
token_count = 0
cache = {}
batch_multipliers = []
for line in texts:
if line in cache:
remade_tokens, fixes, multipliers = cache[line]
else:
remade_tokens, fixes, multipliers, current_token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
token_count = max(current_token_count, token_count)
cache[line] = (remade_tokens, fixes, multipliers)
remade_batch_tokens.append(remade_tokens)
hijack_fixes.append(fixes)
batch_multipliers.append(multipliers)
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
def process_text_old(self, texts):
id_start = self.id_start
id_end = self.id_end
maxlen = self.wrapped.max_length # you get to stay at 77
used_custom_terms = []
remade_batch_tokens = []
hijack_comments = []
hijack_fixes = []
token_count = 0
cache = {}
batch_tokens = self.tokenize(texts)
batch_multipliers = []
for tokens in batch_tokens:
tuple_tokens = tuple(tokens)
if tuple_tokens in cache:
remade_tokens, fixes, multipliers = cache[tuple_tokens]
else:
fixes = []
remade_tokens = []
multipliers = []
mult = 1.0
i = 0
while i < len(tokens):
token = tokens[i]
embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
mult_change = self.token_mults.get(token) if opts.enable_emphasis else None
if mult_change is not None:
mult *= mult_change
i += 1
elif embedding is None:
remade_tokens.append(token)
multipliers.append(mult)
i += 1
else:
emb_len = int(embedding.vec.shape[0])
fixes.append((len(remade_tokens), embedding))
remade_tokens += [0] * emb_len
multipliers += [mult] * emb_len
used_custom_terms.append((embedding.name, embedding.checksum()))
i += embedding_length_in_tokens
if len(remade_tokens) > maxlen - 2:
vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()}
ovf = remade_tokens[maxlen - 2:]
overflowing_words = [vocab.get(int(x), "") for x in ovf]
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
token_count = len(remade_tokens)
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0]
remade_batch_tokens.append(remade_tokens)
hijack_fixes.append(fixes)
batch_multipliers.append(multipliers)
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
def forward(self, text):
use_old = opts.use_old_emphasis_implementation
if use_old:
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
else:
batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
self.hijack.comments += hijack_comments
if len(used_custom_terms) > 0:
self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
if use_old:
self.hijack.fixes = hijack_fixes
return self.process_tokens(remade_batch_tokens, batch_multipliers)
z = None
i = 0
while max(map(len, remade_batch_tokens)) != 0:
rem_tokens = [x[75:] for x in remade_batch_tokens]
rem_multipliers = [x[75:] for x in batch_multipliers]
self.hijack.fixes = []
for unfiltered in hijack_fixes:
fixes = []
for fix in unfiltered:
if fix[0] == i:
fixes.append(fix[1])
self.hijack.fixes.append(fixes)
tokens = []
multipliers = []
for j in range(len(remade_batch_tokens)):
if len(remade_batch_tokens[j]) > 0:
tokens.append(remade_batch_tokens[j][:75])
multipliers.append(batch_multipliers[j][:75])
else:
tokens.append([self.id_end] * 75)
multipliers.append([1.0] * 75)
z1 = self.process_tokens(tokens, multipliers)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
remade_batch_tokens = rem_tokens
batch_multipliers = rem_multipliers
i += 1
return z
def process_tokens(self, remade_batch_tokens, batch_multipliers):
if not opts.use_old_emphasis_implementation:
remade_batch_tokens = [[self.id_start] + x[:75] + [self.id_end] for x in remade_batch_tokens]
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
tokens = torch.asarray(remade_batch_tokens).to(devices.device)
if self.id_end != self.id_pad:
for batch_pos in range(len(remade_batch_tokens)):
index = remade_batch_tokens[batch_pos].index(self.id_end)
tokens[batch_pos, index+1:tokens.shape[1]] = self.id_pad
z = self.encode_with_transformers(tokens)
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
batch_multipliers_of_same_length = [x + [1.0] * (75 - len(x)) for x in batch_multipliers]
batch_multipliers = torch.asarray(batch_multipliers_of_same_length).to(devices.device)
original_mean = z.mean()
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
new_mean = z.mean()
z *= original_mean / new_mean
return z
class FrozenCLIPEmbedderWithCustomWords(FrozenCLIPEmbedderWithCustomWordsBase):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
self.tokenizer = wrapped.tokenizer
vocab = self.tokenizer.get_vocab()
self.comma_token = vocab.get(',</w>', None)
self.token_mults = {}
tokens_with_parens = [(k, v) for k, v in vocab.items() if '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens:
mult = 1.0
for c in text:
if c == '[':
mult /= 1.1
if c == ']':
mult *= 1.1
if c == '(':
mult *= 1.1
if c == ')':
mult /= 1.1
if mult != 1.0:
self.token_mults[ident] = mult
self.id_start = self.wrapped.tokenizer.bos_token_id
self.id_end = self.wrapped.tokenizer.eos_token_id
self.id_pad = self.id_end
def tokenize(self, texts):
tokenized = self.wrapped.tokenizer(texts, truncation=False, add_special_tokens=False)["input_ids"]
return tokenized
def encode_with_transformers(self, tokens):
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
if opts.CLIP_stop_at_last_layers > 1:
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
z = self.wrapped.transformer.text_model.final_layer_norm(z)
else:
z = outputs.last_hidden_state
return z
def encode_embedding_init_text(self, init_text, nvpt):
embedding_layer = self.wrapped.transformer.text_model.embeddings
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
embedded = embedding_layer.token_embedding.wrapped(ids.to(embedding_layer.token_embedding.wrapped.weight.device)).squeeze(0)
return embedded

View File

@ -0,0 +1,111 @@
import os
import torch
from einops import repeat
from omegaconf import ListConfig
import ldm.models.diffusion.ddpm
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
from ldm.models.diffusion.ddpm import LatentDiffusion
from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
@torch.no_grad()
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None, dynamic_threshold=None):
b, *_, device = *x.shape, x.device
def get_model_output(x, t):
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
e_t = self.model.apply_model(x, t, c)
else:
x_in = torch.cat([x] * 2)
t_in = torch.cat([t] * 2)
if isinstance(c, dict):
assert isinstance(unconditional_conditioning, dict)
c_in = dict()
for k in c:
if isinstance(c[k], list):
c_in[k] = [
torch.cat([unconditional_conditioning[k][i], c[k][i]])
for i in range(len(c[k]))
]
else:
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
else:
c_in = torch.cat([unconditional_conditioning, c])
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
if score_corrector is not None:
assert self.model.parameterization == "eps"
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
return e_t
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
def get_x_prev_and_pred_x0(e_t, index):
# select parameters corresponding to the currently considered timestep
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
# current prediction for x_0
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
if quantize_denoised:
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
if dynamic_threshold is not None:
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev, pred_x0
e_t = get_model_output(x, t)
if len(old_eps) == 0:
# Pseudo Improved Euler (2nd order)
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
e_t_next = get_model_output(x_prev, t_next)
e_t_prime = (e_t + e_t_next) / 2
elif len(old_eps) == 1:
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (3 * e_t - old_eps[-1]) / 2
elif len(old_eps) == 2:
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
elif len(old_eps) >= 3:
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
return x_prev, pred_x0, e_t
def should_hijack_inpainting(checkpoint_info):
from modules import sd_models
ckpt_basename = os.path.basename(checkpoint_info.filename).lower()
cfg_basename = os.path.basename(sd_models.find_checkpoint_config(checkpoint_info)).lower()
return "inpainting" in ckpt_basename and not "inpainting" in cfg_basename
def do_inpainting_hijack():
# p_sample_plms is needed because PLMS can't work with dicts as conditionings
ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms

View File

@ -0,0 +1,37 @@
import open_clip.tokenizer
import torch
from modules import sd_hijack_clip, devices
from modules.shared import opts
tokenizer = open_clip.tokenizer._tokenizer
class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWordsBase):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
self.comma_token = [v for k, v in tokenizer.encoder.items() if k == ',</w>'][0]
self.id_start = tokenizer.encoder["<start_of_text>"]
self.id_end = tokenizer.encoder["<end_of_text>"]
self.id_pad = 0
def tokenize(self, texts):
assert not opts.use_old_emphasis_implementation, 'Old emphasis implementation not supported for Open Clip'
tokenized = [tokenizer.encode(text) for text in texts]
return tokenized
def encode_with_transformers(self, tokens):
# set self.wrapped.layer_idx here according to opts.CLIP_stop_at_last_layers
z = self.wrapped.encode_with_transformer(tokens)
return z
def encode_embedding_init_text(self, init_text, nvpt):
ids = tokenizer.encode(init_text)
ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0)
return embedded

View File

@ -0,0 +1,314 @@
import math
import sys
import traceback
import importlib
import torch
from torch import einsum
from ldm.util import default
from einops import rearrange
from modules import shared
from modules.hypernetworks import hypernetwork
if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
try:
import xformers.ops
shared.xformers_available = True
except Exception:
print("Cannot import xformers", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
def split_cross_attention_forward_v1(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
del context, context_k, context_v, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
for i in range(0, q.shape[0], 2):
end = i + 2
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
s1 *= self.scale
s2 = s1.softmax(dim=-1)
del s1
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
del s2
del q, k, v
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1
return self.to_out(r2)
# taken from https://github.com/Doggettx/stable-diffusion and modified
def split_cross_attention_forward(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
k_in *= self.scale
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
s2 = s1.softmax(dim=-1, dtype=q.dtype)
del s1
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
del q, k, v
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1
return self.to_out(r2)
def check_for_psutil():
try:
spec = importlib.util.find_spec('psutil')
return spec is not None
except ModuleNotFoundError:
return False
invokeAI_mps_available = check_for_psutil()
# -- Taken from https://github.com/invoke-ai/InvokeAI and modified --
if invokeAI_mps_available:
import psutil
mem_total_gb = psutil.virtual_memory().total // (1 << 30)
def einsum_op_compvis(q, k, v):
s = einsum('b i d, b j d -> b i j', q, k)
s = s.softmax(dim=-1, dtype=s.dtype)
return einsum('b i j, b j d -> b i d', s, v)
def einsum_op_slice_0(q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], slice_size):
end = i + slice_size
r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
return r
def einsum_op_slice_1(q, k, v, slice_size):
r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
return r
def einsum_op_mps_v1(q, k, v):
if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096
return einsum_op_compvis(q, k, v)
else:
slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
if slice_size % 4096 == 0:
slice_size -= 1
return einsum_op_slice_1(q, k, v, slice_size)
def einsum_op_mps_v2(q, k, v):
if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16:
return einsum_op_compvis(q, k, v)
else:
return einsum_op_slice_0(q, k, v, 1)
def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
if size_mb <= max_tensor_mb:
return einsum_op_compvis(q, k, v)
div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
if div <= q.shape[0]:
return einsum_op_slice_0(q, k, v, q.shape[0] // div)
return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
def einsum_op_cuda(q, k, v):
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
# Divide factor of safety as there's copying and fragmentation
return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
def einsum_op(q, k, v):
if q.device.type == 'cuda':
return einsum_op_cuda(q, k, v)
if q.device.type == 'mps':
if mem_total_gb >= 32 and q.shape[0] % 32 != 0 and q.shape[0] * q.shape[1] < 2**18:
return einsum_op_mps_v1(q, k, v)
return einsum_op_mps_v2(q, k, v)
# Smaller slices are faster due to L2/L3/SLC caches.
# Tested on i7 with 8MB L3 cache.
return einsum_op_tensor_mem(q, k, v, 32)
def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
k = self.to_k(context_k) * self.scale
v = self.to_v(context_v)
del context, context_k, context_v, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
r = einsum_op(q, k, v)
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
# -- End of code from https://github.com/invoke-ai/InvokeAI --
def xformers_attention_forward(self, x, context=None, mask=None):
h = self.heads
q_in = self.to_q(x)
context = default(context, x)
context_k, context_v = hypernetwork.apply_hypernetwork(shared.loaded_hypernetwork, context)
k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
return self.to_out(out)
def cross_attention_attnblock_forward(self, x):
h_ = x
h_ = self.norm(h_)
q1 = self.q(h_)
k1 = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q1.shape
q2 = q1.reshape(b, c, h*w)
del q1
q = q2.permute(0, 2, 1) # b,hw,c
del q2
k = k1.reshape(b, c, h*w) # b,c,hw
del k1
h_ = torch.zeros_like(k, device=q.device)
stats = torch.cuda.memory_stats(q.device)
mem_active = stats['active_bytes.all.current']
mem_reserved = stats['reserved_bytes.all.current']
mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
mem_free_torch = mem_reserved - mem_active
mem_free_total = mem_free_cuda + mem_free_torch
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
mem_required = tensor_size * 2.5
steps = 1
if mem_required > mem_free_total:
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w2 = w1 * (int(c)**(-0.5))
del w1
w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype)
del w2
# attend to values
v1 = v.reshape(b, c, h*w)
w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
del w3
h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
del v1, w4
h2 = h_.reshape(b, c, h, w)
del h_
h3 = self.proj_out(h2)
del h2
h3 += x
return h3
def xformers_attnblock_forward(self, x):
try:
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
b, c, h, w = q.shape
q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = xformers.ops.memory_efficient_attention(q, k, v)
out = rearrange(out, 'b (h w) c -> b c h w', h=h)
out = self.proj_out(out)
return x + out
except NotImplementedError:
return cross_attention_attnblock_forward(self, x)

30
modules/sd_hijack_unet.py Normal file
View File

@ -0,0 +1,30 @@
import torch
class TorchHijackForUnet:
"""
This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
"""
def __getattr__(self, item):
if item == 'cat':
return self.cat
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def cat(self, tensors, *args, **kwargs):
if len(tensors) == 2:
a, b = tensors
if a.shape[-2:] != b.shape[-2:]:
a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
tensors = (a, b)
return torch.cat(tensors, *args, **kwargs)
th = TorchHijackForUnet()

34
modules/sd_hijack_xlmr.py Normal file
View File

@ -0,0 +1,34 @@
import open_clip.tokenizer
import torch
from modules import sd_hijack_clip, devices
from modules.shared import opts
class FrozenXLMREmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords):
def __init__(self, wrapped, hijack):
super().__init__(wrapped, hijack)
self.id_start = wrapped.config.bos_token_id
self.id_end = wrapped.config.eos_token_id
self.id_pad = wrapped.config.pad_token_id
self.comma_token = self.tokenizer.get_vocab().get(',', None) # alt diffusion doesn't have </w> bits for comma
def encode_with_transformers(self, tokens):
# there's no CLIP Skip here because all hidden layers have size of 1024 and the last one uses a
# trained layer to transform those 1024 into 768 for unet; so you can't choose which transformer
# layer to work with - you have to use the last
attention_mask = (tokens != self.id_pad).to(device=tokens.device, dtype=torch.int64)
features = self.wrapped(input_ids=tokens, attention_mask=attention_mask)
z = features['projection_state']
return z
def encode_embedding_init_text(self, init_text, nvpt):
embedding_layer = self.wrapped.roberta.embeddings
ids = self.wrapped.tokenizer(init_text, max_length=nvpt, return_tensors="pt", add_special_tokens=False)["input_ids"]
embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0)
return embedded

View File

@ -1,57 +1,70 @@
import glob import collections
import os.path import os.path
import sys import sys
import gc
from collections import namedtuple from collections import namedtuple
import torch import torch
import re
import safetensors.torch
from omegaconf import OmegaConf from omegaconf import OmegaConf
from os import mkdir
from urllib import request
import ldm.modules.midas as midas
from ldm.util import instantiate_from_config from ldm.util import instantiate_from_config
from modules import shared, modelloader from modules import shared, modelloader, devices, script_callbacks, sd_vae
from modules.paths import models_path from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
model_dir = "Stable-diffusion" model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir)) model_path = os.path.abspath(os.path.join(models_path, model_dir))
model_name = "sd-v1-4.ckpt"
model_url = "https://drive.yerf.org/wl/?id=EBfTrmcCCUAGaQBXVIj5lJmEhjoP1tgl&mode=grid&download=1"
user_dir = None
CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name']) CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name'])
checkpoints_list = {} checkpoints_list = {}
checkpoints_loaded = collections.OrderedDict()
try: try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
from transformers import logging from transformers import logging, CLIPModel
logging.set_verbosity_error() logging.set_verbosity_error()
except Exception: except Exception:
pass pass
def setup_model(dirname): def setup_model():
global user_dir
user_dir = dirname
if not os.path.exists(model_path): if not os.path.exists(model_path):
os.makedirs(model_path) os.makedirs(model_path)
checkpoints_list.clear()
list_models() list_models()
enable_midas_autodownload()
def checkpoint_tiles(): def checkpoint_tiles():
return sorted([x.title for x in checkpoints_list.values()]) convert = lambda name: int(name) if name.isdigit() else name.lower()
alphanumeric_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)]
return sorted([x.title for x in checkpoints_list.values()], key = alphanumeric_key)
def find_checkpoint_config(info):
config = os.path.splitext(info.filename)[0] + ".yaml"
if os.path.exists(config):
return config
return shared.cmd_opts.config
def list_models(): def list_models():
checkpoints_list.clear() checkpoints_list.clear()
model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=user_dir, ext_filter=[".ckpt"], download_name=model_name) model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"])
def modeltitle(path, shorthash): def modeltitle(path, shorthash):
abspath = os.path.abspath(path) abspath = os.path.abspath(path)
if user_dir is not None and abspath.startswith(user_dir): if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
name = abspath.replace(user_dir, '') name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
elif abspath.startswith(model_path): elif abspath.startswith(model_path):
name = abspath.replace(model_path, '') name = abspath.replace(model_path, '')
else: else:
@ -69,12 +82,13 @@ def list_models():
h = model_hash(cmd_ckpt) h = model_hash(cmd_ckpt)
title, short_model_name = modeltitle(cmd_ckpt, h) title, short_model_name = modeltitle(cmd_ckpt, h)
checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name) checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name)
shared.opts.sd_model_checkpoint = title shared.opts.data['sd_model_checkpoint'] = title
elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr) print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
for filename in model_list: for filename in model_list:
h = model_hash(filename) h = model_hash(filename)
title, short_model_name = modeltitle(filename, h) title, short_model_name = modeltitle(filename, h)
checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name) checkpoints_list[title] = CheckpointInfo(filename, title, h, short_model_name)
@ -100,15 +114,19 @@ def model_hash(filename):
def select_checkpoint(): def select_checkpoint():
model_checkpoint = shared.opts.sd_model_checkpoint model_checkpoint = shared.opts.sd_model_checkpoint
checkpoint_info = checkpoints_list.get(model_checkpoint, None) checkpoint_info = checkpoints_list.get(model_checkpoint, None)
if checkpoint_info is not None: if checkpoint_info is not None:
return checkpoint_info return checkpoint_info
if len(checkpoints_list) == 0: if len(checkpoints_list) == 0:
print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr) print("No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr)
print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr) if shared.cmd_opts.ckpt is not None:
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr) print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr)
print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr) print(f" - directory {model_path}", file=sys.stderr)
if shared.cmd_opts.ckpt_dir is not None:
print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr)
print("Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr)
exit(1) exit(1)
checkpoint_info = next(iter(checkpoints_list.values())) checkpoint_info = next(iter(checkpoints_list.values()))
@ -118,33 +136,189 @@ def select_checkpoint():
return checkpoint_info return checkpoint_info
def load_model_weights(model, checkpoint_file, sd_model_hash): chckpoint_dict_replacements = {
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") 'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
}
pl_sd = torch.load(checkpoint_file, map_location="cpu")
if "global_step" in pl_sd: def transform_checkpoint_dict_key(k):
for text, replacement in chckpoint_dict_replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]
return k
def get_state_dict_from_checkpoint(pl_sd):
pl_sd = pl_sd.pop("state_dict", pl_sd)
pl_sd.pop("state_dict", None)
sd = {}
for k, v in pl_sd.items():
new_key = transform_checkpoint_dict_key(k)
if new_key is not None:
sd[new_key] = v
pl_sd.clear()
pl_sd.update(sd)
return pl_sd
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
_, extension = os.path.splitext(checkpoint_file)
if extension.lower() == ".safetensors":
device = map_location or shared.weight_load_location
if device is None:
device = devices.get_cuda_device_string() if torch.cuda.is_available() else "cpu"
pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
else:
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
if print_global_state and "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}") print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
model.load_state_dict(sd, strict=False) sd = get_state_dict_from_checkpoint(pl_sd)
return sd
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
if not shared.cmd_opts.no_half: def load_model_weights(model, checkpoint_info, vae_file="auto"):
model.half() checkpoint_file = checkpoint_info.filename
sd_model_hash = checkpoint_info.hash
cache_enabled = shared.opts.sd_checkpoint_cache > 0
if cache_enabled and checkpoint_info in checkpoints_loaded:
# use checkpoint cache
print(f"Loading weights [{sd_model_hash}] from cache")
model.load_state_dict(checkpoints_loaded[checkpoint_info])
else:
# load from file
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
sd = read_state_dict(checkpoint_file)
model.load_state_dict(sd, strict=False)
del sd
if cache_enabled:
# cache newly loaded model
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
if not shared.cmd_opts.no_half:
vae = model.first_stage_model
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
if shared.cmd_opts.no_half_vae:
model.first_stage_model = None
model.half()
model.first_stage_model = vae
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
model.first_stage_model.to(devices.dtype_vae)
# clean up cache if limit is reached
if cache_enabled:
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model
checkpoints_loaded.popitem(last=False) # LRU
model.sd_model_hash = sd_model_hash model.sd_model_hash = sd_model_hash
model.sd_model_checkpint = checkpoint_file model.sd_model_checkpoint = checkpoint_file
model.sd_checkpoint_info = checkpoint_info
model.logvar = model.logvar.to(devices.device) # fix for training
sd_vae.delete_base_vae()
sd_vae.clear_loaded_vae()
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
sd_vae.load_vae(model, vae_file)
def load_model(): def enable_midas_autodownload():
"""
Gives the ldm.modules.midas.api.load_model function automatic downloading.
When the 512-depth-ema model, and other future models like it, is loaded,
it calls midas.api.load_model to load the associated midas depth model.
This function applies a wrapper to download the model to the correct
location automatically.
"""
midas_path = os.path.join(models_path, 'midas')
# stable-diffusion-stability-ai hard-codes the midas model path to
# a location that differs from where other scripts using this model look.
# HACK: Overriding the path here.
for k, v in midas.api.ISL_PATHS.items():
file_name = os.path.basename(v)
midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name)
midas_urls = {
"dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
"dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
"midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt",
"midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt",
}
midas.api.load_model_inner = midas.api.load_model
def load_model_wrapper(model_type):
path = midas.api.ISL_PATHS[model_type]
if not os.path.exists(path):
if not os.path.exists(midas_path):
mkdir(midas_path)
print(f"Downloading midas model weights for {model_type} to {path}")
request.urlretrieve(midas_urls[model_type], path)
print(f"{model_type} downloaded")
return midas.api.load_model_inner(model_type)
midas.api.load_model = load_model_wrapper
def load_model(checkpoint_info=None):
from modules import lowvram, sd_hijack from modules import lowvram, sd_hijack
checkpoint_info = select_checkpoint() checkpoint_info = checkpoint_info or select_checkpoint()
checkpoint_config = find_checkpoint_config(checkpoint_info)
if checkpoint_config != shared.cmd_opts.config:
print(f"Loading config from: {checkpoint_config}")
if shared.sd_model:
sd_hijack.model_hijack.undo_hijack(shared.sd_model)
shared.sd_model = None
gc.collect()
devices.torch_gc()
sd_config = OmegaConf.load(checkpoint_config)
if should_hijack_inpainting(checkpoint_info):
# Hardcoded config for now...
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
sd_config.model.params.conditioning_key = "hybrid"
sd_config.model.params.unet_config.params.in_channels = 9
sd_config.model.params.finetune_keys = None
if not hasattr(sd_config.model.params, "use_ema"):
sd_config.model.params.use_ema = False
do_inpainting_hijack()
if shared.cmd_opts.no_half:
sd_config.model.params.unet_config.params.use_fp16 = False
sd_config = OmegaConf.load(shared.cmd_opts.config)
sd_model = instantiate_from_config(sd_config.model) sd_model = instantiate_from_config(sd_config.model)
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash)
load_model_weights(sd_model, checkpoint_info)
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
@ -154,18 +328,36 @@ def load_model():
sd_hijack.model_hijack.hijack(sd_model) sd_hijack.model_hijack.hijack(sd_model)
sd_model.eval() sd_model.eval()
shared.sd_model = sd_model
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
script_callbacks.model_loaded_callback(sd_model)
print("Model loaded.")
print(f"Model loaded.")
return sd_model return sd_model
def reload_model_weights(sd_model, info=None): def reload_model_weights(sd_model=None, info=None):
from modules import lowvram, devices, sd_hijack from modules import lowvram, devices, sd_hijack
checkpoint_info = info or select_checkpoint() checkpoint_info = info or select_checkpoint()
if sd_model.sd_model_checkpint == checkpoint_info.filename: if not sd_model:
sd_model = shared.sd_model
current_checkpoint_info = sd_model.sd_checkpoint_info
checkpoint_config = find_checkpoint_config(current_checkpoint_info)
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return return
if checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
del sd_model
checkpoints_loaded.clear()
load_model(checkpoint_info)
return shared.sd_model
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu() lowvram.send_everything_to_cpu()
else: else:
@ -173,12 +365,19 @@ def reload_model_weights(sd_model, info=None):
sd_hijack.model_hijack.undo_hijack(sd_model) sd_hijack.model_hijack.undo_hijack(sd_model)
load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash) try:
load_model_weights(sd_model, checkpoint_info)
except Exception as e:
print("Failed to load checkpoint, restoring previous")
load_model_weights(sd_model, current_checkpoint_info)
raise
finally:
sd_hijack.model_hijack.hijack(sd_model)
script_callbacks.model_loaded_callback(sd_model)
sd_hijack.model_hijack.hijack(sd_model) if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: print("Weights loaded.")
sd_model.to(devices.device)
print(f"Weights loaded.")
return sd_model return sd_model

Some files were not shown because too many files have changed in this diff Show More