Merge branch 'dev' into dev

This commit is contained in:
AUTOMATIC1111 2023-08-04 08:05:21 +03:00 committed by GitHub
commit 56c3f94ba3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
76 changed files with 2509 additions and 1338 deletions

View File

@ -41,6 +41,7 @@ jobs:
--skip-prepare-environment
--skip-torch-cuda-test
--test-server
--do-not-download-clip
--no-half
--disable-opt-split-attention
--use-cpu all

View File

@ -1,9 +1,35 @@
## 1.5.1
### Minor:
* support parsing text encoder blocks in some new LoRAs
* delete scale checker script due to user demand
### Extensions and API:
* add postprocess_batch_list script callback
### Bug Fixes:
* fix TI training for SD1
* fix reload altclip model error
* prepend the pythonpath instead of overriding it
* fix typo in SD_WEBUI_RESTARTING
* if txt2img/img2img raises an exception, finally call state.end()
* fix composable diffusion weight parsing
* restyle Startup profile for black users
* fix webui not launching with --nowebui
* catch exception for non git extensions
* fix some options missing from /sdapi/v1/options
* fix for extension update status always saying "unknown"
* fix display of extra network cards that have `<>` in the name
* update lora extension to work with python 3.8
## 1.5.0
### Features:
* SD XL support
* user metadata system for custom networks
* extended Lora metadata editor: set activation text, default weight, view tags, training info
* Lora extension rework to include other types of networks (all that were previously handled by LyCORIS extension)
* show github stars for extenstions
* img2img batch mode can read extra stuff from png info
* img2img batch works with subdirectories
@ -11,6 +37,9 @@
* restyle time taken/VRAM display
* add textual inversion hashes to infotext
* optimization: cache git extension repo information
* move generate button next to the generated picture for mobile clients
* hide cards for networks of incompatible Stable Diffusion version in Lora extra networks interface
* skip installing packages with pip if they all are already installed - startup speedup of about 2 seconds
### Minor:
* checkbox to check/uncheck all extensions in the Installed tab
@ -25,6 +54,8 @@
* speedup extra networks listing
* added `[none]` filename token.
* removed thumbs extra networks view mode (use settings tab to change width/height/scale to get thumbs)
* add always_discard_next_to_last_sigma option to XYZ plot
* automatically switch to 32-bit float VAE if the generated picture has NaNs without the need for `--no-half-vae` commandline flag.
### Extensions and API:
* api endpoints: /sdapi/v1/server-kill, /sdapi/v1/server-restart, /sdapi/v1/server-stop
@ -53,9 +84,8 @@
* fix: check fill size none zero when resize (fixes #11425)
* use submit and blur for quick settings textbox
* save img2img batch with images.save_image()
*
* prevent running preload.py for disabled extensions
* fix: previously, model name was added together with directory name to infotext and to [model_name] filename pattern; directory name is now not included
## 1.4.1

View File

@ -88,7 +88,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions
- Now without any bad letters!
- Load checkpoints in safetensors format
- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64
- Eased resolution restriction: generated image's dimension must be a multiple of 8 rather than 64
- Now with a license!
- Reorder elements in the UI from settings screen
@ -168,5 +168,7 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
- Security advice - RyotaK
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
- TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd
- LyCORIS - KohakuBlueleaf
- Restart sampling - lambertae - https://github.com/Newbeeer/diffusion_restart_sampling
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You)

View File

@ -1,5 +1,5 @@
from modules import extra_networks, shared
import lora
import networks
class ExtraNetworkLora(extra_networks.ExtraNetwork):
@ -9,24 +9,38 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
def activate(self, p, params_list):
additional = shared.opts.sd_lora
if additional != "None" and additional in lora.available_loras and not any(x for x in params_list if x.items[0] == additional):
if additional != "None" and additional in networks.available_networks and not any(x for x in params_list if x.items[0] == additional):
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
names = []
multipliers = []
te_multipliers = []
unet_multipliers = []
dyn_dims = []
for params in params_list:
assert params.items
names.append(params.items[0])
multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)
names.append(params.positional[0])
lora.load_loras(names, multipliers)
te_multiplier = float(params.positional[1]) if len(params.positional) > 1 else 1.0
te_multiplier = float(params.named.get("te", te_multiplier))
unet_multiplier = float(params.positional[2]) if len(params.positional) > 2 else te_multiplier
unet_multiplier = float(params.named.get("unet", unet_multiplier))
dyn_dim = int(params.positional[3]) if len(params.positional) > 3 else None
dyn_dim = int(params.named["dyn"]) if "dyn" in params.named else dyn_dim
te_multipliers.append(te_multiplier)
unet_multipliers.append(unet_multiplier)
dyn_dims.append(dyn_dim)
networks.load_networks(names, te_multipliers, unet_multipliers, dyn_dims)
if shared.opts.lora_add_hashes_to_infotext:
lora_hashes = []
for item in lora.loaded_loras:
shorthash = item.lora_on_disk.shorthash
network_hashes = []
for item in networks.loaded_networks:
shorthash = item.network_on_disk.shorthash
if not shorthash:
continue
@ -36,10 +50,10 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
alias = alias.replace(":", "").replace(",", "")
lora_hashes.append(f"{alias}: {shorthash}")
network_hashes.append(f"{alias}: {shorthash}")
if lora_hashes:
p.extra_generation_params["Lora hashes"] = ", ".join(lora_hashes)
if network_hashes:
p.extra_generation_params["Lora hashes"] = ", ".join(network_hashes)
def deactivate(self, p):
pass

View File

@ -1,537 +1,9 @@
import os
import re
import torch
from typing import Union
import networks
from modules import shared, devices, sd_models, errors, scripts, sd_hijack, hashes, cache
list_available_loras = networks.list_available_networks
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
re_digits = re.compile(r"\d+")
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
re_compiled = {}
suffix_conversion = {
"attentions": {},
"resnets": {
"conv1": "in_layers_2",
"conv2": "out_layers_3",
"time_emb_proj": "emb_layers_1",
"conv_shortcut": "skip_connection",
}
}
def convert_diffusers_name_to_compvis(key, is_sd2):
def match(match_list, regex_text):
regex = re_compiled.get(regex_text)
if regex is None:
regex = re.compile(regex_text)
re_compiled[regex_text] = regex
r = re.match(regex, key)
if not r:
return False
match_list.clear()
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
return True
m = []
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
if is_sd2:
if 'mlp_fc1' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
if 'mlp_fc1' in m[1]:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return key
class LoraOnDisk:
def __init__(self, name, filename):
self.name = name
self.filename = filename
self.metadata = {}
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
def read_metadata():
metadata = sd_models.read_metadata_from_safetensors(filename)
metadata.pop('ssmd_cover_images', None) # those are cover images, and they are too big to display in UI as text
return metadata
if self.is_safetensors:
try:
self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata)
except Exception as e:
errors.display(e, f"reading lora {filename}")
if self.metadata:
m = {}
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
m[k] = v
self.metadata = m
self.alias = self.metadata.get('ss_output_name', self.name)
self.hash = None
self.shorthash = None
self.set_hash(
self.metadata.get('sshs_model_hash') or
hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or
''
)
def set_hash(self, v):
self.hash = v
self.shorthash = self.hash[0:12]
if self.shorthash:
available_lora_hash_lookup[self.shorthash] = self
def read_hash(self):
if not self.hash:
self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '')
def get_alias(self):
if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in forbidden_lora_aliases:
return self.name
else:
return self.alias
class LoraModule:
def __init__(self, name, lora_on_disk: LoraOnDisk):
self.name = name
self.lora_on_disk = lora_on_disk
self.multiplier = 1.0
self.modules = {}
self.mtime = None
self.mentioned_name = None
"""the text that was used to add lora to prompt - can be either name or an alias"""
class LoraUpDownModule:
def __init__(self):
self.up = None
self.down = None
self.alpha = None
def assign_lora_names_to_compvis_modules(sd_model):
lora_layer_mapping = {}
if shared.sd_model.is_sdxl:
for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
if not hasattr(embedder, 'wrapped'):
continue
for name, module in embedder.wrapped.named_modules():
lora_name = f'{i}_{name.replace(".", "_")}'
lora_layer_mapping[lora_name] = module
module.lora_layer_name = lora_name
else:
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
lora_name = name.replace(".", "_")
lora_layer_mapping[lora_name] = module
module.lora_layer_name = lora_name
for name, module in shared.sd_model.model.named_modules():
lora_name = name.replace(".", "_")
lora_layer_mapping[lora_name] = module
module.lora_layer_name = lora_name
sd_model.lora_layer_mapping = lora_layer_mapping
def load_lora(name, lora_on_disk):
lora = LoraModule(name, lora_on_disk)
lora.mtime = os.path.getmtime(lora_on_disk.filename)
sd = sd_models.read_state_dict(lora_on_disk.filename)
# this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
if not hasattr(shared.sd_model, 'lora_layer_mapping'):
assign_lora_names_to_compvis_modules(shared.sd_model)
keys_failed_to_match = {}
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping
for key_lora, weight in sd.items():
key_lora_without_lora_parts, lora_key = key_lora.split(".", 1)
key = convert_diffusers_name_to_compvis(key_lora_without_lora_parts, is_sd2)
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
if sd_module is None:
m = re_x_proj.match(key)
if m:
sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None)
# SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
if sd_module is None and "lora_unet" in key_lora_without_lora_parts:
key = key_lora_without_lora_parts.replace("lora_unet", "diffusion_model")
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
elif sd_module is None and "lora_te1_text_model" in key_lora_without_lora_parts:
key = key_lora_without_lora_parts.replace("lora_te1_text_model", "0_transformer_text_model")
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
if sd_module is None:
keys_failed_to_match[key_lora] = key
continue
lora_module = lora.modules.get(key, None)
if lora_module is None:
lora_module = LoraUpDownModule()
lora.modules[key] = lora_module
if lora_key == "alpha":
lora_module.alpha = weight.item()
continue
if type(sd_module) == torch.nn.Linear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.MultiheadAttention:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1):
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3):
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False)
else:
print(f'Lora layer {key_lora} matched a layer with unsupported type: {type(sd_module).__name__}')
continue
raise AssertionError(f"Lora layer {key_lora} matched a layer with unsupported type: {type(sd_module).__name__}")
with torch.no_grad():
module.weight.copy_(weight)
module.to(device=devices.cpu, dtype=devices.dtype)
if lora_key == "lora_up.weight":
lora_module.up = module
elif lora_key == "lora_down.weight":
lora_module.down = module
else:
raise AssertionError(f"Bad Lora layer name: {key_lora} - must end in lora_up.weight, lora_down.weight or alpha")
if keys_failed_to_match:
print(f"Failed to match keys when loading Lora {lora_on_disk.filename}: {keys_failed_to_match}")
return lora
def load_loras(names, multipliers=None):
already_loaded = {}
for lora in loaded_loras:
if lora.name in names:
already_loaded[lora.name] = lora
loaded_loras.clear()
loras_on_disk = [available_lora_aliases.get(name, None) for name in names]
if any(x is None for x in loras_on_disk):
list_available_loras()
loras_on_disk = [available_lora_aliases.get(name, None) for name in names]
failed_to_load_loras = []
for i, name in enumerate(names):
lora = already_loaded.get(name, None)
lora_on_disk = loras_on_disk[i]
if lora_on_disk is not None:
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
try:
lora = load_lora(name, lora_on_disk)
except Exception as e:
errors.display(e, f"loading Lora {lora_on_disk.filename}")
continue
lora.mentioned_name = name
lora_on_disk.read_hash()
if lora is None:
failed_to_load_loras.append(name)
print(f"Couldn't find Lora with name {name}")
continue
lora.multiplier = multipliers[i] if multipliers else 1.0
loaded_loras.append(lora)
if failed_to_load_loras:
sd_hijack.model_hijack.comments.append("Failed to find Loras: " + ", ".join(failed_to_load_loras))
def lora_calc_updown(lora, module, target):
with torch.no_grad():
up = module.up.weight.to(target.device, dtype=target.dtype)
down = module.down.weight.to(target.device, dtype=target.dtype)
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
else:
updown = up @ down
updown = updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
return updown
def lora_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
weights_backup = getattr(self, "lora_weights_backup", None)
if weights_backup is None:
return
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(weights_backup[0])
self.out_proj.weight.copy_(weights_backup[1])
else:
self.weight.copy_(weights_backup)
def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
"""
Applies the currently selected set of Loras to the weights of torch layer self.
If weights already have this particular set of loras applied, does nothing.
If not, restores orginal weights from backup and alters weights according to loras.
"""
lora_layer_name = getattr(self, 'lora_layer_name', None)
if lora_layer_name is None:
return
current_names = getattr(self, "lora_current_names", ())
wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras)
weights_backup = getattr(self, "lora_weights_backup", None)
if weights_backup is None:
if isinstance(self, torch.nn.MultiheadAttention):
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
else:
weights_backup = self.weight.to(devices.cpu, copy=True)
self.lora_weights_backup = weights_backup
if current_names != wanted_names:
lora_restore_weights_from_backup(self)
for lora in loaded_loras:
module = lora.modules.get(lora_layer_name, None)
if module is not None and hasattr(self, 'weight'):
self.weight += lora_calc_updown(lora, module, self.weight)
continue
module_q = lora.modules.get(lora_layer_name + "_q_proj", None)
module_k = lora.modules.get(lora_layer_name + "_k_proj", None)
module_v = lora.modules.get(lora_layer_name + "_v_proj", None)
module_out = lora.modules.get(lora_layer_name + "_out_proj", None)
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
updown_q = lora_calc_updown(lora, module_q, self.in_proj_weight)
updown_k = lora_calc_updown(lora, module_k, self.in_proj_weight)
updown_v = lora_calc_updown(lora, module_v, self.in_proj_weight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
self.in_proj_weight += updown_qkv
self.out_proj.weight += lora_calc_updown(lora, module_out, self.out_proj.weight)
continue
if module is None:
continue
print(f'failed to calculate lora weights for layer {lora_layer_name}')
self.lora_current_names = wanted_names
def lora_forward(module, input, original_forward):
"""
Old way of applying Lora by executing operations during layer's forward.
Stacking many loras this way results in big performance degradation.
"""
if len(loaded_loras) == 0:
return original_forward(module, input)
input = devices.cond_cast_unet(input)
lora_restore_weights_from_backup(module)
lora_reset_cached_weight(module)
res = original_forward(module, input)
lora_layer_name = getattr(module, 'lora_layer_name', None)
for lora in loaded_loras:
module = lora.modules.get(lora_layer_name, None)
if module is None:
continue
module.up.to(device=devices.device)
module.down.to(device=devices.device)
res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
return res
def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
self.lora_current_names = ()
self.lora_weights_backup = None
def lora_Linear_forward(self, input):
if shared.opts.lora_functional:
return lora_forward(self, input, torch.nn.Linear_forward_before_lora)
lora_apply_weights(self)
return torch.nn.Linear_forward_before_lora(self, input)
def lora_Linear_load_state_dict(self, *args, **kwargs):
lora_reset_cached_weight(self)
return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs)
def lora_Conv2d_forward(self, input):
if shared.opts.lora_functional:
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora)
lora_apply_weights(self)
return torch.nn.Conv2d_forward_before_lora(self, input)
def lora_Conv2d_load_state_dict(self, *args, **kwargs):
lora_reset_cached_weight(self)
return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs)
def lora_MultiheadAttention_forward(self, *args, **kwargs):
lora_apply_weights(self)
return torch.nn.MultiheadAttention_forward_before_lora(self, *args, **kwargs)
def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs):
lora_reset_cached_weight(self)
return torch.nn.MultiheadAttention_load_state_dict_before_lora(self, *args, **kwargs)
def list_available_loras():
available_loras.clear()
available_lora_aliases.clear()
forbidden_lora_aliases.clear()
available_lora_hash_lookup.clear()
forbidden_lora_aliases.update({"none": 1, "Addams": 1})
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
for filename in candidates:
if os.path.isdir(filename):
continue
name = os.path.splitext(os.path.basename(filename))[0]
try:
entry = LoraOnDisk(name, filename)
except OSError: # should catch FileNotFoundError and PermissionError etc.
errors.report(f"Failed to load LoRA {name} from {filename}", exc_info=True)
continue
available_loras[name] = entry
if entry.alias in available_lora_aliases:
forbidden_lora_aliases[entry.alias.lower()] = 1
available_lora_aliases[name] = entry
available_lora_aliases[entry.alias] = entry
re_lora_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
def infotext_pasted(infotext, params):
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
return # if the other extension is active, it will handle those fields, no need to do anything
added = []
for k in params:
if not k.startswith("AddNet Model "):
continue
num = k[13:]
if params.get("AddNet Module " + num) != "LoRA":
continue
name = params.get("AddNet Model " + num)
if name is None:
continue
m = re_lora_name.match(name)
if m:
name = m.group(1)
multiplier = params.get("AddNet Weight A " + num, "1.0")
added.append(f"<lora:{name}:{multiplier}>")
if added:
params["Prompt"] += "\n" + "".join(added)
available_loras = {}
available_lora_aliases = {}
available_lora_hash_lookup = {}
forbidden_lora_aliases = {}
loaded_loras = []
list_available_loras()
available_loras = networks.available_networks
available_lora_aliases = networks.available_network_aliases
available_lora_hash_lookup = networks.available_network_hash_lookup
forbidden_lora_aliases = networks.forbidden_network_aliases
loaded_loras = networks.loaded_networks

View File

@ -0,0 +1,21 @@
import torch
def make_weight_cp(t, wa, wb):
temp = torch.einsum('i j k l, j r -> i r k l', t, wb)
return torch.einsum('i j k l, i r -> r j k l', temp, wa)
def rebuild_conventional(up, down, shape, dyn_dim=None):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
if dyn_dim is not None:
up = up[:, :dyn_dim]
down = down[:dyn_dim, :]
return (up @ down).reshape(shape)
def rebuild_cp_decomposition(up, down, mid):
up = up.reshape(up.size(0), -1)
down = down.reshape(down.size(0), -1)
return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down)

View File

@ -0,0 +1,155 @@
from __future__ import annotations
import os
from collections import namedtuple
import enum
from modules import sd_models, cache, errors, hashes, shared
NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module'])
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
class SdVersion(enum.Enum):
Unknown = 1
SD1 = 2
SD2 = 3
SDXL = 4
class NetworkOnDisk:
def __init__(self, name, filename):
self.name = name
self.filename = filename
self.metadata = {}
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
def read_metadata():
metadata = sd_models.read_metadata_from_safetensors(filename)
metadata.pop('ssmd_cover_images', None) # those are cover images, and they are too big to display in UI as text
return metadata
if self.is_safetensors:
try:
self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata)
except Exception as e:
errors.display(e, f"reading lora {filename}")
if self.metadata:
m = {}
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
m[k] = v
self.metadata = m
self.alias = self.metadata.get('ss_output_name', self.name)
self.hash = None
self.shorthash = None
self.set_hash(
self.metadata.get('sshs_model_hash') or
hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or
''
)
self.sd_version = self.detect_version()
def detect_version(self):
if str(self.metadata.get('ss_base_model_version', "")).startswith("sdxl_"):
return SdVersion.SDXL
elif str(self.metadata.get('ss_v2', "")) == "True":
return SdVersion.SD2
elif len(self.metadata):
return SdVersion.SD1
return SdVersion.Unknown
def set_hash(self, v):
self.hash = v
self.shorthash = self.hash[0:12]
if self.shorthash:
import networks
networks.available_network_hash_lookup[self.shorthash] = self
def read_hash(self):
if not self.hash:
self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '')
def get_alias(self):
import networks
if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in networks.forbidden_network_aliases:
return self.name
else:
return self.alias
class Network: # LoraModule
def __init__(self, name, network_on_disk: NetworkOnDisk):
self.name = name
self.network_on_disk = network_on_disk
self.te_multiplier = 1.0
self.unet_multiplier = 1.0
self.dyn_dim = None
self.modules = {}
self.mtime = None
self.mentioned_name = None
"""the text that was used to add the network to prompt - can be either name or an alias"""
class ModuleType:
def create_module(self, net: Network, weights: NetworkWeights) -> Network | None:
return None
class NetworkModule:
def __init__(self, net: Network, weights: NetworkWeights):
self.network = net
self.network_key = weights.network_key
self.sd_key = weights.sd_key
self.sd_module = weights.sd_module
if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
self.dim = None
self.bias = weights.w.get("bias")
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
self.scale = weights.w["scale"].item() if "scale" in weights.w else None
def multiplier(self):
if 'transformer' in self.sd_key[:20]:
return self.network.te_multiplier
else:
return self.network.unet_multiplier
def calc_scale(self):
if self.scale is not None:
return self.scale
if self.dim is not None and self.alpha is not None:
return self.alpha / self.dim
return 1.0
def finalize_updown(self, updown, orig_weight, output_shape):
if self.bias is not None:
updown = updown.reshape(self.bias.shape)
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
updown = updown.reshape(output_shape)
if len(output_shape) == 4:
updown = updown.reshape(output_shape)
if orig_weight.size().numel() == updown.size().numel():
updown = updown.reshape(orig_weight.shape)
return updown * self.calc_scale() * self.multiplier()
def calc_updown(self, target):
raise NotImplementedError()
def forward(self, x, y):
raise NotImplementedError()

View File

@ -0,0 +1,22 @@
import network
class ModuleTypeFull(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["diff"]):
return NetworkModuleFull(net, weights)
return None
class NetworkModuleFull(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.weight = weights.w.get("diff")
def calc_updown(self, orig_weight):
output_shape = self.weight.shape
updown = self.weight.to(orig_weight.device, dtype=orig_weight.dtype)
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -0,0 +1,55 @@
import lyco_helpers
import network
class ModuleTypeHada(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["hada_w1_a", "hada_w1_b", "hada_w2_a", "hada_w2_b"]):
return NetworkModuleHada(net, weights)
return None
class NetworkModuleHada(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
if hasattr(self.sd_module, 'weight'):
self.shape = self.sd_module.weight.shape
self.w1a = weights.w["hada_w1_a"]
self.w1b = weights.w["hada_w1_b"]
self.dim = self.w1b.shape[0]
self.w2a = weights.w["hada_w2_a"]
self.w2b = weights.w["hada_w2_b"]
self.t1 = weights.w.get("hada_t1")
self.t2 = weights.w.get("hada_t2")
def calc_updown(self, orig_weight):
w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
output_shape = [w1a.size(0), w1b.size(1)]
if self.t1 is not None:
output_shape = [w1a.size(1), w1b.size(1)]
t1 = self.t1.to(orig_weight.device, dtype=orig_weight.dtype)
updown1 = lyco_helpers.make_weight_cp(t1, w1a, w1b)
output_shape += t1.shape[2:]
else:
if len(w1b.shape) == 4:
output_shape += w1b.shape[2:]
updown1 = lyco_helpers.rebuild_conventional(w1a, w1b, output_shape)
if self.t2 is not None:
t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype)
updown2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
else:
updown2 = lyco_helpers.rebuild_conventional(w2a, w2b, output_shape)
updown = updown1 * updown2
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -0,0 +1,30 @@
import network
class ModuleTypeIa3(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["weight"]):
return NetworkModuleIa3(net, weights)
return None
class NetworkModuleIa3(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.w = weights.w["weight"]
self.on_input = weights.w["on_input"].item()
def calc_updown(self, orig_weight):
w = self.w.to(orig_weight.device, dtype=orig_weight.dtype)
output_shape = [w.size(0), orig_weight.size(1)]
if self.on_input:
output_shape.reverse()
else:
w = w.reshape(-1, 1)
updown = orig_weight * w
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -0,0 +1,64 @@
import torch
import lyco_helpers
import network
class ModuleTypeLokr(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
has_1 = "lokr_w1" in weights.w or ("lokr_w1_a" in weights.w and "lokr_w1_b" in weights.w)
has_2 = "lokr_w2" in weights.w or ("lokr_w2_a" in weights.w and "lokr_w2_b" in weights.w)
if has_1 and has_2:
return NetworkModuleLokr(net, weights)
return None
def make_kron(orig_shape, w1, w2):
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
w2 = w2.contiguous()
return torch.kron(w1, w2).reshape(orig_shape)
class NetworkModuleLokr(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.w1 = weights.w.get("lokr_w1")
self.w1a = weights.w.get("lokr_w1_a")
self.w1b = weights.w.get("lokr_w1_b")
self.dim = self.w1b.shape[0] if self.w1b is not None else self.dim
self.w2 = weights.w.get("lokr_w2")
self.w2a = weights.w.get("lokr_w2_a")
self.w2b = weights.w.get("lokr_w2_b")
self.dim = self.w2b.shape[0] if self.w2b is not None else self.dim
self.t2 = weights.w.get("lokr_t2")
def calc_updown(self, orig_weight):
if self.w1 is not None:
w1 = self.w1.to(orig_weight.device, dtype=orig_weight.dtype)
else:
w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
w1 = w1a @ w1b
if self.w2 is not None:
w2 = self.w2.to(orig_weight.device, dtype=orig_weight.dtype)
elif self.t2 is None:
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
w2 = w2a @ w2b
else:
t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype)
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
w2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
output_shape = [w1.size(0) * w2.size(0), w1.size(1) * w2.size(1)]
if len(orig_weight.shape) == 4:
output_shape = orig_weight.shape
updown = make_kron(output_shape, w1, w2)
return self.finalize_updown(updown, orig_weight, output_shape)

View File

@ -0,0 +1,86 @@
import torch
import lyco_helpers
import network
from modules import devices
class ModuleTypeLora(network.ModuleType):
def create_module(self, net: network.Network, weights: network.NetworkWeights):
if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]):
return NetworkModuleLora(net, weights)
return None
class NetworkModuleLora(network.NetworkModule):
def __init__(self, net: network.Network, weights: network.NetworkWeights):
super().__init__(net, weights)
self.up_model = self.create_module(weights.w, "lora_up.weight")
self.down_model = self.create_module(weights.w, "lora_down.weight")
self.mid_model = self.create_module(weights.w, "lora_mid.weight", none_ok=True)
self.dim = weights.w["lora_down.weight"].shape[0]
def create_module(self, weights, key, none_ok=False):
weight = weights.get(key)
if weight is None and none_ok:
return None
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention]
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
if is_linear:
weight = weight.reshape(weight.shape[0], -1)
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif is_conv and key == "lora_down.weight" or key == "dyn_up":
if len(weight.shape) == 2:
weight = weight.reshape(weight.shape[0], -1, 1, 1)
if weight.shape[2] != 1 or weight.shape[3] != 1:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
else:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif is_conv and key == "lora_mid.weight":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
elif is_conv and key == "lora_up.weight" or key == "dyn_down":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
else:
raise AssertionError(f'Lora layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}')
with torch.no_grad():
if weight.shape != module.weight.shape:
weight = weight.reshape(module.weight.shape)
module.weight.copy_(weight)
module.to(device=devices.cpu, dtype=devices.dtype)
module.weight.requires_grad_(False)
return module
def calc_updown(self, orig_weight):
up = self.up_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
down = self.down_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
output_shape = [up.size(0), down.size(1)]
if self.mid_model is not None:
# cp-decomposition
mid = self.mid_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid)
output_shape += mid.shape[2:]
else:
if len(down.shape) == 4:
output_shape += down.shape[2:]
updown = lyco_helpers.rebuild_conventional(up, down, output_shape, self.network.dyn_dim)
return self.finalize_updown(updown, orig_weight, output_shape)
def forward(self, x, y):
self.up_model.to(device=devices.device)
self.down_model.to(device=devices.device)
return y + self.up_model(self.down_model(x)) * self.multiplier() * self.calc_scale()

View File

@ -0,0 +1,468 @@
import os
import re
import network
import network_lora
import network_hada
import network_ia3
import network_lokr
import network_full
import torch
from typing import Union
from modules import shared, devices, sd_models, errors, scripts, sd_hijack
module_types = [
network_lora.ModuleTypeLora(),
network_hada.ModuleTypeHada(),
network_ia3.ModuleTypeIa3(),
network_lokr.ModuleTypeLokr(),
network_full.ModuleTypeFull(),
]
re_digits = re.compile(r"\d+")
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
re_compiled = {}
suffix_conversion = {
"attentions": {},
"resnets": {
"conv1": "in_layers_2",
"conv2": "out_layers_3",
"time_emb_proj": "emb_layers_1",
"conv_shortcut": "skip_connection",
}
}
def convert_diffusers_name_to_compvis(key, is_sd2):
def match(match_list, regex_text):
regex = re_compiled.get(regex_text)
if regex is None:
regex = re.compile(regex_text)
re_compiled[regex_text] = regex
r = re.match(regex, key)
if not r:
return False
match_list.clear()
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
return True
m = []
if match(m, r"lora_unet_conv_in(.*)"):
return f'diffusion_model_input_blocks_0_0{m[0]}'
if match(m, r"lora_unet_conv_out(.*)"):
return f'diffusion_model_out_2{m[0]}'
if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}"
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
if is_sd2:
if 'mlp_fc1' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
if 'mlp_fc1' in m[1]:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
elif 'mlp_fc2' in m[1]:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
else:
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
return key
def assign_network_names_to_compvis_modules(sd_model):
network_layer_mapping = {}
if shared.sd_model.is_sdxl:
for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
if not hasattr(embedder, 'wrapped'):
continue
for name, module in embedder.wrapped.named_modules():
network_name = f'{i}_{name.replace(".", "_")}'
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
else:
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
network_name = name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
for name, module in shared.sd_model.model.named_modules():
network_name = name.replace(".", "_")
network_layer_mapping[network_name] = module
module.network_layer_name = network_name
sd_model.network_layer_mapping = network_layer_mapping
def load_network(name, network_on_disk):
net = network.Network(name, network_on_disk)
net.mtime = os.path.getmtime(network_on_disk.filename)
sd = sd_models.read_state_dict(network_on_disk.filename)
# this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
if not hasattr(shared.sd_model, 'network_layer_mapping'):
assign_network_names_to_compvis_modules(shared.sd_model)
keys_failed_to_match = {}
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
matched_networks = {}
for key_network, weight in sd.items():
key_network_without_network_parts, network_part = key_network.split(".", 1)
key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
if sd_module is None:
m = re_x_proj.match(key)
if m:
sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None)
# SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
if sd_module is None and "lora_unet" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
# some SD1 Loras also have correct compvis keys
if sd_module is None:
key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
if sd_module is None:
keys_failed_to_match[key_network] = key
continue
if key not in matched_networks:
matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module)
matched_networks[key].w[network_part] = weight
for key, weights in matched_networks.items():
net_module = None
for nettype in module_types:
net_module = nettype.create_module(net, weights)
if net_module is not None:
break
if net_module is None:
raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}")
net.modules[key] = net_module
if keys_failed_to_match:
print(f"Failed to match keys when loading network {network_on_disk.filename}: {keys_failed_to_match}")
return net
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
already_loaded = {}
for net in loaded_networks:
if net.name in names:
already_loaded[net.name] = net
loaded_networks.clear()
networks_on_disk = [available_network_aliases.get(name, None) for name in names]
if any(x is None for x in networks_on_disk):
list_available_networks()
networks_on_disk = [available_network_aliases.get(name, None) for name in names]
failed_to_load_networks = []
for i, name in enumerate(names):
net = already_loaded.get(name, None)
network_on_disk = networks_on_disk[i]
if network_on_disk is not None:
if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime:
try:
net = load_network(name, network_on_disk)
except Exception as e:
errors.display(e, f"loading network {network_on_disk.filename}")
continue
net.mentioned_name = name
network_on_disk.read_hash()
if net is None:
failed_to_load_networks.append(name)
print(f"Couldn't find network with name {name}")
continue
net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
loaded_networks.append(net)
if failed_to_load_networks:
sd_hijack.model_hijack.comments.append("Failed to find networks: " + ", ".join(failed_to_load_networks))
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
weights_backup = getattr(self, "network_weights_backup", None)
if weights_backup is None:
return
if isinstance(self, torch.nn.MultiheadAttention):
self.in_proj_weight.copy_(weights_backup[0])
self.out_proj.weight.copy_(weights_backup[1])
else:
self.weight.copy_(weights_backup)
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
"""
Applies the currently selected set of networks to the weights of torch layer self.
If weights already have this particular set of networks applied, does nothing.
If not, restores orginal weights from backup and alters weights according to networks.
"""
network_layer_name = getattr(self, 'network_layer_name', None)
if network_layer_name is None:
return
current_names = getattr(self, "network_current_names", ())
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
weights_backup = getattr(self, "network_weights_backup", None)
if weights_backup is None:
if isinstance(self, torch.nn.MultiheadAttention):
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
else:
weights_backup = self.weight.to(devices.cpu, copy=True)
self.network_weights_backup = weights_backup
if current_names != wanted_names:
network_restore_weights_from_backup(self)
for net in loaded_networks:
module = net.modules.get(network_layer_name, None)
if module is not None and hasattr(self, 'weight'):
with torch.no_grad():
updown = module.calc_updown(self.weight)
if len(self.weight.shape) == 4 and self.weight.shape[1] == 9:
# inpainting model. zero pad updown to make channel[1] 4 to 9
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
self.weight += updown
continue
module_q = net.modules.get(network_layer_name + "_q_proj", None)
module_k = net.modules.get(network_layer_name + "_k_proj", None)
module_v = net.modules.get(network_layer_name + "_v_proj", None)
module_out = net.modules.get(network_layer_name + "_out_proj", None)
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
with torch.no_grad():
updown_q = module_q.calc_updown(self.in_proj_weight)
updown_k = module_k.calc_updown(self.in_proj_weight)
updown_v = module_v.calc_updown(self.in_proj_weight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
updown_out = module_out.calc_updown(self.out_proj.weight)
self.in_proj_weight += updown_qkv
self.out_proj.weight += updown_out
continue
if module is None:
continue
print(f'failed to calculate network weights for layer {network_layer_name}')
self.network_current_names = wanted_names
def network_forward(module, input, original_forward):
"""
Old way of applying Lora by executing operations during layer's forward.
Stacking many loras this way results in big performance degradation.
"""
if len(loaded_networks) == 0:
return original_forward(module, input)
input = devices.cond_cast_unet(input)
network_restore_weights_from_backup(module)
network_reset_cached_weight(module)
y = original_forward(module, input)
network_layer_name = getattr(module, 'network_layer_name', None)
for lora in loaded_networks:
module = lora.modules.get(network_layer_name, None)
if module is None:
continue
y = module.forward(y, input)
return y
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
self.network_current_names = ()
self.network_weights_backup = None
def network_Linear_forward(self, input):
if shared.opts.lora_functional:
return network_forward(self, input, torch.nn.Linear_forward_before_network)
network_apply_weights(self)
return torch.nn.Linear_forward_before_network(self, input)
def network_Linear_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return torch.nn.Linear_load_state_dict_before_network(self, *args, **kwargs)
def network_Conv2d_forward(self, input):
if shared.opts.lora_functional:
return network_forward(self, input, torch.nn.Conv2d_forward_before_network)
network_apply_weights(self)
return torch.nn.Conv2d_forward_before_network(self, input)
def network_Conv2d_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return torch.nn.Conv2d_load_state_dict_before_network(self, *args, **kwargs)
def network_MultiheadAttention_forward(self, *args, **kwargs):
network_apply_weights(self)
return torch.nn.MultiheadAttention_forward_before_network(self, *args, **kwargs)
def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
network_reset_cached_weight(self)
return torch.nn.MultiheadAttention_load_state_dict_before_network(self, *args, **kwargs)
def list_available_networks():
available_networks.clear()
available_network_aliases.clear()
forbidden_network_aliases.clear()
available_network_hash_lookup.clear()
forbidden_network_aliases.update({"none": 1, "Addams": 1})
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
for filename in candidates:
if os.path.isdir(filename):
continue
name = os.path.splitext(os.path.basename(filename))[0]
try:
entry = network.NetworkOnDisk(name, filename)
except OSError: # should catch FileNotFoundError and PermissionError etc.
errors.report(f"Failed to load network {name} from {filename}", exc_info=True)
continue
available_networks[name] = entry
if entry.alias in available_network_aliases:
forbidden_network_aliases[entry.alias.lower()] = 1
available_network_aliases[name] = entry
available_network_aliases[entry.alias] = entry
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
def infotext_pasted(infotext, params):
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
return # if the other extension is active, it will handle those fields, no need to do anything
added = []
for k in params:
if not k.startswith("AddNet Model "):
continue
num = k[13:]
if params.get("AddNet Module " + num) != "LoRA":
continue
name = params.get("AddNet Model " + num)
if name is None:
continue
m = re_network_name.match(name)
if m:
name = m.group(1)
multiplier = params.get("AddNet Weight A " + num, "1.0")
added.append(f"<lora:{name}:{multiplier}>")
if added:
params["Prompt"] += "\n" + "".join(added)
available_networks = {}
available_network_aliases = {}
loaded_networks = []
available_network_hash_lookup = {}
forbidden_network_aliases = {}
list_available_networks()

View File

@ -4,3 +4,4 @@ from modules import paths
def preload(parser):
parser.add_argument("--lora-dir", type=str, help="Path to directory with Lora networks.", default=os.path.join(paths.models_path, 'Lora'))
parser.add_argument("--lyco-dir-backcompat", type=str, help="Path to directory with LyCORIS networks (for backawards compatibility; can also use --lyco-dir).", default=os.path.join(paths.models_path, 'LyCORIS'))

View File

@ -4,69 +4,76 @@ import torch
import gradio as gr
from fastapi import FastAPI
import lora
import network
import networks
import lora # noqa:F401
import extra_networks_lora
import ui_extra_networks_lora
from modules import script_callbacks, ui_extra_networks, extra_networks, shared
def unload():
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora
torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora
torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora
torch.nn.Linear.forward = torch.nn.Linear_forward_before_network
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_network
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_network
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_network
torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_network
torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_network
def before_ui():
ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora())
extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora())
extra_network = extra_networks_lora.ExtraNetworkLora()
extra_networks.register_extra_network(extra_network)
extra_networks.register_extra_network_alias(extra_network, "lyco")
if not hasattr(torch.nn, 'Linear_forward_before_lora'):
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
if not hasattr(torch.nn, 'Linear_forward_before_network'):
torch.nn.Linear_forward_before_network = torch.nn.Linear.forward
if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'):
torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict
if not hasattr(torch.nn, 'Linear_load_state_dict_before_network'):
torch.nn.Linear_load_state_dict_before_network = torch.nn.Linear._load_from_state_dict
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
if not hasattr(torch.nn, 'Conv2d_forward_before_network'):
torch.nn.Conv2d_forward_before_network = torch.nn.Conv2d.forward
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'):
torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_network'):
torch.nn.Conv2d_load_state_dict_before_network = torch.nn.Conv2d._load_from_state_dict
if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'):
torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward
if not hasattr(torch.nn, 'MultiheadAttention_forward_before_network'):
torch.nn.MultiheadAttention_forward_before_network = torch.nn.MultiheadAttention.forward
if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'):
torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict
if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_network'):
torch.nn.MultiheadAttention_load_state_dict_before_network = torch.nn.MultiheadAttention._load_from_state_dict
torch.nn.Linear.forward = lora.lora_Linear_forward
torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict
torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward
torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict
torch.nn.Linear.forward = networks.network_Linear_forward
torch.nn.Linear._load_from_state_dict = networks.network_Linear_load_state_dict
torch.nn.Conv2d.forward = networks.network_Conv2d_forward
torch.nn.Conv2d._load_from_state_dict = networks.network_Conv2d_load_state_dict
torch.nn.MultiheadAttention.forward = networks.network_MultiheadAttention_forward
torch.nn.MultiheadAttention._load_from_state_dict = networks.network_MultiheadAttention_load_state_dict
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
script_callbacks.on_model_loaded(networks.assign_network_names_to_compvis_modules)
script_callbacks.on_script_unloaded(unload)
script_callbacks.on_before_ui(before_ui)
script_callbacks.on_infotext_pasted(lora.infotext_pasted)
script_callbacks.on_infotext_pasted(networks.infotext_pasted)
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None", *lora.available_loras]}, refresh=lora.list_available_loras),
"sd_lora": shared.OptionInfo("None", "Add network to prompt", gr.Dropdown, lambda: {"choices": ["None", *networks.available_networks]}, refresh=networks.list_available_networks),
"lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}),
"lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"),
"lora_show_all": shared.OptionInfo(False, "Always show all networks on the Lora page").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"),
"lora_hide_unknown_for_versions": shared.OptionInfo([], "Hide networks of unknown versions for model versions", gr.CheckboxGroup, {"choices": ["SD1", "SD2", "SDXL"]}),
}))
shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), {
"lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"),
"lora_functional": shared.OptionInfo(False, "Lora/Networks: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"),
}))
def create_lora_json(obj: lora.LoraOnDisk):
def create_lora_json(obj: network.NetworkOnDisk):
return {
"name": obj.name,
"alias": obj.alias,
@ -75,17 +82,17 @@ def create_lora_json(obj: lora.LoraOnDisk):
}
def api_loras(_: gr.Blocks, app: FastAPI):
def api_networks(_: gr.Blocks, app: FastAPI):
@app.get("/sdapi/v1/loras")
async def get_loras():
return [create_lora_json(obj) for obj in lora.available_loras.values()]
return [create_lora_json(obj) for obj in networks.available_networks.values()]
@app.post("/sdapi/v1/refresh-loras")
async def refresh_loras():
return lora.list_available_loras()
return networks.list_available_networks()
script_callbacks.on_app_started(api_loras)
script_callbacks.on_app_started(api_networks)
re_lora = re.compile("<lora:([^:]+):")
@ -98,19 +105,19 @@ def infotext_pasted(infotext, d):
hashes = [x.strip().split(':', 1) for x in hashes.split(",")]
hashes = {x[0].strip().replace(",", ""): x[1].strip() for x in hashes}
def lora_replacement(m):
def network_replacement(m):
alias = m.group(1)
shorthash = hashes.get(alias)
if shorthash is None:
return m.group(0)
lora_on_disk = lora.available_lora_hash_lookup.get(shorthash)
if lora_on_disk is None:
network_on_disk = networks.available_network_hash_lookup.get(shorthash)
if network_on_disk is None:
return m.group(0)
return f'<lora:{lora_on_disk.get_alias()}:'
return f'<lora:{network_on_disk.get_alias()}:'
d["Prompt"] = re.sub(re_lora, lora_replacement, d["Prompt"])
d["Prompt"] = re.sub(re_lora, network_replacement, d["Prompt"])
script_callbacks.on_infotext_pasted(infotext_pasted)

View File

@ -1,3 +1,4 @@
import datetime
import html
import random
@ -46,14 +47,17 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
def __init__(self, ui, tabname, page):
super().__init__(ui, tabname, page)
self.select_sd_version = None
self.taginfo = None
self.edit_activation_text = None
self.slider_preferred_weight = None
self.edit_notes = None
def save_lora_user_metadata(self, name, desc, activation_text, preferred_weight, notes):
def save_lora_user_metadata(self, name, desc, sd_version, activation_text, preferred_weight, notes):
user_metadata = self.get_user_metadata(name)
user_metadata["description"] = desc
user_metadata["sd version"] = sd_version
user_metadata["activation text"] = activation_text
user_metadata["preferred weight"] = preferred_weight
user_metadata["notes"] = notes
@ -68,6 +72,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
keys = {
'ss_sd_model_name': "Model:",
'ss_clip_skip': "Clip skip:",
'ss_network_module': "Kohya module:",
}
for key, label in keys.items():
@ -75,6 +80,10 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
if value is not None and str(value) != "None":
table.append((label, html.escape(value)))
ss_training_started_at = metadata.get('ss_training_started_at')
if ss_training_started_at:
table.append(("Date trained:", datetime.datetime.utcfromtimestamp(float(ss_training_started_at)).strftime('%Y-%m-%d %H:%M')))
ss_bucket_info = metadata.get("ss_bucket_info")
if ss_bucket_info and "buckets" in ss_bucket_info:
resolutions = {}
@ -112,11 +121,11 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
gradio_tags = [(tag, str(count)) for tag, count in tags[0:24]]
return [
*values[0:4],
*values[0:5],
item.get("sd_version", "Unknown"),
gr.HighlightedText.update(value=gradio_tags, visible=True if tags else False),
user_metadata.get('activation text', ''),
float(user_metadata.get('preferred weight', 0.0)),
user_metadata.get('notes', ''),
gr.update(visible=True if tags else False),
gr.update(value=self.generate_random_prompt_from_tags(tags), visible=True if tags else False),
]
@ -141,10 +150,15 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
return ", ".join(sorted(res))
def create_extra_default_items_in_left_column(self):
# this would be a lot better as gr.Radio but I can't make it work
self.select_sd_version = gr.Dropdown(['SD1', 'SD2', 'SDXL', 'Unknown'], value='Unknown', label='Stable Diffusion version', interactive=True)
def create_editor(self):
self.create_default_editor_elems()
self.taginfo = gr.HighlightedText(label="Tags")
self.taginfo = gr.HighlightedText(label="Training dataset tags")
self.edit_activation_text = gr.Text(label='Activation text', info="Will be added to prompt along with Lora")
self.slider_preferred_weight = gr.Slider(label='Preferred weight', info="Set to 0 to disable", minimum=0.0, maximum=2.0, step=0.01)
@ -153,7 +167,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
random_prompt = gr.Textbox(label='Random prompt', lines=4, max_lines=4, interactive=False)
with gr.Column(scale=1, min_width=120):
generate_random_prompt = gr.Button('Generate').style(full_width=True, size="lg")
generate_random_prompt = gr.Button('Generate', size="lg", scale=1)
self.edit_notes = gr.TextArea(label='Notes', lines=4)
@ -178,10 +192,11 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
self.edit_description,
self.html_filedata,
self.html_preview,
self.edit_notes,
self.select_sd_version,
self.taginfo,
self.edit_activation_text,
self.slider_preferred_weight,
self.edit_notes,
row_random_prompt,
random_prompt,
]
@ -192,6 +207,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
edited_components = [
self.edit_description,
self.select_sd_version,
self.edit_activation_text,
self.slider_preferred_weight,
self.edit_notes,

View File

@ -1,5 +1,7 @@
import os
import lora
import network
import networks
from modules import shared, ui_extra_networks
from modules.ui_extra_networks import quote_js
@ -11,16 +13,15 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
super().__init__('Lora')
def refresh(self):
lora.list_available_loras()
networks.list_available_networks()
def create_item(self, name, index=None):
lora_on_disk = lora.available_loras.get(name)
def create_item(self, name, index=None, enable_filter=True):
lora_on_disk = networks.available_networks.get(name)
path, ext = os.path.splitext(lora_on_disk.filename)
alias = lora_on_disk.get_alias()
# in 1.5 filename changes to be full filename instead of path without extension, and metadata is dict instead of json string
item = {
"name": name,
"filename": lora_on_disk.filename,
@ -30,6 +31,7 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
"local_preview": f"{path}.{shared.opts.samples_format}",
"metadata": lora_on_disk.metadata,
"sort_keys": {'default': index, **self.get_sort_keys(lora_on_disk.filename)},
"sd_version": lora_on_disk.sd_version.name,
}
self.read_user_metadata(item)
@ -40,15 +42,37 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
if activation_text:
item["prompt"] += " + " + quote_js(" " + activation_text)
sd_version = item["user_metadata"].get("sd version")
if sd_version in network.SdVersion.__members__:
item["sd_version"] = sd_version
sd_version = network.SdVersion[sd_version]
else:
sd_version = lora_on_disk.sd_version
if shared.opts.lora_show_all or not enable_filter:
pass
elif sd_version == network.SdVersion.Unknown:
model_version = network.SdVersion.SDXL if shared.sd_model.is_sdxl else network.SdVersion.SD2 if shared.sd_model.is_sd2 else network.SdVersion.SD1
if model_version.name in shared.opts.lora_hide_unknown_for_versions:
return None
elif shared.sd_model.is_sdxl and sd_version != network.SdVersion.SDXL:
return None
elif shared.sd_model.is_sd2 and sd_version != network.SdVersion.SD2:
return None
elif shared.sd_model.is_sd1 and sd_version != network.SdVersion.SD1:
return None
return item
def list_items(self):
for index, name in enumerate(lora.available_loras):
for index, name in enumerate(networks.available_networks):
item = self.create_item(name, index)
if item is not None:
yield item
def allowed_directories_for_previews(self):
return [shared.cmd_opts.lora_dir]
return [shared.cmd_opts.lora_dir, shared.cmd_opts.lyco_dir_backcompat]
def create_user_metadata_editor(self, ui, tabname):
return LoraUserMetadataEditor(ui, tabname, self)

View File

@ -1,8 +1,8 @@
<div class='card' style={style} onclick={card_clicked} data-name="{name}" {sort_keys}>
{background_image}
<div class="button-row">
{edit_button}
{metadata_button}
{edit_button}
</div>
<div class='actions'>
<div class='additional'>

View File

@ -1,108 +0,0 @@
(function() {
var ignore = localStorage.getItem("bad-scale-ignore-it") == "ignore-it";
function getScale() {
var ratio = 0,
screen = window.screen,
ua = navigator.userAgent.toLowerCase();
if (window.devicePixelRatio !== undefined) {
ratio = window.devicePixelRatio;
} else if (~ua.indexOf('msie')) {
if (screen.deviceXDPI && screen.logicalXDPI) {
ratio = screen.deviceXDPI / screen.logicalXDPI;
}
} else if (window.outerWidth !== undefined && window.innerWidth !== undefined) {
ratio = window.outerWidth / window.innerWidth;
}
return ratio == 0 ? 0 : Math.round(ratio * 100);
}
var showing = false;
var div = document.createElement("div");
div.style.position = "fixed";
div.style.top = "0px";
div.style.left = "0px";
div.style.width = "100vw";
div.style.backgroundColor = "firebrick";
div.style.textAlign = "center";
div.style.zIndex = 99;
var b = document.createElement("b");
b.innerHTML = 'Bad Scale: ??% ';
div.appendChild(b);
var note1 = document.createElement("p");
note1.innerHTML = "Change your browser or your computer settings!";
note1.title = 'Just make sure "computer-scale" * "browser-scale" = 100% ,\n' +
"you can keep your computer-scale and only change this page's scale,\n" +
"for example: your computer-scale is 125%, just use [\"CTRL\"+\"-\"] to make your browser-scale of this page to 80%.";
div.appendChild(note1);
var note2 = document.createElement("p");
note2.innerHTML = " Otherwise, it will cause this page to not function properly!";
note2.title = "When you click \"Copy image to: [inpaint sketch]\" in some img2img's tab,\n" +
"if scale<100% the canvas will be invisible,\n" +
"else if scale>100% this page will take large amount of memory and CPU performance.";
div.appendChild(note2);
var btn = document.createElement("button");
btn.innerHTML = "Click here to ignore";
div.appendChild(btn);
function tryShowTopBar(scale) {
if (showing) return;
b.innerHTML = 'Bad Scale: ' + scale + '% ';
var updateScaleTimer = setInterval(function() {
var newScale = getScale();
b.innerHTML = 'Bad Scale: ' + newScale + '% ';
if (newScale == 100) {
var p = div.parentNode;
if (p != null) p.removeChild(div);
showing = false;
clearInterval(updateScaleTimer);
check();
}
}, 999);
btn.onclick = function() {
clearInterval(updateScaleTimer);
var p = div.parentNode;
if (p != null) p.removeChild(div);
ignore = true;
showing = false;
localStorage.setItem("bad-scale-ignore-it", "ignore-it");
};
document.body.appendChild(div);
}
function check() {
if (!ignore) {
var timer = setInterval(function() {
var scale = getScale();
if (scale != 100 && !ignore) {
tryShowTopBar(scale);
clearInterval(timer);
}
if (ignore) {
clearInterval(timer);
}
}, 999);
}
}
if (document.readyState != "complete") {
document.onreadystatechange = function() {
if (document.readyState != "complete") check();
};
} else {
check();
}
})();

View File

@ -213,7 +213,7 @@ function popup(contents) {
globalPopupInner.classList.add('global-popup-inner');
globalPopup.appendChild(globalPopupInner);
gradioApp().appendChild(globalPopup);
gradioApp().querySelector('.main').appendChild(globalPopup);
}
globalPopupInner.innerHTML = '';

View File

@ -190,3 +190,14 @@ onUiUpdate(function(mutationRecords) {
tooltipCheckTimer = setTimeout(processTooltipCheckNodes, 1000);
}
});
onUiLoaded(function() {
for (var comp of window.gradio_config.components) {
if (comp.props.webui_tooltip && comp.props.elem_id) {
var elem = gradioApp().getElementById(comp.props.elem_id);
if (elem) {
elem.title = comp.props.webui_tooltip;
}
}
}
});

View File

@ -152,7 +152,11 @@ function submit() {
showSubmitButtons('txt2img', false);
var id = randomId();
try {
localStorage.setItem("txt2img_task_id", id);
} catch (e) {
console.warn(`Failed to save txt2img task id to localStorage: ${e}`);
}
requestProgress(id, gradioApp().getElementById('txt2img_gallery_container'), gradioApp().getElementById('txt2img_gallery'), function() {
showSubmitButtons('txt2img', true);
@ -171,7 +175,11 @@ function submit_img2img() {
showSubmitButtons('img2img', false);
var id = randomId();
try {
localStorage.setItem("img2img_task_id", id);
} catch (e) {
console.warn(`Failed to save img2img task id to localStorage: ${e}`);
}
requestProgress(id, gradioApp().getElementById('img2img_gallery_container'), gradioApp().getElementById('img2img_gallery'), function() {
showSubmitButtons('img2img', true);
@ -191,8 +199,6 @@ function restoreProgressTxt2img() {
showRestoreProgressButton("txt2img", false);
var id = localStorage.getItem("txt2img_task_id");
id = localStorage.getItem("txt2img_task_id");
if (id) {
requestProgress(id, gradioApp().getElementById('txt2img_gallery_container'), gradioApp().getElementById('txt2img_gallery'), function() {
showSubmitButtons('txt2img', true);

View File

@ -1,6 +1,5 @@
from modules import launch_utils
args = launch_utils.args
python = launch_utils.python
git = launch_utils.git
@ -18,6 +17,7 @@ run_pip = launch_utils.run_pip
check_run_python = launch_utils.check_run_python
git_clone = launch_utils.git_clone
git_pull_recursive = launch_utils.git_pull_recursive
list_extensions = launch_utils.list_extensions
run_extension_installer = launch_utils.run_extension_installer
prepare_environment = launch_utils.prepare_environment
configure_for_tests = launch_utils.configure_for_tests
@ -25,6 +25,9 @@ start = launch_utils.start
def main():
launch_utils.startup_timer.record("initial startup")
with launch_utils.startup_timer.subcategory("prepare environment"):
if not args.skip_prepare_environment:
prepare_environment()

View File

@ -15,7 +15,7 @@ from fastapi.encoders import jsonable_encoder
from secrets import compare_digest
import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart, shared_items
from modules.api import models
from modules.shared import opts
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
@ -197,6 +197,7 @@ class Api:
self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem])
self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse)
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
self.add_api_route("/sdapi/v1/refresh-vae", self.refresh_vae, methods=["POST"])
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse)
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse)
self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse)
@ -333,6 +334,7 @@ class Api:
p.outpath_grids = opts.outdir_txt2img_grids
p.outpath_samples = opts.outdir_txt2img_samples
try:
shared.state.begin(job="scripts_txt2img")
if selectable_scripts is not None:
p.script_args = script_args
@ -340,7 +342,9 @@ class Api:
else:
p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p)
finally:
shared.state.end()
shared.total_tqdm.clear()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
@ -390,6 +394,7 @@ class Api:
p.outpath_grids = opts.outdir_img2img_grids
p.outpath_samples = opts.outdir_img2img_samples
try:
shared.state.begin(job="scripts_img2img")
if selectable_scripts is not None:
p.script_args = script_args
@ -397,7 +402,9 @@ class Api:
else:
p.script_args = tuple(script_args) # Need to pass args as tuple here
processed = process_images(p)
finally:
shared.state.end()
shared.total_tqdm.clear()
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
@ -604,6 +611,10 @@ class Api:
with self.queue_lock:
shared.refresh_checkpoints()
def refresh_vae(self):
with self.queue_lock:
shared_items.refresh_vae_list()
def create_embedding(self, args: dict):
try:
shared.state.begin(job="create_embedding")
@ -720,9 +731,9 @@ class Api:
cuda = {'error': f'{err}'}
return models.MemoryResponse(ram=ram, cuda=cuda)
def launch(self, server_name, port):
def launch(self, server_name, port, root_path):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=shared.cmd_opts.timeout_keep_alive)
uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=shared.cmd_opts.timeout_keep_alive, root_path=root_path)
def kill_webui(self):
restart.stop_program()

View File

@ -1,4 +1,5 @@
import inspect
from pydantic import BaseModel, Field, create_model
from typing import Any, Optional
from typing_extensions import Literal
@ -207,11 +208,10 @@ class PreprocessResponse(BaseModel):
fields = {}
for key, metadata in opts.data_labels.items():
value = opts.data.get(key)
optType = opts.typemap.get(type(metadata.default), type(value))
optType = opts.typemap.get(type(metadata.default), type(metadata.default)) if metadata.default else Any
if (metadata is not None):
fields.update({key: (Optional[optType], Field(
default=metadata.default ,description=metadata.label))})
if metadata is not None:
fields.update({key: (Optional[optType], Field(default=metadata.default, description=metadata.label))})
else:
fields.update({key: (Optional[optType], Field())})

View File

@ -3,7 +3,7 @@ import html
import threading
import time
from modules import shared, progress, errors
from modules import shared, progress, errors, devices
queue_lock = threading.Lock()
@ -75,6 +75,8 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
error_message = f'{type(e).__name__}: {e}'
res = extra_outputs_array + [f"<div class='error'>{html.escape(error_message)}</div>"]
devices.torch_gc()
shared.state.skipped = False
shared.state.interrupted = False
shared.state.job_count = 0

View File

@ -13,8 +13,10 @@ parser.add_argument("--reinstall-xformers", action='store_true', help="launch.py
parser.add_argument("--reinstall-torch", action='store_true', help="launch.py argument: install the appropriate version of torch even if you have some version already installed")
parser.add_argument("--update-check", action='store_true', help="launch.py argument: check for updates at startup")
parser.add_argument("--test-server", action='store_true', help="launch.py argument: configure server for testing")
parser.add_argument("--log-startup", action='store_true', help="launch.py argument: print a detailed log of what's happening at startup")
parser.add_argument("--skip-prepare-environment", action='store_true', help="launch.py argument: skip all environment preparation")
parser.add_argument("--skip-install", action='store_true', help="launch.py argument: skip installation of packages")
parser.add_argument("--do-not-download-clip", action='store_true', help="do not download CLIP model even if it's not included in the checkpoint")
parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored")
parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",)
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
@ -65,6 +67,7 @@ parser.add_argument("--opt-sdp-no-mem-attention", action='store_true', help="pre
parser.add_argument("--disable-opt-split-attention", action='store_true', help="prefer no cross-attention layer optimization for automatic choice of optimization")
parser.add_argument("--disable-nan-check", action='store_true', help="do not check if produced images/latent spaces have nans; useful for running without a checkpoint in CI")
parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower)
parser.add_argument("--disable-model-loading-ram-optimization", action='store_true', help="disable an optimization that reduces RAM use when loading a model")
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
@ -109,3 +112,5 @@ parser.add_argument('--subpath', type=str, help='customize the subpath for gradi
parser.add_argument('--add-stop-route', action='store_true', help='add /_stop route to stop server')
parser.add_argument('--api-server-stop', action='store_true', help='enable server stop/restart/kill via api')
parser.add_argument('--timeout-keep-alive', type=int, default=30, help='set timeout_keep_alive for uvicorn')
parser.add_argument("--disable-all-extensions", action='store_true', help="prevent all extensions from running regardless of any other settings", default=False)
parser.add_argument("--disable-extra-extensions", action='store_true', help=" prevent all extensions except built-in from running regardless of any other settings", default=False)

View File

@ -3,7 +3,7 @@ import contextlib
from functools import lru_cache
import torch
from modules import errors
from modules import errors, rng_philox
if sys.platform == "darwin":
from modules import mac_specific
@ -71,14 +71,17 @@ def enable_tf32():
torch.backends.cudnn.allow_tf32 = True
errors.run(enable_tf32, "Enabling TF32")
cpu = torch.device("cpu")
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
dtype = torch.float16
dtype_vae = torch.float16
dtype_unet = torch.float16
cpu: torch.device = torch.device("cpu")
device: torch.device = None
device_interrogate: torch.device = None
device_gfpgan: torch.device = None
device_esrgan: torch.device = None
device_codeformer: torch.device = None
dtype: torch.dtype = torch.float16
dtype_vae: torch.dtype = torch.float16
dtype_unet: torch.dtype = torch.float16
unet_needs_upcast = False
@ -90,23 +93,87 @@ def cond_cast_float(input):
return input.float() if unet_needs_upcast else input
nv_rng = None
def randn(seed, shape):
"""Generate a tensor with random numbers from a normal distribution using seed.
Uses the seed parameter to set the global torch seed; to generate more with that seed, use randn_like/randn_without_seed."""
from modules.shared import opts
torch.manual_seed(seed)
manual_seed(seed)
if opts.randn_source == "NV":
return torch.asarray(nv_rng.randn(shape), device=device)
if opts.randn_source == "CPU" or device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)
def randn_local(seed, shape):
"""Generate a tensor with random numbers from a normal distribution using seed.
Does not change the global random number generator. You can only generate the seed's first tensor using this function."""
from modules.shared import opts
if opts.randn_source == "NV":
rng = rng_philox.Generator(seed)
return torch.asarray(rng.randn(shape), device=device)
local_device = cpu if opts.randn_source == "CPU" or device.type == 'mps' else device
local_generator = torch.Generator(local_device).manual_seed(int(seed))
return torch.randn(shape, device=local_device, generator=local_generator).to(device)
def randn_like(x):
"""Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
Use either randn() or manual_seed() to initialize the generator."""
from modules.shared import opts
if opts.randn_source == "NV":
return torch.asarray(nv_rng.randn(x.shape), device=x.device, dtype=x.dtype)
if opts.randn_source == "CPU" or x.device.type == 'mps':
return torch.randn_like(x, device=cpu).to(x.device)
return torch.randn_like(x)
def randn_without_seed(shape):
"""Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
Use either randn() or manual_seed() to initialize the generator."""
from modules.shared import opts
if opts.randn_source == "NV":
return torch.asarray(nv_rng.randn(shape), device=device)
if opts.randn_source == "CPU" or device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device)
def manual_seed(seed):
"""Set up a global random number generator using the specified seed."""
from modules.shared import opts
if opts.randn_source == "NV":
global nv_rng
nv_rng = rng_philox.Generator(seed)
return
torch.manual_seed(seed)
def autocast(disable=False):
from modules import shared

View File

@ -14,7 +14,8 @@ def record_exception():
if exception_records and exception_records[-1] == e:
return
exception_records.append((e, tb))
from modules import sysinfo
exception_records.append(sysinfo.format_exception(e, tb))
if len(exception_records) > 5:
exception_records.pop(0)
@ -83,3 +84,53 @@ def run(code, task):
code()
except Exception as e:
display(task, e)
def check_versions():
from packaging import version
from modules import shared
import torch
import gradio
expected_torch_version = "2.0.0"
expected_xformers_version = "0.0.20"
expected_gradio_version = "3.39.0"
if version.parse(torch.__version__) < version.parse(expected_torch_version):
print_error_explanation(f"""
You are running torch {torch.__version__}.
The program is tested to work with torch {expected_torch_version}.
To reinstall the desired version, run with commandline flag --reinstall-torch.
Beware that this will cause a lot of large files to be downloaded, as well as
there are reports of issues with training tab on the latest version.
Use --skip-version-check commandline argument to disable this check.
""".strip())
if shared.xformers_available:
import xformers
if version.parse(xformers.__version__) < version.parse(expected_xformers_version):
print_error_explanation(f"""
You are running xformers {xformers.__version__}.
The program is tested to work with xformers {expected_xformers_version}.
To reinstall the desired version, run with commandline flag --reinstall-xformers.
Use --skip-version-check commandline argument to disable this check.
""".strip())
if gradio.__version__ != expected_gradio_version:
print_error_explanation(f"""
You are running gradio {gradio.__version__}.
The program is designed to work with gradio {expected_gradio_version}.
Using a different version of gradio is extremely likely to break the program.
Reasons why you have the mismatched gradio version can be:
- you use --skip-install flag.
- you use webui.py to start the program instead of launch.py.
- an extension installs the incompatible gradio version.
Use --skip-version-check commandline argument to disable this check.
""".strip())

View File

@ -11,9 +11,9 @@ os.makedirs(extensions_dir, exist_ok=True)
def active():
if shared.opts.disable_all_extensions == "all":
if shared.cmd_opts.disable_all_extensions or shared.opts.disable_all_extensions == "all":
return []
elif shared.opts.disable_all_extensions == "extra":
elif shared.cmd_opts.disable_extra_extensions or shared.opts.disable_all_extensions == "extra":
return [x for x in extensions if x.enabled and x.is_builtin]
else:
return [x for x in extensions if x.enabled]
@ -56,10 +56,12 @@ class Extension:
self.do_read_info_from_repo()
return self.to_dict()
try:
d = cache.cached_data_for_file('extensions-git', self.name, os.path.join(self.path, ".git"), read_from_repo)
self.from_dict(d)
self.status = 'unknown'
except FileNotFoundError:
pass
self.status = 'unknown' if self.status == '' else self.status
def do_read_info_from_repo(self):
repo = None
@ -139,8 +141,12 @@ def list_extensions():
if not os.path.isdir(extensions_dir):
return
if shared.opts.disable_all_extensions == "all":
if shared.cmd_opts.disable_all_extensions:
print("*** \"--disable-all-extensions\" arg was used, will not load any extensions ***")
elif shared.opts.disable_all_extensions == "all":
print("*** \"Disable all extensions\" option was set, will not load any extensions ***")
elif shared.cmd_opts.disable_extra_extensions:
print("*** \"--disable-extra-extensions\" arg was used, will only load built-in extensions ***")
elif shared.opts.disable_all_extensions == "extra":
print("*** \"Disable all extensions\" option was set, will only load built-in extensions ***")

View File

@ -4,16 +4,22 @@ from collections import defaultdict
from modules import errors
extra_network_registry = {}
extra_network_aliases = {}
def initialize():
extra_network_registry.clear()
extra_network_aliases.clear()
def register_extra_network(extra_network):
extra_network_registry[extra_network.name] = extra_network
def register_extra_network_alias(extra_network, alias):
extra_network_aliases[alias] = extra_network
def register_default_extra_networks():
from modules.extra_networks_hypernet import ExtraNetworkHypernet
register_extra_network(ExtraNetworkHypernet())
@ -82,20 +88,26 @@ def activate(p, extra_network_data):
"""call activate for extra networks in extra_network_data in specified order, then call
activate for all remaining registered networks with an empty argument list"""
activated = []
for extra_network_name, extra_network_args in extra_network_data.items():
extra_network = extra_network_registry.get(extra_network_name, None)
if extra_network is None:
extra_network = extra_network_aliases.get(extra_network_name, None)
if extra_network is None:
print(f"Skipping unknown extra network: {extra_network_name}")
continue
try:
extra_network.activate(p, extra_network_args)
activated.append(extra_network)
except Exception as e:
errors.display(e, f"activating extra network {extra_network_name} with arguments {extra_network_args}")
for extra_network_name, extra_network in extra_network_registry.items():
args = extra_network_data.get(extra_network_name, None)
if args is not None:
if extra_network in activated:
continue
try:

View File

@ -7,7 +7,7 @@ import json
import torch
import tqdm
from modules import shared, images, sd_models, sd_vae, sd_models_config
from modules import shared, images, sd_models, sd_vae, sd_models_config, errors
from modules.ui_common import plaintext_to_html
import gradio as gr
import safetensors.torch
@ -72,7 +72,20 @@ def to_half(tensor, enable):
return tensor
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata):
def read_metadata(primary_model_name, secondary_model_name, tertiary_model_name):
metadata = {}
for checkpoint_name in [primary_model_name, secondary_model_name, tertiary_model_name]:
checkpoint_info = sd_models.checkpoints_list.get(checkpoint_name, None)
if checkpoint_info is None:
continue
metadata.update(checkpoint_info.metadata)
return json.dumps(metadata, indent=4, ensure_ascii=False)
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata, add_merge_recipe, copy_metadata_fields, metadata_json):
shared.state.begin(job="model-merge")
def fail(message):
@ -241,11 +254,25 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
shared.state.textinfo = "Saving"
print(f"Saving to {output_modelname}...")
metadata = None
metadata = {}
if save_metadata and copy_metadata_fields:
if primary_model_info:
metadata.update(primary_model_info.metadata)
if secondary_model_info:
metadata.update(secondary_model_info.metadata)
if tertiary_model_info:
metadata.update(tertiary_model_info.metadata)
if save_metadata:
metadata = {"format": "pt"}
try:
metadata.update(json.loads(metadata_json))
except Exception as e:
errors.display(e, "readin metadata from json")
metadata["format"] = "pt"
if save_metadata and add_merge_recipe:
merge_recipe = {
"type": "webui", # indicate this model was merged with webui's built-in merger
"primary_model_hash": primary_model_info.sha256,
@ -261,7 +288,6 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
"is_inpainting": result_is_inpainting_model,
"is_instruct_pix2pix": result_is_instruct_pix2pix_model
}
metadata["sd_merge_recipe"] = json.dumps(merge_recipe)
sd_merge_models = {}
@ -281,11 +307,12 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
if tertiary_model_info:
add_model_metadata(tertiary_model_info)
metadata["sd_merge_recipe"] = json.dumps(merge_recipe)
metadata["sd_merge_models"] = json.dumps(sd_merge_models)
_, extension = os.path.splitext(output_modelname)
if extension.lower() == ".safetensors":
safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata)
safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata if len(metadata)>0 else None)
else:
torch.save(theta_0, output_modelname)

View File

@ -0,0 +1,60 @@
import gradio as gr
from modules import scripts
def add_classes_to_gradio_component(comp):
"""
this adds gradio-* to the component for css styling (ie gradio-button to gr.Button), as well as some others
"""
comp.elem_classes = [f"gradio-{comp.get_block_name()}", *(comp.elem_classes or [])]
if getattr(comp, 'multiselect', False):
comp.elem_classes.append('multiselect')
def IOComponent_init(self, *args, **kwargs):
self.webui_tooltip = kwargs.pop('tooltip', None)
if scripts.scripts_current is not None:
scripts.scripts_current.before_component(self, **kwargs)
scripts.script_callbacks.before_component_callback(self, **kwargs)
res = original_IOComponent_init(self, *args, **kwargs)
add_classes_to_gradio_component(self)
scripts.script_callbacks.after_component_callback(self, **kwargs)
if scripts.scripts_current is not None:
scripts.scripts_current.after_component(self, **kwargs)
return res
def Block_get_config(self):
config = original_Block_get_config(self)
webui_tooltip = getattr(self, 'webui_tooltip', None)
if webui_tooltip:
config["webui_tooltip"] = webui_tooltip
return config
def BlockContext_init(self, *args, **kwargs):
res = original_BlockContext_init(self, *args, **kwargs)
add_classes_to_gradio_component(self)
return res
original_IOComponent_init = gr.components.IOComponent.__init__
original_Block_get_config = gr.blocks.Block.get_config
original_BlockContext_init = gr.blocks.BlockContext.__init__
gr.components.IOComponent.__init__ = IOComponent_init
gr.blocks.Block.get_config = Block_get_config
gr.blocks.BlockContext.__init__ = BlockContext_init

View File

@ -363,7 +363,7 @@ class FilenameGenerator:
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.model_name, replace_spaces=False),
'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.name_for_extra, replace_spaces=False),
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp),

View File

@ -10,7 +10,6 @@ from modules import sd_samplers, images as imgutil
from modules.generation_parameters_copypaste import create_override_settings_dict, parse_generation_parameters
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
from modules.images import save_image
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
@ -18,9 +17,10 @@ import modules.scripts
def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None):
output_dir = output_dir.strip()
processing.fix_seed(p)
images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp")))
images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff")))
is_inpaint_batch = False
if inpaint_mask_dir:
@ -32,11 +32,6 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
save_normally = output_dir == ''
p.do_not_save_grid = True
p.do_not_save_samples = not save_normally
state.job_count = len(images) * p.n_iter
# extract "default" params to use in case getting png info fails
@ -111,21 +106,14 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
proc = modules.scripts.scripts_img2img.run(p, *args)
if proc is None:
proc = process_images(p)
for n, processed_image in enumerate(proc.images):
filename = image_path.stem
infotext = proc.infotext(p, n)
relpath = os.path.dirname(os.path.relpath(image, input_dir))
if n > 0:
filename += f"-{n}"
if not save_normally:
os.makedirs(os.path.join(output_dir, relpath), exist_ok=True)
if processed_image.mode == 'RGBA':
processed_image = processed_image.convert("RGB")
save_image(processed_image, os.path.join(output_dir, relpath), None, extension=opts.samples_format, info=infotext, forced_filename=filename, save_to_dirs=False)
if output_dir:
p.outpath_samples = output_dir
p.override_settings['save_to_dirs'] = False
if p.n_iter > 1 or p.batch_size > 1:
p.override_settings['samples_filename_pattern'] = f'{image_path.stem}-[generation_number]'
else:
p.override_settings['samples_filename_pattern'] = f'{image_path.stem}'
process_images(p)
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, request: gr.Request, *args):

View File

@ -1,4 +1,5 @@
# this scripts installs necessary requirements and launches main program in webui.py
import re
import subprocess
import os
import sys
@ -9,6 +10,7 @@ from functools import lru_cache
from modules import cmd_args, errors
from modules.paths_internal import script_path, extensions_dir
from modules.timer import startup_timer
args, _ = cmd_args.parser.parse_known_args()
@ -192,7 +194,7 @@ def run_extension_installer(extension_dir):
try:
env = os.environ.copy()
env['PYTHONPATH'] = os.path.abspath(".")
env['PYTHONPATH'] = f"{os.path.abspath('.')}{os.pathsep}{env.get('PYTHONPATH', '')}"
print(run(f'"{python}" "{path_installer}"', errdesc=f"Error running install.py for extension {extension_dir}", custom_env=env))
except Exception as e:
@ -222,8 +224,51 @@ def run_extensions_installers(settings_file):
if not os.path.isdir(extensions_dir):
return
with startup_timer.subcategory("run extensions installers"):
for dirname_extension in list_extensions(settings_file):
run_extension_installer(os.path.join(extensions_dir, dirname_extension))
path = os.path.join(extensions_dir, dirname_extension)
if os.path.isdir(path):
run_extension_installer(path)
startup_timer.record(dirname_extension)
re_requirement = re.compile(r"\s*([-_a-zA-Z0-9]+)\s*(?:==\s*([-+_.a-zA-Z0-9]+))?\s*")
def requirements_met(requirements_file):
"""
Does a simple parse of a requirements.txt file to determine if all rerqirements in it
are already installed. Returns True if so, False if not installed or parsing fails.
"""
import importlib.metadata
import packaging.version
with open(requirements_file, "r", encoding="utf8") as file:
for line in file:
if line.strip() == "":
continue
m = re.match(re_requirement, line)
if m is None:
return False
package = m.group(1).strip()
version_required = (m.group(2) or "").strip()
if version_required == "":
continue
try:
version_installed = importlib.metadata.version(package)
except Exception:
return False
if packaging.version.parse(version_required) != packaging.version.parse(version_installed):
return False
return True
def prepare_environment():
@ -251,15 +296,18 @@ def prepare_environment():
try:
# the existance of this file is a signal to webui.sh/bat that webui needs to be restarted when it stops execution
os.remove(os.path.join(script_path, "tmp", "restart"))
os.environ.setdefault('SD_WEBUI_RESTARTING ', '1')
os.environ.setdefault('SD_WEBUI_RESTARTING', '1')
except OSError:
pass
if not args.skip_python_version_check:
check_python_version()
startup_timer.record("checks")
commit = commit_hash()
tag = git_tag()
startup_timer.record("git version info")
print(f"Python {sys.version}")
print(f"Version: {tag}")
@ -267,21 +315,27 @@ def prepare_environment():
if args.reinstall_torch or not is_installed("torch") or not is_installed("torchvision"):
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch", live=True)
startup_timer.record("install torch")
if not args.skip_torch_cuda_test and not check_run_python("import torch; assert torch.cuda.is_available()"):
raise RuntimeError(
'Torch is not able to use GPU; '
'add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'
)
startup_timer.record("torch GPU test")
if not is_installed("gfpgan"):
run_pip(f"install {gfpgan_package}", "gfpgan")
startup_timer.record("install gfpgan")
if not is_installed("clip"):
run_pip(f"install {clip_package}", "clip")
startup_timer.record("install clip")
if not is_installed("open_clip"):
run_pip(f"install {openclip_package}", "open_clip")
startup_timer.record("install open_clip")
if (not is_installed("xformers") or args.reinstall_xformers) and args.xformers:
if platform.system() == "Windows":
@ -295,8 +349,11 @@ def prepare_environment():
elif platform.system() == "Linux":
run_pip(f"install -U -I --no-deps {xformers_package}", "xformers")
startup_timer.record("install xformers")
if not is_installed("ngrok") and args.ngrok:
run_pip("install ngrok", "ngrok")
startup_timer.record("install ngrok")
os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True)
@ -306,20 +363,28 @@ def prepare_environment():
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)
startup_timer.record("clone repositores")
if not is_installed("lpips"):
run_pip(f"install -r \"{os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}\"", "requirements for CodeFormer")
startup_timer.record("install CodeFormer requirements")
if not os.path.isfile(requirements_file):
requirements_file = os.path.join(script_path, requirements_file)
if not requirements_met(requirements_file):
run_pip(f"install -r \"{requirements_file}\"", "requirements")
startup_timer.record("install requirements")
run_extensions_installers(settings_file=args.ui_settings_file)
if args.update_check:
version_check(commit)
startup_timer.record("check version")
if args.update_all_extensions:
git_pull_recursive(extensions_dir)
startup_timer.record("update extensions")
if "--exit" in sys.argv:
print("Exiting because of --exit argument")

View File

@ -90,8 +90,12 @@ def setup_for_low_vram(sd_model, use_medvram):
sd_model.conditioner.register_forward_pre_hook(send_me_to_gpu)
elif is_sd2:
sd_model.cond_stage_model.model.register_forward_pre_hook(send_me_to_gpu)
sd_model.cond_stage_model.model.token_embedding.register_forward_pre_hook(send_me_to_gpu)
parents[sd_model.cond_stage_model.model] = sd_model.cond_stage_model
parents[sd_model.cond_stage_model.model.token_embedding] = sd_model.cond_stage_model
else:
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
sd_model.first_stage_model.encode = first_stage_model_encode_wrap
@ -101,9 +105,6 @@ def setup_for_low_vram(sd_model, use_medvram):
if sd_model.embedder:
sd_model.embedder.register_forward_pre_hook(send_me_to_gpu)
if hasattr(sd_model, 'cond_stage_model'):
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
if use_medvram:
sd_model.model.register_forward_pre_hook(send_me_to_gpu)
else:

View File

@ -14,7 +14,7 @@ from skimage import exposure
from typing import Any, Dict, List
import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors
from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
@ -492,7 +492,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
subnoise = None
if subseeds is not None:
if subseeds is not None and subseed_strength != 0:
subseed = 0 if i >= len(subseeds) else subseeds[i]
subnoise = devices.randn(subseed, noise_shape)
@ -524,7 +524,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
cnt = p.sampler.number_of_needed_noises(p)
if eta_noise_seed_delta > 0:
torch.manual_seed(seed + eta_noise_seed_delta)
devices.manual_seed(seed + eta_noise_seed_delta)
for j in range(cnt):
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
@ -538,6 +538,40 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
return x
def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
samples = []
for i in range(batch.shape[0]):
sample = decode_first_stage(model, batch[i:i + 1])[0]
if check_for_nans:
try:
devices.test_for_nans(sample, "vae")
except devices.NansException as e:
if devices.dtype_vae == torch.float32 or not shared.opts.auto_vae_precision:
raise e
errors.print_error_explanation(
"A tensor with all NaNs was produced in VAE.\n"
"Web UI will now convert VAE into 32-bit float and retry.\n"
"To disable this behavior, disable the 'Automaticlly revert VAE to 32-bit floats' setting.\n"
"To always start with 32-bit VAE, use --no-half-vae commandline flag."
)
devices.dtype_vae = torch.float32
model.first_stage_model.to(devices.dtype_vae)
batch = batch.to(devices.dtype_vae)
sample = decode_first_stage(model, batch[i:i + 1])[0]
if target_device is not None:
sample = sample.to(target_device)
samples.append(sample)
return samples
def decode_first_stage(model, x):
x = model.decode_first_stage(x.to(devices.dtype_vae))
@ -566,9 +600,13 @@ def program_version():
return res
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False):
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
if index is None:
index = position_in_batch + iteration * p.batch_size
if all_negative_prompts is None:
all_negative_prompts = p.all_negative_prompts
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
enable_hr = getattr(p, 'enable_hr', False)
token_merging_ratio = p.get_token_merging_ratio()
@ -583,12 +621,12 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Sampler": p.sampler_name,
"CFG scale": p.cfg_scale,
"Image CFG scale": getattr(p, 'image_cfg_scale', None),
"Seed": all_seeds[index],
"Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
"Size": f"{p.width}x{p.height}",
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
"Model": (None if not opts.add_model_name_to_info else shared.sd_model.sd_checkpoint_info.name_for_extra),
"Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None),
@ -598,7 +636,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
"Init image hash": getattr(p, 'init_img_hash', None),
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
"RNG": opts.randn_source if opts.randn_source != "GPU" and opts.randn_source != "NV" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
**p.extra_generation_params,
"Version": program_version() if opts.add_version_to_infotext else None,
@ -608,7 +646,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
prompt_text = p.prompt if use_main_prompt else all_prompts[index]
negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
negative_prompt_text = f"\nNegative prompt: {all_negative_prompts[index]}" if all_negative_prompts[index] else ""
return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
@ -682,9 +720,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
else:
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
def infotext(iteration=0, position_in_batch=0, use_main_prompt=False):
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch, use_main_prompt)
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
@ -758,10 +793,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
for x in x_samples_ddim:
devices.test_for_nans(x, "vae")
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
x_samples_ddim = torch.stack(x_samples_ddim).float()
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
@ -775,6 +807,16 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.scripts is not None:
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim))
p.scripts.postprocess_batch_list(p, batch_params, batch_number=n)
x_samples_ddim = batch_params.images
def infotext(index=0, use_main_prompt=False):
return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts)
for i, x_sample in enumerate(x_samples_ddim):
p.batch_index = i
@ -783,7 +825,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.restore_faces:
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration")
devices.torch_gc()
@ -800,15 +842,15 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.color_corrections is not None and i < len(p.color_corrections):
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
image = apply_color_correction(p.color_corrections[i], image)
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
if opts.samples_save and not p.do_not_save_samples:
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p)
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
text = infotext(n, i)
text = infotext(i)
infotexts.append(text)
if opts.enable_pnginfo:
image.info["parameters"] = text
@ -819,10 +861,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
if opts.save_mask:
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
if opts.save_mask_composite:
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
if opts.return_mask:
output_images.append(image_mask)
@ -863,7 +905,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p,
images_list=output_images,
seed=p.all_seeds[0],
info=infotext(),
info=infotexts[0],
comments="".join(f"{comment}\n" for comment in comments),
subseed=p.all_subseeds[0],
index_of_first_image=index_of_first_image,
@ -1029,7 +1071,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
image = sd_samplers.sample_to_image(image, index, approximation=0)
info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix")
if latent_scale_mode is not None:
for i in range(samples.shape[0]):
@ -1306,6 +1348,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
image = image.to(shared.device, dtype=devices.dtype_vae)
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
devices.torch_gc()
if self.resize_mode == 3:
self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")

View File

@ -19,7 +19,7 @@ prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)*
!emphasized: "(" prompt ")"
| "(" prompt ":" prompt ")"
| "[" prompt "]"
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]"
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER [WHITESPACE] "]"
alternate: "[" prompt ("|" prompt)+ "]"
WHITESPACE: /\s+/
plain: /([^\\\[\]():|]|\\.)+/
@ -60,11 +60,11 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
class CollectSteps(lark.Visitor):
def scheduled(self, tree):
tree.children[-1] = float(tree.children[-1])
if tree.children[-1] < 1:
tree.children[-1] *= steps
tree.children[-1] = min(steps, int(tree.children[-1]))
res.append(tree.children[-1])
tree.children[-2] = float(tree.children[-2])
if tree.children[-2] < 1:
tree.children[-2] *= steps
tree.children[-2] = min(steps, int(tree.children[-2]))
res.append(tree.children[-2])
def alternate(self, tree):
res.extend(range(1, steps+1))
@ -75,7 +75,7 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
def at_step(step, tree):
class AtStep(lark.Transformer):
def scheduled(self, args):
before, after, _, when = args
before, after, _, when, _ = args
yield before or () if step <= when else after
def alternate(self, args):
yield next(args[(step - 1)%len(args)])
@ -178,7 +178,7 @@ def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps):
re_AND = re.compile(r"\bAND\b")
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
re_weight = re.compile(r"^((?:\s|.)*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
def get_multicond_prompt_list(prompts: SdConditioning | list[str]):
@ -333,7 +333,7 @@ re_attention = re.compile(r"""
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
:\s*([+-]?[.\d]+)\s*\)|
\)|
]|
[^\\()\[\]:]+|

102
modules/rng_philox.py Normal file
View File

@ -0,0 +1,102 @@
"""RNG imitiating torch cuda randn on CPU. You are welcome.
Usage:
```
g = Generator(seed=0)
print(g.randn(shape=(3, 4)))
```
Expected output:
```
[[-0.92466259 -0.42534415 -2.6438457 0.14518388]
[-0.12086647 -0.57972564 -0.62285122 -0.32838709]
[-1.07454231 -0.36314407 -1.67105067 2.26550497]]
```
"""
import numpy as np
philox_m = [0xD2511F53, 0xCD9E8D57]
philox_w = [0x9E3779B9, 0xBB67AE85]
two_pow32_inv = np.array([2.3283064e-10], dtype=np.float32)
two_pow32_inv_2pi = np.array([2.3283064e-10 * 6.2831855], dtype=np.float32)
def uint32(x):
"""Converts (N,) np.uint64 array into (2, N) np.unit32 array."""
return x.view(np.uint32).reshape(-1, 2).transpose(1, 0)
def philox4_round(counter, key):
"""A single round of the Philox 4x32 random number generator."""
v1 = uint32(counter[0].astype(np.uint64) * philox_m[0])
v2 = uint32(counter[2].astype(np.uint64) * philox_m[1])
counter[0] = v2[1] ^ counter[1] ^ key[0]
counter[1] = v2[0]
counter[2] = v1[1] ^ counter[3] ^ key[1]
counter[3] = v1[0]
def philox4_32(counter, key, rounds=10):
"""Generates 32-bit random numbers using the Philox 4x32 random number generator.
Parameters:
counter (numpy.ndarray): A 4xN array of 32-bit integers representing the counter values (offset into generation).
key (numpy.ndarray): A 2xN array of 32-bit integers representing the key values (seed).
rounds (int): The number of rounds to perform.
Returns:
numpy.ndarray: A 4xN array of 32-bit integers containing the generated random numbers.
"""
for _ in range(rounds - 1):
philox4_round(counter, key)
key[0] = key[0] + philox_w[0]
key[1] = key[1] + philox_w[1]
philox4_round(counter, key)
return counter
def box_muller(x, y):
"""Returns just the first out of two numbers generated by BoxMuller transform algorithm."""
u = x * two_pow32_inv + two_pow32_inv / 2
v = y * two_pow32_inv_2pi + two_pow32_inv_2pi / 2
s = np.sqrt(-2.0 * np.log(u))
r1 = s * np.sin(v)
return r1.astype(np.float32)
class Generator:
"""RNG that produces same outputs as torch.randn(..., device='cuda') on CPU"""
def __init__(self, seed):
self.seed = seed
self.offset = 0
def randn(self, shape):
"""Generate a sequence of n standard normal random variables using the Philox 4x32 random number generator and the Box-Muller transform."""
n = 1
for x in shape:
n *= x
counter = np.zeros((4, n), dtype=np.uint32)
counter[0] = self.offset
counter[2] = np.arange(n, dtype=np.uint32) # up to 2^32 numbers can be generated - if you want more you'd need to spill into counter[3]
self.offset += 1
key = np.empty(n, dtype=np.uint64)
key.fill(self.seed)
key = uint32(key)
g = philox4_32(counter, key)
return box_muller(g[0], g[1]).reshape(shape) # discard g[2] and g[3]

View File

@ -12,11 +12,12 @@ def load_module(path):
return module
def preload_extensions(extensions_dir, parser):
def preload_extensions(extensions_dir, parser, extension_list=None):
if not os.path.isdir(extensions_dir):
return
for dirname in sorted(os.listdir(extensions_dir)):
extensions = extension_list if extension_list is not None else os.listdir(extensions_dir)
for dirname in sorted(extensions):
preload_script = os.path.join(extensions_dir, dirname, "preload.py")
if not os.path.isfile(preload_script):
continue

View File

@ -16,6 +16,11 @@ class PostprocessImageArgs:
self.image = image
class PostprocessBatchListArgs:
def __init__(self, images):
self.images = images
class Script:
name = None
"""script's internal name derived from title"""
@ -119,7 +124,7 @@ class Script:
def after_extra_networks_activate(self, p, *args, **kwargs):
"""
Calledafter extra networks activation, before conds calculation
Called after extra networks activation, before conds calculation
allow modification of the network after extra networks activation been applied
won't be call if p.disable_extra_networks
@ -156,6 +161,25 @@ class Script:
pass
def postprocess_batch_list(self, p, pp: PostprocessBatchListArgs, *args, **kwargs):
"""
Same as postprocess_batch(), but receives batch images as a list of 3D tensors instead of a 4D tensor.
This is useful when you want to update the entire batch instead of individual images.
You can modify the postprocessing object (pp) to update the images in the batch, remove images, add images, etc.
If the number of images is different from the batch size when returning,
then the script has the responsibility to also update the following attributes in the processing object (p):
- p.prompts
- p.negative_prompts
- p.seeds
- p.subseeds
**kwargs will have same items as process_batch, and also:
- batch_number - index of current batch, from 0 to number of batches-1
"""
pass
def postprocess_image(self, p, pp: PostprocessImageArgs, *args):
"""
Called for every image after it has been generated.
@ -536,6 +560,14 @@ class ScriptRunner:
except Exception:
errors.report(f"Error running postprocess_batch: {script.filename}", exc_info=True)
def postprocess_batch_list(self, p, pp: PostprocessBatchListArgs, **kwargs):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.postprocess_batch_list(p, pp, *script_args, **kwargs)
except Exception:
errors.report(f"Error running postprocess_batch_list: {script.filename}", exc_info=True)
def postprocess_image(self, p, pp: PostprocessImageArgs):
for script in self.alwayson_scripts:
try:
@ -599,49 +631,3 @@ def reload_script_body_only():
reload_scripts = load_scripts # compatibility alias
def add_classes_to_gradio_component(comp):
"""
this adds gradio-* to the component for css styling (ie gradio-button to gr.Button), as well as some others
"""
comp.elem_classes = [f"gradio-{comp.get_block_name()}", *(comp.elem_classes or [])]
if getattr(comp, 'multiselect', False):
comp.elem_classes.append('multiselect')
def IOComponent_init(self, *args, **kwargs):
if scripts_current is not None:
scripts_current.before_component(self, **kwargs)
script_callbacks.before_component_callback(self, **kwargs)
res = original_IOComponent_init(self, *args, **kwargs)
add_classes_to_gradio_component(self)
script_callbacks.after_component_callback(self, **kwargs)
if scripts_current is not None:
scripts_current.after_component(self, **kwargs)
return res
original_IOComponent_init = gr.components.IOComponent.__init__
gr.components.IOComponent.__init__ = IOComponent_init
def BlockContext_init(self, *args, **kwargs):
res = original_BlockContext_init(self, *args, **kwargs)
add_classes_to_gradio_component(self)
return res
original_BlockContext_init = gr.blocks.BlockContext.__init__
gr.blocks.BlockContext.__init__ = BlockContext_init

View File

@ -3,8 +3,31 @@ import open_clip
import torch
import transformers.utils.hub
from modules import shared
class DisableInitialization:
class ReplaceHelper:
def __init__(self):
self.replaced = []
def replace(self, obj, field, func):
original = getattr(obj, field, None)
if original is None:
return None
self.replaced.append((obj, field, original))
setattr(obj, field, func)
return original
def restore(self):
for obj, field, original in self.replaced:
setattr(obj, field, original)
self.replaced.clear()
class DisableInitialization(ReplaceHelper):
"""
When an object of this class enters a `with` block, it starts:
- preventing torch's layer initialization functions from working
@ -21,7 +44,7 @@ class DisableInitialization:
"""
def __init__(self, disable_clip=True):
self.replaced = []
super().__init__()
self.disable_clip = disable_clip
def replace(self, obj, field, func):
@ -86,8 +109,81 @@ class DisableInitialization:
self.transformers_utils_hub_get_from_cache = self.replace(transformers.utils.hub, 'get_from_cache', transformers_utils_hub_get_from_cache)
def __exit__(self, exc_type, exc_val, exc_tb):
for obj, field, original in self.replaced:
setattr(obj, field, original)
self.restore()
self.replaced.clear()
class InitializeOnMeta(ReplaceHelper):
"""
Context manager that causes all parameters for linear/conv2d/mha layers to be allocated on meta device,
which results in those parameters having no values and taking no memory. model.to() will be broken and
will need to be repaired by using LoadStateDictOnMeta below when loading params from state dict.
Usage:
```
with sd_disable_initialization.InitializeOnMeta():
sd_model = instantiate_from_config(sd_config.model)
```
"""
def __enter__(self):
if shared.cmd_opts.disable_model_loading_ram_optimization:
return
def set_device(x):
x["device"] = "meta"
return x
linear_init = self.replace(torch.nn.Linear, '__init__', lambda *args, **kwargs: linear_init(*args, **set_device(kwargs)))
conv2d_init = self.replace(torch.nn.Conv2d, '__init__', lambda *args, **kwargs: conv2d_init(*args, **set_device(kwargs)))
mha_init = self.replace(torch.nn.MultiheadAttention, '__init__', lambda *args, **kwargs: mha_init(*args, **set_device(kwargs)))
self.replace(torch.nn.Module, 'to', lambda *args, **kwargs: None)
def __exit__(self, exc_type, exc_val, exc_tb):
self.restore()
class LoadStateDictOnMeta(ReplaceHelper):
"""
Context manager that allows to read parameters from state_dict into a model that has some of its parameters in the meta device.
As those parameters are read from state_dict, they will be deleted from it, so by the end state_dict will be mostly empty, to save memory.
Meant to be used together with InitializeOnMeta above.
Usage:
```
with sd_disable_initialization.LoadStateDictOnMeta(state_dict):
model.load_state_dict(state_dict, strict=False)
```
"""
def __init__(self, state_dict, device):
super().__init__()
self.state_dict = state_dict
self.device = device
def __enter__(self):
if shared.cmd_opts.disable_model_loading_ram_optimization:
return
sd = self.state_dict
device = self.device
def load_from_state_dict(original, self, state_dict, prefix, *args, **kwargs):
params = [(name, param) for name, param in self._parameters.items() if param is not None and param.is_meta]
for name, param in params:
if param.is_meta:
self._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device), requires_grad=param.requires_grad)
original(self, state_dict, prefix, *args, **kwargs)
for name, _ in params:
key = prefix + name
if key in sd:
del sd[key]
linear_load_from_state_dict = self.replace(torch.nn.Linear, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(linear_load_from_state_dict, *args, **kwargs))
conv2d_load_from_state_dict = self.replace(torch.nn.Conv2d, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(conv2d_load_from_state_dict, *args, **kwargs))
mha_load_from_state_dict = self.replace(torch.nn.MultiheadAttention, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(mha_load_from_state_dict, *args, **kwargs))
def __exit__(self, exc_type, exc_val, exc_tb):
self.restore()

View File

@ -197,7 +197,7 @@ class StableDiffusionModelHijack:
conditioner.embedders[i] = sd_hijack_clip.FrozenCLIPEmbedderForSDXLWithCustomWords(embedder, self)
text_cond_models.append(conditioner.embedders[i])
if typename == 'FrozenOpenCLIPEmbedder2':
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self)
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self, textual_inversion_key='clip_g')
conditioner.embedders[i] = sd_hijack_open_clip.FrozenOpenCLIPEmbedder2WithCustomWords(embedder, self)
text_cond_models.append(conditioner.embedders[i])
@ -243,7 +243,7 @@ class StableDiffusionModelHijack:
ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = sd_unet.UNetModel_forward
def undo_hijack(self, m):
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
if type(m.cond_stage_model) == sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords:
m.cond_stage_model = m.cond_stage_model.wrapped
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
@ -292,10 +292,11 @@ class StableDiffusionModelHijack:
class EmbeddingsWithFixes(torch.nn.Module):
def __init__(self, wrapped, embeddings):
def __init__(self, wrapped, embeddings, textual_inversion_key='clip_l'):
super().__init__()
self.wrapped = wrapped
self.embeddings = embeddings
self.textual_inversion_key = textual_inversion_key
def forward(self, input_ids):
batch_fixes = self.embeddings.fixes
@ -309,7 +310,8 @@ class EmbeddingsWithFixes(torch.nn.Module):
vecs = []
for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes:
emb = devices.cond_cast_unet(embedding.vec)
vec = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec
emb = devices.cond_cast_unet(vec)
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])

View File

@ -161,7 +161,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
position += 1
continue
emb_len = int(embedding.vec.shape[0])
emb_len = int(embedding.vectors)
if len(chunk.tokens) + emb_len > self.chunk_length:
next_chunk()
@ -245,6 +245,8 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
hashes.append(f"{name}: {shorthash}")
if hashes:
if self.hijack.extra_generation_params.get("TI hashes"):
hashes.append(self.hijack.extra_generation_params.get("TI hashes"))
self.hijack.extra_generation_params["TI hashes"] = ", ".join(hashes)
if getattr(self.wrapped, 'return_pooled', False):
@ -270,12 +272,17 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
z = self.encode_with_transformers(tokens)
pooled = getattr(z, 'pooled', None)
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
batch_multipliers = torch.asarray(batch_multipliers).to(devices.device)
original_mean = z.mean()
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
new_mean = z.mean()
z *= (original_mean / new_mean)
z = z * (original_mean / new_mean)
if pooled is not None:
z.pooled = pooled
return z

View File

@ -32,7 +32,7 @@ class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWit
def encode_embedding_init_text(self, init_text, nvpt):
ids = tokenizer.encode(init_text)
ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
embedded = self.wrapped.model.token_embedding.wrapped(ids.to(self.wrapped.model.token_embedding.wrapped.weight.device)).squeeze(0)
embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0)
return embedded

View File

@ -256,9 +256,9 @@ def split_cross_attention_forward(self, x, context=None, mask=None, **kwargs):
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
slice_size = q.shape[1] // steps
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
end = min(i + slice_size, q.shape[1])
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
s2 = s1.softmax(dim=-1, dtype=q.dtype)

View File

@ -39,7 +39,10 @@ def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
if isinstance(cond, dict):
for y in cond.keys():
if isinstance(cond[y], list):
cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
else:
cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
with devices.autocast():
return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
@ -77,3 +80,6 @@ first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devi
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model, unet_needs_upcast)
CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)

View File

@ -14,7 +14,7 @@ import ldm.modules.midas as midas
from ldm.util import instantiate_from_config
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache
from modules.sd_hijack_inpainting import do_inpainting_hijack
from modules.timer import Timer
import tomesd
@ -33,6 +33,8 @@ class CheckpointInfo:
self.filename = filename
abspath = os.path.abspath(filename)
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
elif abspath.startswith(model_path):
@ -43,6 +45,19 @@ class CheckpointInfo:
if name.startswith("\\") or name.startswith("/"):
name = name[1:]
def read_metadata():
metadata = read_metadata_from_safetensors(filename)
self.modelspec_thumbnail = metadata.pop('modelspec.thumbnail', None)
return metadata
self.metadata = {}
if self.is_safetensors:
try:
self.metadata = cache.cached_data_for_file('safetensors-metadata', "checkpoint/" + name, filename, read_metadata)
except Exception as e:
errors.display(e, f"reading metadata for {filename}")
self.name = name
self.name_for_extra = os.path.splitext(os.path.basename(filename))[0]
self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
@ -53,16 +68,7 @@ class CheckpointInfo:
self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]'
self.ids = [self.hash, self.model_name, self.title, name, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else [])
self.metadata = {}
_, ext = os.path.splitext(self.filename)
if ext.lower() == ".safetensors":
try:
self.metadata = read_metadata_from_safetensors(filename)
except Exception as e:
errors.display(e, f"reading checkpoint metadata: {filename}")
self.ids = [self.hash, self.model_name, self.title, name, self.name_for_extra, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else [])
def register(self):
checkpoints_list[self.title] = self
@ -79,7 +85,7 @@ class CheckpointInfo:
if self.shorthash not in self.ids:
self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]']
checkpoints_list.pop(self.title)
checkpoints_list.pop(self.title, None)
self.title = f'{self.name} [{self.shorthash}]'
self.register()
@ -290,6 +296,9 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
model.is_sdxl = hasattr(model, 'conditioner')
model.is_sd2 = not model.is_sdxl and hasattr(model.cond_stage_model, 'model')
model.is_sd1 = not model.is_sdxl and not model.is_sd2
if model.is_sdxl:
sd_models_xl.extend_sdxl(model)
@ -323,7 +332,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
timer.record("apply half()")
devices.dtype_unet = model.model.diffusion_model.dtype
devices.dtype_unet = torch.float16 if model.is_sdxl and not shared.cmd_opts.no_half else model.model.diffusion_model.dtype
devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
model.first_stage_model.to(devices.dtype_vae)
@ -457,7 +466,6 @@ def get_empty_cond(sd_model):
return sd_model.cond_stage_model([""])
def load_model(checkpoint_info=None, already_loaded_state_dict=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
@ -491,19 +499,24 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
sd_model = None
try:
with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd):
with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd or shared.cmd_opts.do_not_download_clip):
with sd_disable_initialization.InitializeOnMeta():
sd_model = instantiate_from_config(sd_config.model)
except Exception:
pass
except Exception as e:
errors.display(e, "creating model quickly", full_traceback=True)
if sd_model is None:
print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
with sd_disable_initialization.InitializeOnMeta():
sd_model = instantiate_from_config(sd_config.model)
sd_model.used_config = checkpoint_config
timer.record("create model")
with sd_disable_initialization.LoadStateDictOnMeta(state_dict, devices.cpu):
load_model_weights(sd_model, checkpoint_info, state_dict, timer)
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:

View File

@ -12,8 +12,8 @@ def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch:
for embedder in self.conditioner.embedders:
embedder.ucg_rate = 0.0
width = getattr(self, 'target_width', 1024)
height = getattr(self, 'target_height', 1024)
width = getattr(batch, 'width', 1024)
height = getattr(batch, 'height', 1024)
is_negative_prompt = getattr(batch, 'is_negative_prompt', False)
aesthetic_score = shared.opts.sdxl_refiner_low_aesthetic_score if is_negative_prompt else shared.opts.sdxl_refiner_high_aesthetic_score
@ -56,6 +56,14 @@ def encode_embedding_init_text(self: sgm.modules.GeneralConditioner, init_text,
return torch.cat(res, dim=1)
def tokenize(self: sgm.modules.GeneralConditioner, texts):
for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'tokenize')]:
return embedder.tokenize(texts)
raise AssertionError('no tokenizer available')
def process_texts(self, texts):
for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'process_texts')]:
return embedder.process_texts(texts)
@ -68,6 +76,7 @@ def get_target_prompt_token_count(self, token_count):
# those additions to GeneralConditioner make it possible to use it as model.cond_stage_model from SD1.5 in exist
sgm.modules.GeneralConditioner.encode_embedding_init_text = encode_embedding_init_text
sgm.modules.GeneralConditioner.tokenize = tokenize
sgm.modules.GeneralConditioner.process_texts = process_texts
sgm.modules.GeneralConditioner.get_target_prompt_token_count = get_target_prompt_token_count

View File

@ -2,10 +2,8 @@ from collections import namedtuple
import numpy as np
import torch
from PIL import Image
from modules import devices, processing, images, sd_vae_approx, sd_samplers, sd_vae_taesd
from modules import devices, processing, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared
from modules.shared import opts, state
import modules.shared as shared
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
@ -85,11 +83,13 @@ class InterruptedException(BaseException):
pass
if opts.randn_source == "CPU":
def replace_torchsde_browinan():
import torchsde._brownian.brownian_interval
def torchsde_randn(size, dtype, device, seed):
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
return devices.randn_local(seed, size).to(device=device, dtype=dtype)
torchsde._brownian.brownian_interval._randn = torchsde_randn
replace_torchsde_browinan()

View File

@ -0,0 +1,74 @@
import torch
import tqdm
import k_diffusion.sampling
@torch.no_grad()
def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None):
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}
If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list
"""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
step_id = 0
from k_diffusion.sampling import to_d, get_sigmas_karras
def heun_step(x, old_sigma, new_sigma, second_order=True):
nonlocal step_id
denoised = model(x, old_sigma * s_in, **extra_args)
d = to_d(x, old_sigma, denoised)
if callback is not None:
callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
dt = new_sigma - old_sigma
if new_sigma == 0 or not second_order:
# Euler method
x = x + d * dt
else:
# Heun's method
x_2 = x + d * dt
denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
d_2 = to_d(x_2, new_sigma, denoised_2)
d_prime = (d + d_2) / 2
x = x + d_prime * dt
step_id += 1
return x
steps = sigmas.shape[0] - 1
if restart_list is None:
if steps >= 20:
restart_steps = 9
restart_times = 1
if steps >= 36:
restart_steps = steps // 4
restart_times = 2
sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
else:
restart_list = {}
restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()}
step_list = []
for i in range(len(sigmas) - 1):
step_list.append((sigmas[i], sigmas[i + 1]))
if i + 1 in restart_list:
restart_steps, restart_times, restart_max = restart_list[i + 1]
min_idx = i + 1
max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
if max_idx < min_idx:
sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1]
while restart_times > 0:
restart_times -= 1
step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])])
last_sigma = None
for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable):
if last_sigma is None:
last_sigma = old_sigma
elif last_sigma < old_sigma:
x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5
x = heun_step(x, old_sigma, new_sigma)
last_sigma = new_sigma
return x

View File

@ -2,7 +2,7 @@ from collections import deque
import torch
import inspect
import k_diffusion.sampling
from modules import prompt_parser, devices, sd_samplers_common
from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_extra
from modules.shared import opts, state
import modules.shared as shared
@ -30,12 +30,14 @@ samplers_k_diffusion = [
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
('Restart', sd_samplers_extra.restart_sampler, ['restart'], {'scheduler': 'karras'}),
]
samplers_data_k_diffusion = [
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
for label, funcname, aliases, options in samplers_k_diffusion
if hasattr(k_diffusion.sampling, funcname)
if callable(funcname) or hasattr(k_diffusion.sampling, funcname)
]
sampler_extra_params = {
@ -258,10 +260,7 @@ class TorchHijack:
if noise.shape == x.shape:
return noise
if opts.randn_source == "CPU" or x.device.type == 'mps':
return torch.randn_like(x, device=devices.cpu).to(x.device)
else:
return torch.randn_like(x)
return devices.randn_like(x)
class KDiffusionSampler:
@ -270,7 +269,7 @@ class KDiffusionSampler:
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
self.funcname = funcname
self.func = getattr(k_diffusion.sampling, self.funcname)
self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None

View File

@ -11,6 +11,7 @@ import gradio as gr
import torch
import tqdm
import launch
import modules.interrogate
import modules.memmon
import modules.styles
@ -26,7 +27,7 @@ demo = None
parser = cmd_args.parser
script_loading.preload_extensions(extensions_dir, parser)
script_loading.preload_extensions(extensions_dir, parser, extension_list=launch.list_extensions(launch.args.ui_settings_file))
script_loading.preload_extensions(extensions_builtin_dir, parser)
if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
@ -384,7 +385,8 @@ options_templates.update(options_section(('face-restoration', "Face restoration"
}))
options_templates.update(options_section(('system', "System"), {
"show_warnings": OptionInfo(False, "Show warnings in console."),
"show_warnings": OptionInfo(False, "Show warnings in console.").needs_restart(),
"show_gradio_deprecation_warnings": OptionInfo(True, "Show gradio deprecation warnings in console.").needs_restart(),
"memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"),
"samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
@ -426,7 +428,8 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors"),
"auto_vae_precision": OptionInfo(True, "Automaticlly revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"),
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
}))
options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {

View File

@ -106,10 +106,7 @@ class StyleDatabase:
if os.path.exists(path):
shutil.copy(path, f"{path}.bak")
fd = os.open(path, os.O_RDWR | os.O_CREAT)
with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file:
# _fields is actually part of the public API: typing.NamedTuple is a replacement for collections.NamedTuple,
# and collections.NamedTuple has explicit documentation for accessing _fields. Same goes for _asdict()
with open(path, "w", encoding="utf-8-sig", newline='') as file:
writer = csv.DictWriter(file, fieldnames=PromptStyle._fields)
writer.writeheader()
writer.writerows(style._asdict() for k, style in self.styles.items())

View File

@ -109,11 +109,15 @@ def format_traceback(tb):
return [[f"{x.filename}, line {x.lineno}, {x.name}", x.line] for x in traceback.extract_tb(tb)]
def format_exception(e, tb):
return {"exception": str(e), "traceback": format_traceback(tb)}
def get_exceptions():
try:
from modules import errors
return [{"exception": str(e), "traceback": format_traceback(tb)} for e, tb in reversed(errors.exception_records)]
return list(reversed(errors.exception_records))
except Exception as e:
return str(e)

View File

@ -181,29 +181,38 @@ class EmbeddingDatabase:
else:
return
# textual inversion embeddings
if 'string_to_param' in data:
param_dict = data['string_to_param']
param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
emb = next(iter(param_dict.items()))[1]
# diffuser concepts
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
vec = emb.detach().to(devices.device, dtype=torch.float32)
shape = vec.shape[-1]
vectors = vec.shape[0]
elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding
vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()}
shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1]
vectors = data['clip_g'].shape[0]
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
emb = next(iter(data.values()))
if len(emb.shape) == 1:
emb = emb.unsqueeze(0)
vec = emb.detach().to(devices.device, dtype=torch.float32)
shape = vec.shape[-1]
vectors = vec.shape[0]
else:
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
vec = emb.detach().to(devices.device, dtype=torch.float32)
embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
embedding.vectors = vec.shape[0]
embedding.shape = vec.shape[-1]
embedding.vectors = vectors
embedding.shape = shape
embedding.filename = path
embedding.set_hash(hashes.sha256(embedding.filename, "textual_inversion/" + name) or '')

View File

@ -1,4 +1,5 @@
import time
import argparse
class TimerSubcategory:
@ -11,20 +12,27 @@ class TimerSubcategory:
def __enter__(self):
self.start = time.time()
self.timer.base_category = self.original_base_category + self.category + "/"
self.timer.subcategory_level += 1
if self.timer.print_log:
print(f"{' ' * self.timer.subcategory_level}{self.category}:")
def __exit__(self, exc_type, exc_val, exc_tb):
elapsed_for_subcategroy = time.time() - self.start
self.timer.base_category = self.original_base_category
self.timer.add_time_to_record(self.original_base_category + self.category, elapsed_for_subcategroy)
self.timer.record(self.category)
self.timer.subcategory_level -= 1
self.timer.record(self.category, disable_log=True)
class Timer:
def __init__(self):
def __init__(self, print_log=False):
self.start = time.time()
self.records = {}
self.total = 0
self.base_category = ''
self.print_log = print_log
self.subcategory_level = 0
def elapsed(self):
end = time.time()
@ -38,13 +46,16 @@ class Timer:
self.records[category] += amount
def record(self, category, extra_time=0):
def record(self, category, extra_time=0, disable_log=False):
e = self.elapsed()
self.add_time_to_record(self.base_category + category, e + extra_time)
self.total += e + extra_time
if self.print_log and not disable_log:
print(f"{' ' * self.subcategory_level}{category}: done in {e + extra_time:.3f}s")
def subcategory(self, name):
self.elapsed()
@ -71,6 +82,10 @@ class Timer:
self.__init__()
startup_timer = Timer()
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument("--log-startup", action='store_true', help="print a detailed log of what's happening at startup")
args = parser.parse_known_args()[0]
startup_timer = Timer(print_log=args.log_startup)
startup_record = None

View File

@ -12,34 +12,30 @@ import numpy as np
from PIL import Image, PngImagePlugin # noqa: F401
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
from modules import sd_hijack, sd_models, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, errors, shared_items, ui_settings, timer, sysinfo
from modules import gradio_extensons # noqa: F401
from modules import sd_hijack, sd_models, script_callbacks, ui_extensions, deepbooru, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, errors, shared_items, ui_settings, timer, sysinfo, ui_checkpoint_merger, ui_prompt_styles, scripts
from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
from modules.paths import script_path
from modules.ui_common import create_refresh_button
from modules.ui_gradio_extensions import reload_javascript
from modules.shared import opts, cmd_opts
import modules.codeformer_model
import modules.generation_parameters_copypaste as parameters_copypaste
import modules.gfpgan_model
import modules.hypernetworks.ui
import modules.scripts
import modules.hypernetworks.ui as hypernetworks_ui
import modules.textual_inversion.ui as textual_inversion_ui
import modules.textual_inversion.textual_inversion as textual_inversion
import modules.shared as shared
import modules.styles
import modules.textual_inversion.ui
import modules.images
from modules import prompt_parser
from modules.sd_hijack import model_hijack
from modules.sd_samplers import samplers, samplers_for_img2img
from modules.textual_inversion import textual_inversion
import modules.hypernetworks.ui
from modules.generation_parameters_copypaste import image_from_url_text
import modules.extras
create_setting_component = ui_settings.create_setting_component
warnings.filterwarnings("default" if opts.show_warnings else "ignore", category=UserWarning)
warnings.filterwarnings("default" if opts.show_gradio_deprecation_warnings else "ignore", category=gr.deprecation.GradioDeprecationWarning)
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init()
@ -92,19 +88,6 @@ def send_gradio_gallery_to_image(x):
return image_from_url_text(x[0])
def add_style(name: str, prompt: str, negative_prompt: str):
if name is None:
return [gr_show() for x in range(4)]
style = modules.styles.PromptStyle(name, prompt, negative_prompt)
shared.prompt_styles.styles[style.name] = style
# Save all loaded prompt styles: this allows us to update the storage format in the future more easily, because we
# reserialize all styles every time we save them
shared.prompt_styles.save_styles(shared.styles_filename)
return [gr.Dropdown.update(visible=True, choices=list(shared.prompt_styles.styles)) for _ in range(2)]
def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y):
from modules import processing, devices
@ -129,13 +112,6 @@ def resize_from_to_html(width, height, scale_by):
return f"resize: from <span class='resolution'>{width}x{height}</span> to <span class='resolution'>{target_width}x{target_height}</span>"
def apply_styles(prompt, prompt_neg, styles):
prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, styles)
prompt_neg = shared.prompt_styles.apply_negative_styles_to_prompt(prompt_neg, styles)
return [gr.Textbox.update(value=prompt), gr.Textbox.update(value=prompt_neg), gr.Dropdown.update(value=[])]
def process_interrogate(interrogation_function, mode, ii_input_dir, ii_output_dir, *ii_singles):
if mode in {0, 1, 3, 4}:
return [interrogation_function(ii_singles[mode]), None]
@ -172,7 +148,6 @@ def interrogate_deepbooru(image):
def create_seed_inputs(target_interface):
with FormRow(elem_id=f"{target_interface}_seed_row", variant="compact"):
seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=f"{target_interface}_seed")
seed.style(container=False)
random_seed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_seed", label='Random seed')
reuse_seed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_seed", label='Reuse seed')
@ -184,7 +159,6 @@ def create_seed_inputs(target_interface):
with FormRow(visible=False, elem_id=f"{target_interface}_subseed_row") as seed_extra_row_1:
seed_extras.append(seed_extra_row_1)
subseed = gr.Number(label='Variation seed', value=-1, elem_id=f"{target_interface}_subseed")
subseed.style(container=False)
random_subseed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_subseed")
reuse_subseed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_subseed")
subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=f"{target_interface}_subseed_strength")
@ -267,71 +241,78 @@ def update_token_counter(text, steps):
return f"<span class='gr-box gr-text-input'>{token_count}/{max_length}</span>"
def create_toprow(is_img2img):
class Toprow:
"""Creates a top row UI with prompts, generate button, styles, extra little buttons for things, and enables some functionality related to their operation"""
def __init__(self, is_img2img):
id_part = "img2img" if is_img2img else "txt2img"
self.id_part = id_part
with gr.Row(elem_id=f"{id_part}_toprow", variant="compact"):
with gr.Column(elem_id=f"{id_part}_prompt_container", scale=6):
with gr.Row():
with gr.Column(scale=80):
with gr.Row():
prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=3, placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)", elem_classes=["prompt"])
self.prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=3, placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)", elem_classes=["prompt"])
self.prompt_img = gr.File(label="", elem_id=f"{id_part}_prompt_image", file_count="single", type="binary", visible=False)
with gr.Row():
with gr.Column(scale=80):
with gr.Row():
negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)", elem_classes=["prompt"])
self.negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)", elem_classes=["prompt"])
button_interrogate = None
button_deepbooru = None
self.button_interrogate = None
self.button_deepbooru = None
if is_img2img:
with gr.Column(scale=1, elem_classes="interrogate-col"):
button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate")
button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru")
self.button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate")
self.button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru")
with gr.Column(scale=1, elem_id=f"{id_part}_actions_column"):
with gr.Row(elem_id=f"{id_part}_generate_box", elem_classes="generate-box"):
interrupt = gr.Button('Interrupt', elem_id=f"{id_part}_interrupt", elem_classes="generate-box-interrupt")
skip = gr.Button('Skip', elem_id=f"{id_part}_skip", elem_classes="generate-box-skip")
submit = gr.Button('Generate', elem_id=f"{id_part}_generate", variant='primary')
self.interrupt = gr.Button('Interrupt', elem_id=f"{id_part}_interrupt", elem_classes="generate-box-interrupt")
self.skip = gr.Button('Skip', elem_id=f"{id_part}_skip", elem_classes="generate-box-skip")
self.submit = gr.Button('Generate', elem_id=f"{id_part}_generate", variant='primary')
skip.click(
self.skip.click(
fn=lambda: shared.state.skip(),
inputs=[],
outputs=[],
)
interrupt.click(
self.interrupt.click(
fn=lambda: shared.state.interrupt(),
inputs=[],
outputs=[],
)
with gr.Row(elem_id=f"{id_part}_tools"):
paste = ToolButton(value=paste_symbol, elem_id="paste")
clear_prompt_button = ToolButton(value=clear_prompt_symbol, elem_id=f"{id_part}_clear_prompt")
extra_networks_button = ToolButton(value=extra_networks_symbol, elem_id=f"{id_part}_extra_networks")
prompt_style_apply = ToolButton(value=apply_style_symbol, elem_id=f"{id_part}_style_apply")
save_style = ToolButton(value=save_style_symbol, elem_id=f"{id_part}_style_create")
restore_progress_button = ToolButton(value=restore_progress_symbol, elem_id=f"{id_part}_restore_progress", visible=False)
self.paste = ToolButton(value=paste_symbol, elem_id="paste")
self.clear_prompt_button = ToolButton(value=clear_prompt_symbol, elem_id=f"{id_part}_clear_prompt")
self.extra_networks_button = ToolButton(value=extra_networks_symbol, elem_id=f"{id_part}_extra_networks")
self.restore_progress_button = ToolButton(value=restore_progress_symbol, elem_id=f"{id_part}_restore_progress", visible=False)
token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_token_counter", elem_classes=["token-counter"])
token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button")
negative_token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_negative_token_counter", elem_classes=["token-counter"])
negative_token_button = gr.Button(visible=False, elem_id=f"{id_part}_negative_token_button")
self.token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_token_counter", elem_classes=["token-counter"])
self.token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button")
self.negative_token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_negative_token_counter", elem_classes=["token-counter"])
self.negative_token_button = gr.Button(visible=False, elem_id=f"{id_part}_negative_token_button")
clear_prompt_button.click(
self.clear_prompt_button.click(
fn=lambda *x: x,
_js="confirm_clear_prompt",
inputs=[prompt, negative_prompt],
outputs=[prompt, negative_prompt],
inputs=[self.prompt, self.negative_prompt],
outputs=[self.prompt, self.negative_prompt],
)
with gr.Row(elem_id=f"{id_part}_styles_row"):
prompt_styles = gr.Dropdown(label="Styles", elem_id=f"{id_part}_styles", choices=[k for k, v in shared.prompt_styles.styles.items()], value=[], multiselect=True)
create_refresh_button(prompt_styles, shared.prompt_styles.reload, lambda: {"choices": [k for k, v in shared.prompt_styles.styles.items()]}, f"refresh_{id_part}_styles")
self.ui_styles = ui_prompt_styles.UiPromptStyles(id_part, self.prompt, self.negative_prompt)
return prompt, prompt_styles, negative_prompt, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button, restore_progress_button
self.prompt_img.change(
fn=modules.images.image_data,
inputs=[self.prompt_img],
outputs=[self.prompt, self.prompt_img],
show_progress=False,
)
def setup_progressbar(*args, **kwargs):
@ -415,22 +396,21 @@ def create_ui():
parameters_copypaste.reset()
modules.scripts.scripts_current = modules.scripts.scripts_txt2img
modules.scripts.scripts_txt2img.initialize_scripts(is_img2img=False)
scripts.scripts_current = scripts.scripts_txt2img
scripts.scripts_txt2img.initialize_scripts(is_img2img=False)
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
txt2img_prompt, txt2img_prompt_styles, txt2img_negative_prompt, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button, restore_progress_button = create_toprow(is_img2img=False)
toprow = Toprow(is_img2img=False)
dummy_component = gr.Label(visible=False)
txt_prompt_img = gr.File(label="", elem_id="txt2img_prompt_image", file_count="single", type="binary", visible=False)
with FormRow(variant='compact', elem_id="txt2img_extra_networks", visible=False) as extra_networks:
from modules import ui_extra_networks
extra_networks_ui = ui_extra_networks.create_ui(extra_networks, extra_networks_button, 'txt2img')
extra_networks_ui = ui_extra_networks.create_ui(extra_networks, toprow.extra_networks_button, 'txt2img')
with gr.Row().style(equal_height=False):
with gr.Row(equal_height=False):
with gr.Column(variant='compact', elem_id="txt2img_settings"):
modules.scripts.scripts_txt2img.prepare_ui()
scripts.scripts_txt2img.prepare_ui()
for category in ordered_ui_categories():
if category == "sampler":
@ -498,10 +478,10 @@ def create_ui():
elif category == "scripts":
with FormGroup(elem_id="txt2img_script_container"):
custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
custom_inputs = scripts.scripts_txt2img.setup_ui()
else:
modules.scripts.scripts_txt2img.setup_ui_for_section(category)
scripts.scripts_txt2img.setup_ui_for_section(category)
hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y]
@ -532,9 +512,9 @@ def create_ui():
_js="submit",
inputs=[
dummy_component,
txt2img_prompt,
txt2img_negative_prompt,
txt2img_prompt_styles,
toprow.prompt,
toprow.negative_prompt,
toprow.ui_styles.dropdown,
steps,
sampler_index,
restore_faces,
@ -569,12 +549,12 @@ def create_ui():
show_progress=False,
)
txt2img_prompt.submit(**txt2img_args)
submit.click(**txt2img_args)
toprow.prompt.submit(**txt2img_args)
toprow.submit.click(**txt2img_args)
res_switch_btn.click(fn=None, _js="function(){switchWidthHeight('txt2img')}", inputs=None, outputs=None, show_progress=False)
restore_progress_button.click(
toprow.restore_progress_button.click(
fn=progress.restore_progress,
_js="restoreProgressTxt2img",
inputs=[dummy_component],
@ -587,18 +567,6 @@ def create_ui():
show_progress=False,
)
txt_prompt_img.change(
fn=modules.images.image_data,
inputs=[
txt_prompt_img
],
outputs=[
txt2img_prompt,
txt_prompt_img
],
show_progress=False,
)
enable_hr.change(
fn=lambda x: gr_show(x),
inputs=[enable_hr],
@ -607,8 +575,8 @@ def create_ui():
)
txt2img_paste_fields = [
(txt2img_prompt, "Prompt"),
(txt2img_negative_prompt, "Negative prompt"),
(toprow.prompt, "Prompt"),
(toprow.negative_prompt, "Negative prompt"),
(steps, "Steps"),
(sampler_index, "Sampler"),
(restore_faces, "Face restoration"),
@ -621,7 +589,7 @@ def create_ui():
(subseed_strength, "Variation seed strength"),
(seed_resize_from_w, "Seed resize from-1"),
(seed_resize_from_h, "Seed resize from-2"),
(txt2img_prompt_styles, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
(toprow.ui_styles.dropdown, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
(denoising_strength, "Denoising strength"),
(enable_hr, lambda d: "Denoising strength" in d),
(hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)),
@ -635,16 +603,16 @@ def create_ui():
(hr_prompt, "Hires prompt"),
(hr_negative_prompt, "Hires negative prompt"),
(hr_prompts_container, lambda d: gr.update(visible=True) if d.get("Hires prompt", "") != "" or d.get("Hires negative prompt", "") != "" else gr.update()),
*modules.scripts.scripts_txt2img.infotext_fields
*scripts.scripts_txt2img.infotext_fields
]
parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields, override_settings)
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
paste_button=txt2img_paste, tabname="txt2img", source_text_component=txt2img_prompt, source_image_component=None,
paste_button=toprow.paste, tabname="txt2img", source_text_component=toprow.prompt, source_image_component=None,
))
txt2img_preview_params = [
txt2img_prompt,
txt2img_negative_prompt,
toprow.prompt,
toprow.negative_prompt,
steps,
sampler_index,
cfg_scale,
@ -653,24 +621,22 @@ def create_ui():
height,
]
token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_prompt, steps], outputs=[token_counter])
negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_negative_prompt, steps], outputs=[negative_token_counter])
toprow.token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[toprow.prompt, steps], outputs=[toprow.token_counter])
toprow.negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[toprow.negative_prompt, steps], outputs=[toprow.negative_token_counter])
ui_extra_networks.setup_ui(extra_networks_ui, txt2img_gallery)
modules.scripts.scripts_current = modules.scripts.scripts_img2img
modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True)
scripts.scripts_current = scripts.scripts_img2img
scripts.scripts_img2img.initialize_scripts(is_img2img=True)
with gr.Blocks(analytics_enabled=False) as img2img_interface:
img2img_prompt, img2img_prompt_styles, img2img_negative_prompt, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button, restore_progress_button = create_toprow(is_img2img=True)
img2img_prompt_img = gr.File(label="", elem_id="img2img_prompt_image", file_count="single", type="binary", visible=False)
toprow = Toprow(is_img2img=True)
with FormRow(variant='compact', elem_id="img2img_extra_networks", visible=False) as extra_networks:
from modules import ui_extra_networks
extra_networks_ui_img2img = ui_extra_networks.create_ui(extra_networks, extra_networks_button, 'img2img')
extra_networks_ui_img2img = ui_extra_networks.create_ui(extra_networks, toprow.extra_networks_button, 'img2img')
with FormRow().style(equal_height=False):
with FormRow(equal_height=False):
with gr.Column(variant='compact', elem_id="img2img_settings"):
copy_image_buttons = []
copy_image_destinations = {}
@ -692,19 +658,19 @@ def create_ui():
img2img_selected_tab = gr.State(0)
with gr.TabItem('img2img', id='img2img', elem_id="img2img_img2img_tab") as tab_img2img:
init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool="editor", image_mode="RGBA").style(height=opts.img2img_editor_height)
init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool="editor", image_mode="RGBA", height=opts.img2img_editor_height)
add_copy_image_controls('img2img', init_img)
with gr.TabItem('Sketch', id='img2img_sketch', elem_id="img2img_img2img_sketch_tab") as tab_sketch:
sketch = gr.Image(label="Image for img2img", elem_id="img2img_sketch", show_label=False, source="upload", interactive=True, type="pil", tool="color-sketch", image_mode="RGBA").style(height=opts.img2img_editor_height)
sketch = gr.Image(label="Image for img2img", elem_id="img2img_sketch", show_label=False, source="upload", interactive=True, type="pil", tool="color-sketch", image_mode="RGBA", height=opts.img2img_editor_height)
add_copy_image_controls('sketch', sketch)
with gr.TabItem('Inpaint', id='inpaint', elem_id="img2img_inpaint_tab") as tab_inpaint:
init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGBA").style(height=opts.img2img_editor_height)
init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGBA", height=opts.img2img_editor_height)
add_copy_image_controls('inpaint', init_img_with_mask)
with gr.TabItem('Inpaint sketch', id='inpaint_sketch', elem_id="img2img_inpaint_sketch_tab") as tab_inpaint_color:
inpaint_color_sketch = gr.Image(label="Color sketch inpainting", show_label=False, elem_id="inpaint_sketch", source="upload", interactive=True, type="pil", tool="color-sketch", image_mode="RGBA").style(height=opts.img2img_editor_height)
inpaint_color_sketch = gr.Image(label="Color sketch inpainting", show_label=False, elem_id="inpaint_sketch", source="upload", interactive=True, type="pil", tool="color-sketch", image_mode="RGBA", height=opts.img2img_editor_height)
inpaint_color_sketch_orig = gr.State(None)
add_copy_image_controls('inpaint_sketch', inpaint_color_sketch)
@ -764,7 +730,7 @@ def create_ui():
with FormRow():
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize")
modules.scripts.scripts_img2img.prepare_ui()
scripts.scripts_img2img.prepare_ui()
for category in ordered_ui_categories():
if category == "sampler":
@ -845,7 +811,7 @@ def create_ui():
elif category == "scripts":
with FormGroup(elem_id="img2img_script_container"):
custom_inputs = modules.scripts.scripts_img2img.setup_ui()
custom_inputs = scripts.scripts_img2img.setup_ui()
elif category == "inpaint":
with FormGroup(elem_id="inpaint_controls", visible=False) as inpaint_controls:
@ -876,34 +842,22 @@ def create_ui():
outputs=[inpaint_controls, mask_alpha],
)
else:
modules.scripts.scripts_img2img.setup_ui_for_section(category)
scripts.scripts_img2img.setup_ui_for_section(category)
img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
img2img_prompt_img.change(
fn=modules.images.image_data,
inputs=[
img2img_prompt_img
],
outputs=[
img2img_prompt,
img2img_prompt_img
],
show_progress=False,
)
img2img_args = dict(
fn=wrap_gradio_gpu_call(modules.img2img.img2img, extra_outputs=[None, '', '']),
_js="submit_img2img",
inputs=[
dummy_component,
dummy_component,
img2img_prompt,
img2img_negative_prompt,
img2img_prompt_styles,
toprow.prompt,
toprow.negative_prompt,
toprow.ui_styles.dropdown,
init_img,
sketch,
init_img_with_mask,
@ -962,11 +916,11 @@ def create_ui():
inpaint_color_sketch,
init_img_inpaint,
],
outputs=[img2img_prompt, dummy_component],
outputs=[toprow.prompt, dummy_component],
)
img2img_prompt.submit(**img2img_args)
submit.click(**img2img_args)
toprow.prompt.submit(**img2img_args)
toprow.submit.click(**img2img_args)
res_switch_btn.click(fn=None, _js="function(){switchWidthHeight('img2img')}", inputs=None, outputs=None, show_progress=False)
@ -978,7 +932,7 @@ def create_ui():
show_progress=False,
)
restore_progress_button.click(
toprow.restore_progress_button.click(
fn=progress.restore_progress,
_js="restoreProgressImg2img",
inputs=[dummy_component],
@ -991,46 +945,24 @@ def create_ui():
show_progress=False,
)
img2img_interrogate.click(
toprow.button_interrogate.click(
fn=lambda *args: process_interrogate(interrogate, *args),
**interrogate_args,
)
img2img_deepbooru.click(
toprow.button_deepbooru.click(
fn=lambda *args: process_interrogate(interrogate_deepbooru, *args),
**interrogate_args,
)
prompts = [(txt2img_prompt, txt2img_negative_prompt), (img2img_prompt, img2img_negative_prompt)]
style_dropdowns = [txt2img_prompt_styles, img2img_prompt_styles]
style_js_funcs = ["update_txt2img_tokens", "update_img2img_tokens"]
for button, (prompt, negative_prompt) in zip([txt2img_save_style, img2img_save_style], prompts):
button.click(
fn=add_style,
_js="ask_for_style_name",
# Have to pass empty dummy component here, because the JavaScript and Python function have to accept
# the same number of parameters, but we only know the style-name after the JavaScript prompt
inputs=[dummy_component, prompt, negative_prompt],
outputs=[txt2img_prompt_styles, img2img_prompt_styles],
)
for button, (prompt, negative_prompt), styles, js_func in zip([txt2img_prompt_style_apply, img2img_prompt_style_apply], prompts, style_dropdowns, style_js_funcs):
button.click(
fn=apply_styles,
_js=js_func,
inputs=[prompt, negative_prompt, styles],
outputs=[prompt, negative_prompt, styles],
)
token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[img2img_negative_prompt, steps], outputs=[negative_token_counter])
toprow.token_button.click(fn=update_token_counter, inputs=[toprow.prompt, steps], outputs=[toprow.token_counter])
toprow.negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[toprow.negative_prompt, steps], outputs=[toprow.negative_token_counter])
ui_extra_networks.setup_ui(extra_networks_ui_img2img, img2img_gallery)
img2img_paste_fields = [
(img2img_prompt, "Prompt"),
(img2img_negative_prompt, "Negative prompt"),
(toprow.prompt, "Prompt"),
(toprow.negative_prompt, "Negative prompt"),
(steps, "Steps"),
(sampler_index, "Sampler"),
(restore_faces, "Face restoration"),
@ -1044,24 +976,24 @@ def create_ui():
(subseed_strength, "Variation seed strength"),
(seed_resize_from_w, "Seed resize from-1"),
(seed_resize_from_h, "Seed resize from-2"),
(img2img_prompt_styles, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
(toprow.ui_styles.dropdown, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
(denoising_strength, "Denoising strength"),
(mask_blur, "Mask blur"),
*modules.scripts.scripts_img2img.infotext_fields
*scripts.scripts_img2img.infotext_fields
]
parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields, override_settings)
parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields, override_settings)
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None,
paste_button=toprow.paste, tabname="img2img", source_text_component=toprow.prompt, source_image_component=None,
))
modules.scripts.scripts_current = None
scripts.scripts_current = None
with gr.Blocks(analytics_enabled=False) as extras_interface:
ui_postprocessing.create_ui()
with gr.Blocks(analytics_enabled=False) as pnginfo_interface:
with gr.Row().style(equal_height=False):
with gr.Row(equal_height=False):
with gr.Column(variant='panel'):
image = gr.Image(elem_id="pnginfo_image", label="Source", source="upload", interactive=True, type="pil")
@ -1083,64 +1015,13 @@ def create_ui():
outputs=[html, generation_info, html2],
)
def update_interp_description(value):
interp_description_css = "<p style='margin-bottom: 2.5em'>{}</p>"
interp_descriptions = {
"No interpolation": interp_description_css.format("No interpolation will be used. Requires one model; A. Allows for format conversion and VAE baking."),
"Weighted sum": interp_description_css.format("A weighted sum will be used for interpolation. Requires two models; A and B. The result is calculated as A * (1 - M) + B * M"),
"Add difference": interp_description_css.format("The difference between the last two models will be added to the first. Requires three models; A, B and C. The result is calculated as A + (B - C) * M")
}
return interp_descriptions[value]
with gr.Blocks(analytics_enabled=False) as modelmerger_interface:
with gr.Row().style(equal_height=False):
with gr.Column(variant='compact'):
interp_description = gr.HTML(value=update_interp_description("Weighted sum"), elem_id="modelmerger_interp_description")
with FormRow(elem_id="modelmerger_models"):
primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)")
create_refresh_button(primary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_A")
secondary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary model (B)")
create_refresh_button(secondary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_B")
tertiary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)")
create_refresh_button(tertiary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_C")
custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="modelmerger_custom_name")
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3, elem_id="modelmerger_interp_amount")
interp_method = gr.Radio(choices=["No interpolation", "Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method", elem_id="modelmerger_interp_method")
interp_method.change(fn=update_interp_description, inputs=[interp_method], outputs=[interp_description])
with FormRow():
checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="safetensors", label="Checkpoint format", elem_id="modelmerger_checkpoint_format")
save_as_half = gr.Checkbox(value=False, label="Save as float16", elem_id="modelmerger_save_as_half")
save_metadata = gr.Checkbox(value=True, label="Save metadata (.safetensors only)", elem_id="modelmerger_save_metadata")
with FormRow():
with gr.Column():
config_source = gr.Radio(choices=["A, B or C", "B", "C", "Don't"], value="A, B or C", label="Copy config from", type="index", elem_id="modelmerger_config_method")
with gr.Column():
with FormRow():
bake_in_vae = gr.Dropdown(choices=["None"] + list(sd_vae.vae_dict), value="None", label="Bake in VAE", elem_id="modelmerger_bake_in_vae")
create_refresh_button(bake_in_vae, sd_vae.refresh_vae_list, lambda: {"choices": ["None"] + list(sd_vae.vae_dict)}, "modelmerger_refresh_bake_in_vae")
with FormRow():
discard_weights = gr.Textbox(value="", label="Discard weights with matching name", elem_id="modelmerger_discard_weights")
with gr.Row():
modelmerger_merge = gr.Button(elem_id="modelmerger_merge", value="Merge", variant='primary')
with gr.Column(variant='compact', elem_id="modelmerger_results_container"):
with gr.Group(elem_id="modelmerger_results_panel"):
modelmerger_result = gr.HTML(elem_id="modelmerger_result", show_label=False)
modelmerger_ui = ui_checkpoint_merger.UiCheckpointMerger()
with gr.Blocks(analytics_enabled=False) as train_interface:
with gr.Row().style(equal_height=False):
with gr.Row(equal_height=False):
gr.HTML(value="<p style='margin-bottom: 0.7em'>See <b><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\">wiki</a></b> for detailed explanation.</p>")
with gr.Row(variant="compact").style(equal_height=False):
with gr.Row(variant="compact", equal_height=False):
with gr.Tabs(elem_id="train_tabs"):
with gr.Tab(label="Create embedding", id="create_embedding"):
@ -1160,7 +1041,7 @@ def create_ui():
new_hypernetwork_name = gr.Textbox(label="Name", elem_id="train_new_hypernetwork_name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"], elem_id="train_new_hypernetwork_sizes")
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'", elem_id="train_new_hypernetwork_layer_structure")
new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys, elem_id="train_new_hypernetwork_activation_func")
new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=hypernetworks_ui.keys, elem_id="train_new_hypernetwork_activation_func")
new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"], elem_id="train_new_hypernetwork_initialization_option")
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization", elem_id="train_new_hypernetwork_add_layer_norm")
new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout", elem_id="train_new_hypernetwork_use_dropout")
@ -1300,12 +1181,12 @@ def create_ui():
with gr.Column(elem_id='ti_gallery_container'):
ti_output = gr.Text(elem_id="ti_output", value="", show_label=False)
gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(columns=4)
gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery', columns=4)
gr.HTML(elem_id="ti_progress", value="")
ti_outcome = gr.HTML(elem_id="ti_error", value="")
create_embedding.click(
fn=modules.textual_inversion.ui.create_embedding,
fn=textual_inversion_ui.create_embedding,
inputs=[
new_embedding_name,
initialization_text,
@ -1320,7 +1201,7 @@ def create_ui():
)
create_hypernetwork.click(
fn=modules.hypernetworks.ui.create_hypernetwork,
fn=hypernetworks_ui.create_hypernetwork,
inputs=[
new_hypernetwork_name,
new_hypernetwork_sizes,
@ -1340,7 +1221,7 @@ def create_ui():
)
run_preprocess.click(
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]),
fn=wrap_gradio_gpu_call(textual_inversion_ui.preprocess, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion",
inputs=[
dummy_component,
@ -1376,7 +1257,7 @@ def create_ui():
)
train_embedding.click(
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.train_embedding, extra_outputs=[gr.update()]),
fn=wrap_gradio_gpu_call(textual_inversion_ui.train_embedding, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion",
inputs=[
dummy_component,
@ -1410,7 +1291,7 @@ def create_ui():
)
train_hypernetwork.click(
fn=wrap_gradio_gpu_call(modules.hypernetworks.ui.train_hypernetwork, extra_outputs=[gr.update()]),
fn=wrap_gradio_gpu_call(hypernetworks_ui.train_hypernetwork, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion",
inputs=[
dummy_component,
@ -1464,7 +1345,7 @@ def create_ui():
(img2img_interface, "img2img", "img2img"),
(extras_interface, "Extras", "extras"),
(pnginfo_interface, "PNG Info", "pnginfo"),
(modelmerger_interface, "Checkpoint Merger", "modelmerger"),
(modelmerger_ui.blocks, "Checkpoint Merger", "modelmerger"),
(train_interface, "Train", "train"),
]
@ -1516,49 +1397,11 @@ def create_ui():
settings.text_settings.change(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale])
demo.load(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale])
def modelmerger(*args):
try:
results = modules.extras.run_modelmerger(*args)
except Exception as e:
errors.report("Error loading/saving model file", exc_info=True)
modules.sd_models.list_models() # to remove the potentially missing models from the list
return [*[gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(4)], f"Error merging checkpoints: {e}"]
return results
modelmerger_merge.click(fn=lambda: '', inputs=[], outputs=[modelmerger_result])
modelmerger_merge.click(
fn=wrap_gradio_gpu_call(modelmerger, extra_outputs=lambda: [gr.update() for _ in range(4)]),
_js='modelmerger',
inputs=[
dummy_component,
primary_model_name,
secondary_model_name,
tertiary_model_name,
interp_method,
interp_amount,
save_as_half,
custom_name,
checkpoint_format,
config_source,
bake_in_vae,
discard_weights,
save_metadata,
],
outputs=[
primary_model_name,
secondary_model_name,
tertiary_model_name,
settings.component_dict['sd_model_checkpoint'],
modelmerger_result,
]
)
modelmerger_ui.setup_ui(dummy_component=dummy_component, sd_model_checkpoint_component=settings.component_dict['sd_model_checkpoint'])
loadsave.dump_defaults()
demo.ui_loadsave = loadsave
# Required as a workaround for change() event not triggering when loading values from ui-config.json
interp_description.value = update_interp_description(interp_method.value)
return demo

View File

@ -0,0 +1,124 @@
import gradio as gr
from modules import sd_models, sd_vae, errors, extras, call_queue
from modules.ui_components import FormRow
from modules.ui_common import create_refresh_button
def update_interp_description(value):
interp_description_css = "<p style='margin-bottom: 2.5em'>{}</p>"
interp_descriptions = {
"No interpolation": interp_description_css.format("No interpolation will be used. Requires one model; A. Allows for format conversion and VAE baking."),
"Weighted sum": interp_description_css.format("A weighted sum will be used for interpolation. Requires two models; A and B. The result is calculated as A * (1 - M) + B * M"),
"Add difference": interp_description_css.format("The difference between the last two models will be added to the first. Requires three models; A, B and C. The result is calculated as A + (B - C) * M")
}
return interp_descriptions[value]
def modelmerger(*args):
try:
results = extras.run_modelmerger(*args)
except Exception as e:
errors.report("Error loading/saving model file", exc_info=True)
sd_models.list_models() # to remove the potentially missing models from the list
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], f"Error merging checkpoints: {e}"]
return results
class UiCheckpointMerger:
def __init__(self):
with gr.Blocks(analytics_enabled=False) as modelmerger_interface:
with gr.Row(equal_height=False):
with gr.Column(variant='compact'):
self.interp_description = gr.HTML(value=update_interp_description("Weighted sum"), elem_id="modelmerger_interp_description")
with FormRow(elem_id="modelmerger_models"):
self.primary_model_name = gr.Dropdown(sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)")
create_refresh_button(self.primary_model_name, sd_models.list_models, lambda: {"choices": sd_models.checkpoint_tiles()}, "refresh_checkpoint_A")
self.secondary_model_name = gr.Dropdown(sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary model (B)")
create_refresh_button(self.secondary_model_name, sd_models.list_models, lambda: {"choices": sd_models.checkpoint_tiles()}, "refresh_checkpoint_B")
self.tertiary_model_name = gr.Dropdown(sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)")
create_refresh_button(self.tertiary_model_name, sd_models.list_models, lambda: {"choices": sd_models.checkpoint_tiles()}, "refresh_checkpoint_C")
self.custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="modelmerger_custom_name")
self.interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3, elem_id="modelmerger_interp_amount")
self.interp_method = gr.Radio(choices=["No interpolation", "Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method", elem_id="modelmerger_interp_method")
self.interp_method.change(fn=update_interp_description, inputs=[self.interp_method], outputs=[self.interp_description])
with FormRow():
self.checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="safetensors", label="Checkpoint format", elem_id="modelmerger_checkpoint_format")
self.save_as_half = gr.Checkbox(value=False, label="Save as float16", elem_id="modelmerger_save_as_half")
with FormRow():
with gr.Column():
self.config_source = gr.Radio(choices=["A, B or C", "B", "C", "Don't"], value="A, B or C", label="Copy config from", type="index", elem_id="modelmerger_config_method")
with gr.Column():
with FormRow():
self.bake_in_vae = gr.Dropdown(choices=["None"] + list(sd_vae.vae_dict), value="None", label="Bake in VAE", elem_id="modelmerger_bake_in_vae")
create_refresh_button(self.bake_in_vae, sd_vae.refresh_vae_list, lambda: {"choices": ["None"] + list(sd_vae.vae_dict)}, "modelmerger_refresh_bake_in_vae")
with FormRow():
self.discard_weights = gr.Textbox(value="", label="Discard weights with matching name", elem_id="modelmerger_discard_weights")
with gr.Accordion("Metadata", open=False) as metadata_editor:
with FormRow():
self.save_metadata = gr.Checkbox(value=True, label="Save metadata", elem_id="modelmerger_save_metadata")
self.add_merge_recipe = gr.Checkbox(value=True, label="Add merge recipe metadata", elem_id="modelmerger_add_recipe")
self.copy_metadata_fields = gr.Checkbox(value=True, label="Copy metadata from merged models", elem_id="modelmerger_copy_metadata")
self.metadata_json = gr.TextArea('{}', label="Metadata in JSON format")
self.read_metadata = gr.Button("Read metadata from selected checkpoints")
with FormRow():
self.modelmerger_merge = gr.Button(elem_id="modelmerger_merge", value="Merge", variant='primary')
with gr.Column(variant='compact', elem_id="modelmerger_results_container"):
with gr.Group(elem_id="modelmerger_results_panel"):
self.modelmerger_result = gr.HTML(elem_id="modelmerger_result", show_label=False)
self.metadata_editor = metadata_editor
self.blocks = modelmerger_interface
def setup_ui(self, dummy_component, sd_model_checkpoint_component):
self.checkpoint_format.change(lambda fmt: gr.update(visible=fmt == 'safetensors'), inputs=[self.checkpoint_format], outputs=[self.metadata_editor], show_progress=False)
self.read_metadata.click(extras.read_metadata, inputs=[self.primary_model_name, self.secondary_model_name, self.tertiary_model_name], outputs=[self.metadata_json])
self.modelmerger_merge.click(fn=lambda: '', inputs=[], outputs=[self.modelmerger_result])
self.modelmerger_merge.click(
fn=call_queue.wrap_gradio_gpu_call(modelmerger, extra_outputs=lambda: [gr.update() for _ in range(4)]),
_js='modelmerger',
inputs=[
dummy_component,
self.primary_model_name,
self.secondary_model_name,
self.tertiary_model_name,
self.interp_method,
self.interp_amount,
self.save_as_half,
self.custom_name,
self.checkpoint_format,
self.config_source,
self.bake_in_vae,
self.discard_weights,
self.save_metadata,
self.add_merge_recipe,
self.copy_metadata_fields,
self.metadata_json,
],
outputs=[
self.primary_model_name,
self.secondary_model_name,
self.tertiary_model_name,
sd_model_checkpoint_component,
self.modelmerger_result,
]
)
# Required as a workaround for change() event not triggering when loading values from ui-config.json
self.interp_description.value = update_interp_description(self.interp_method.value)

View File

@ -134,7 +134,7 @@ Requested path was: {f}
with gr.Column(variant='panel', elem_id=f"{tabname}_results"):
with gr.Group(elem_id=f"{tabname}_gallery_container"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(columns=4)
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery", columns=4)
generation_info = None
with gr.Column():
@ -223,20 +223,44 @@ Requested path was: {f}
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
refresh_components = refresh_component if isinstance(refresh_component, list) else [refresh_component]
label = None
for comp in refresh_components:
label = getattr(comp, 'label', None)
if label is not None:
break
def refresh():
refresh_method()
args = refreshed_args() if callable(refreshed_args) else refreshed_args
for k, v in args.items():
setattr(refresh_component, k, v)
for comp in refresh_components:
setattr(comp, k, v)
return gr.update(**(args or {}))
return [gr.update(**(args or {})) for _ in refresh_components]
refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id)
refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id, tooltip=f"{label}: refresh" if label else "Refresh")
refresh_button.click(
fn=refresh,
inputs=[],
outputs=[refresh_component]
outputs=[*refresh_components]
)
return refresh_button
def setup_dialog(button_show, dialog, *, button_close=None):
"""Sets up the UI so that the dialog (gr.Box) is invisible, and is only shown when buttons_show is clicked, in a fullscreen modal window."""
dialog.visible = False
button_show.click(
fn=lambda: gr.update(visible=True),
inputs=[],
outputs=[dialog],
).then(fn=None, _js="function(){ popup(gradioApp().getElementById('" + dialog.elem_id + "')); }")
if button_close:
button_close.click(fn=None, _js="closePopup")

View File

@ -35,7 +35,7 @@ class FormColumn(FormComponent, gr.Column):
class FormGroup(FormComponent, gr.Group):
"""Same as gr.Row but fits inside gradio forms"""
"""Same as gr.Group but fits inside gradio forms"""
def get_block_name(self):
return "group"

View File

@ -164,7 +164,7 @@ def extension_table():
ext_status = ext.status
style = ""
if shared.opts.disable_all_extensions == "extra" and not ext.is_builtin or shared.opts.disable_all_extensions == "all":
if shared.cmd_opts.disable_extra_extensions and not ext.is_builtin or shared.opts.disable_all_extensions == "extra" and not ext.is_builtin or shared.cmd_opts.disable_all_extensions or shared.opts.disable_all_extensions == "all":
style = STYLE_PRIMARY
version_link = ext.version
@ -533,16 +533,20 @@ def create_ui():
apply = gr.Button(value=apply_label, variant="primary")
check = gr.Button(value="Check for updates")
extensions_disable_all = gr.Radio(label="Disable all extensions", choices=["none", "extra", "all"], value=shared.opts.disable_all_extensions, elem_id="extensions_disable_all")
extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False).style(container=False)
extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False).style(container=False)
extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False, container=False)
extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False, container=False)
html = ""
if shared.opts.disable_all_extensions != "none":
html = """
<span style="color: var(--primary-400);">
"Disable all extensions" was set, change it to "none" to load all extensions again
</span>
"""
if shared.cmd_opts.disable_all_extensions or shared.cmd_opts.disable_extra_extensions or shared.opts.disable_all_extensions != "none":
if shared.cmd_opts.disable_all_extensions:
msg = '"--disable-all-extensions" was used, remove it to load all extensions again'
elif shared.opts.disable_all_extensions != "none":
msg = '"Disable all extensions" was set, change it to "none" to load all extensions again'
elif shared.cmd_opts.disable_extra_extensions:
msg = '"--disable-extra-extensions" was used, remove it to load all extensions again'
html = f'<span style="color: var(--primary-400);">{msg}</span>'
info = gr.HTML(html)
extensions_table = gr.HTML('Loading...')
ui.load(fn=extension_table, inputs=[], outputs=[extensions_table])
@ -565,7 +569,7 @@ def create_ui():
with gr.Row():
refresh_available_extensions_button = gr.Button(value="Load from:", variant="primary")
extensions_index_url = os.environ.get('WEBUI_EXTENSIONS_INDEX', "https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui-extensions/master/index.json")
available_extensions_index = gr.Text(value=extensions_index_url, label="Extension index URL").style(container=False)
available_extensions_index = gr.Text(value=extensions_index_url, label="Extension index URL", container=False)
extension_to_install = gr.Text(elem_id="extension_to_install", visible=False)
install_extension_button = gr.Button(elem_id="install_extension_button", visible=False)
@ -574,7 +578,7 @@ def create_ui():
sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order",'update time', 'create time', "stars"], type="index")
with gr.Row():
search_extensions_text = gr.Text(label="Search").style(container=False)
search_extensions_text = gr.Text(label="Search", container=False)
install_result = gr.HTML()
available_extensions_table = gr.HTML()

View File

@ -62,7 +62,8 @@ def get_single_card(page: str = "", tabname: str = "", name: str = ""):
page = next(iter([x for x in extra_pages if x.name == page]), None)
try:
item = page.create_item(name)
item = page.create_item(name, enable_filter=False)
page.items[name] = item
except Exception as e:
errors.display(e, "creating item for extra network")
item = page.items.get(name)
@ -252,7 +253,7 @@ class ExtraNetworksPage:
"prompt": item.get("prompt", None),
"tabname": quote_js(tabname),
"local_preview": quote_js(item["local_preview"]),
"name": item["name"],
"name": html.escape(item["name"]),
"description": (item.get("description") or "" if shared.opts.extra_networks_card_show_desc else ""),
"card_clicked": onclick,
"save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {quote_js(tabname)}, {quote_js(item["local_preview"])})""") + '"',

View File

@ -12,7 +12,7 @@ class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
def refresh(self):
shared.refresh_checkpoints()
def create_item(self, name, index=None):
def create_item(self, name, index=None, enable_filter=True):
checkpoint: sd_models.CheckpointInfo = sd_models.checkpoint_aliases.get(name)
path, ext = os.path.splitext(checkpoint.filename)
return {
@ -23,6 +23,7 @@ class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
"search_term": self.search_terms_from_path(checkpoint.filename) + " " + (checkpoint.sha256 or ""),
"onclick": '"' + html.escape(f"""return selectCheckpoint({quote_js(name)})""") + '"',
"local_preview": f"{path}.{shared.opts.samples_format}",
"metadata": checkpoint.metadata,
"sort_keys": {'default': index, **self.get_sort_keys(checkpoint.filename)},
}

View File

@ -11,7 +11,7 @@ class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage):
def refresh(self):
shared.reload_hypernetworks()
def create_item(self, name, index=None):
def create_item(self, name, index=None, enable_filter=True):
full_path = shared.hypernetworks[name]
path, ext = os.path.splitext(full_path)

View File

@ -12,7 +12,7 @@ class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
def refresh(self):
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True)
def create_item(self, name, index=None):
def create_item(self, name, index=None, enable_filter=True):
embedding = sd_hijack.model_hijack.embedding_db.word_embeddings.get(name)
path, ext = os.path.splitext(embedding.filename)

View File

@ -42,6 +42,9 @@ class UserMetadataEditor:
return user_metadata
def create_extra_default_items_in_left_column(self):
pass
def create_default_editor_elems(self):
with gr.Row():
with gr.Column(scale=2):
@ -49,6 +52,8 @@ class UserMetadataEditor:
self.edit_description = gr.Textbox(label="Description", lines=4)
self.html_filedata = gr.HTML()
self.create_extra_default_items_in_left_column()
with gr.Column(scale=1, min_width=0):
self.html_preview = gr.HTML()
@ -91,6 +96,7 @@ class UserMetadataEditor:
stats = os.stat(filename)
params = [
('Filename: ', os.path.basename(filename)),
('File size: ', sysinfo.pretty_bytes(stats.st_size)),
('Modified: ', datetime.datetime.fromtimestamp(stats.st_mtime).strftime('%Y-%m-%d %H:%M')),
]
@ -111,7 +117,7 @@ class UserMetadataEditor:
table = '<table class="file-metadata">' + "".join(f"<tr><th>{name}</th><td>{value}</td></tr>" for name, value in params) + '</table>'
return html.escape(name), user_metadata.get('description', ''), table, self.get_card_html(name), user_metadata.get('notes', ''),
return html.escape(name), user_metadata.get('description', ''), table, self.get_card_html(name), user_metadata.get('notes', '')
def write_user_metadata(self, name, metadata):
item = self.page.items.get(name, {})

View File

@ -6,7 +6,7 @@ import modules.generation_parameters_copypaste as parameters_copypaste
def create_ui():
tab_index = gr.State(value=0)
with gr.Row().style(equal_height=False, variant='compact'):
with gr.Row(equal_height=False, variant='compact'):
with gr.Column(variant='compact'):
with gr.Tabs(elem_id="mode_extras"):
with gr.TabItem('Single Image', id="single_image", elem_id="extras_single_tab") as tab_single:

110
modules/ui_prompt_styles.py Normal file
View File

@ -0,0 +1,110 @@
import gradio as gr
from modules import shared, ui_common, ui_components, styles
styles_edit_symbol = '\U0001f58c\uFE0F' # 🖌️
styles_materialize_symbol = '\U0001f4cb' # 📋
def select_style(name):
style = shared.prompt_styles.styles.get(name)
existing = style is not None
empty = not name
prompt = style.prompt if style else gr.update()
negative_prompt = style.negative_prompt if style else gr.update()
return prompt, negative_prompt, gr.update(visible=existing), gr.update(visible=not empty)
def save_style(name, prompt, negative_prompt):
if not name:
return gr.update(visible=False)
style = styles.PromptStyle(name, prompt, negative_prompt)
shared.prompt_styles.styles[style.name] = style
shared.prompt_styles.save_styles(shared.styles_filename)
return gr.update(visible=True)
def delete_style(name):
if name == "":
return
shared.prompt_styles.styles.pop(name, None)
shared.prompt_styles.save_styles(shared.styles_filename)
return '', '', ''
def materialize_styles(prompt, negative_prompt, styles):
prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, styles)
negative_prompt = shared.prompt_styles.apply_negative_styles_to_prompt(negative_prompt, styles)
return [gr.Textbox.update(value=prompt), gr.Textbox.update(value=negative_prompt), gr.Dropdown.update(value=[])]
def refresh_styles():
return gr.update(choices=list(shared.prompt_styles.styles)), gr.update(choices=list(shared.prompt_styles.styles))
class UiPromptStyles:
def __init__(self, tabname, main_ui_prompt, main_ui_negative_prompt):
self.tabname = tabname
with gr.Row(elem_id=f"{tabname}_styles_row"):
self.dropdown = gr.Dropdown(label="Styles", show_label=False, elem_id=f"{tabname}_styles", choices=list(shared.prompt_styles.styles), value=[], multiselect=True, tooltip="Styles")
edit_button = ui_components.ToolButton(value=styles_edit_symbol, elem_id=f"{tabname}_styles_edit_button", tooltip="Edit styles")
with gr.Box(elem_id=f"{tabname}_styles_dialog", elem_classes="popup-dialog") as styles_dialog:
with gr.Row():
self.selection = gr.Dropdown(label="Styles", elem_id=f"{tabname}_styles_edit_select", choices=list(shared.prompt_styles.styles), value=[], allow_custom_value=True, info="Styles allow you to add custom text to prompt. Use the {prompt} token in style text, and it will be replaced with user's prompt when applying style. Otherwise, style's text will be added to the end of the prompt.")
ui_common.create_refresh_button([self.dropdown, self.selection], shared.prompt_styles.reload, lambda: {"choices": list(shared.prompt_styles.styles)}, f"refresh_{tabname}_styles")
self.materialize = ui_components.ToolButton(value=styles_materialize_symbol, elem_id=f"{tabname}_style_apply", tooltip="Apply all selected styles from the style selction dropdown in main UI to the prompt.")
with gr.Row():
self.prompt = gr.Textbox(label="Prompt", show_label=True, elem_id=f"{tabname}_edit_style_prompt", lines=3)
with gr.Row():
self.neg_prompt = gr.Textbox(label="Negative prompt", show_label=True, elem_id=f"{tabname}_edit_style_neg_prompt", lines=3)
with gr.Row():
self.save = gr.Button('Save', variant='primary', elem_id=f'{tabname}_edit_style_save', visible=False)
self.delete = gr.Button('Delete', variant='primary', elem_id=f'{tabname}_edit_style_delete', visible=False)
self.close = gr.Button('Close', variant='secondary', elem_id=f'{tabname}_edit_style_close')
self.selection.change(
fn=select_style,
inputs=[self.selection],
outputs=[self.prompt, self.neg_prompt, self.delete, self.save],
show_progress=False,
)
self.save.click(
fn=save_style,
inputs=[self.selection, self.prompt, self.neg_prompt],
outputs=[self.delete],
show_progress=False,
).then(refresh_styles, outputs=[self.dropdown, self.selection], show_progress=False)
self.delete.click(
fn=delete_style,
_js='function(name){ if(name == "") return ""; return confirm("Delete style " + name + "?") ? name : ""; }',
inputs=[self.selection],
outputs=[self.selection, self.prompt, self.neg_prompt],
show_progress=False,
).then(refresh_styles, outputs=[self.dropdown, self.selection], show_progress=False)
self.materialize.click(
fn=materialize_styles,
inputs=[main_ui_prompt, main_ui_negative_prompt, self.dropdown],
outputs=[main_ui_prompt, main_ui_negative_prompt, self.dropdown],
show_progress=False,
).then(fn=None, _js="function(){update_"+tabname+"_tokens(); closePopup();}", show_progress=False)
ui_common.setup_dialog(button_show=edit_button, dialog=styles_dialog, button_close=self.close)

View File

@ -7,7 +7,7 @@ blendmodes
clean-fid
einops
gfpgan
gradio==3.36.1
gradio==3.39.0
inflection
jsonmerge
kornia

View File

@ -7,8 +7,8 @@ clean-fid==0.1.35
einops==0.4.1
fastapi==0.94.0
gfpgan==1.3.8
gradio==3.36.1
httpcore<=0.15
gradio==3.39.0
httpcore==0.15
inflection==0.5.1
jsonmerge==1.8.0
kornia==0.6.7
@ -17,7 +17,7 @@ numpy==1.23.5
omegaconf==2.2.3
open-clip-torch==2.20.0
piexif==1.1.3
psutil~=5.9.5
psutil==5.9.5
pytorch_lightning==1.9.4
realesrgan==0.3.0
resize-right==0.0.2
@ -29,4 +29,3 @@ torch
torchdiffeq==0.2.3
torchsde==0.2.5
transformers==4.30.2
diffusers==0.18.2

View File

@ -3,6 +3,7 @@ from copy import copy
from itertools import permutations, chain
import random
import csv
import os.path
from io import StringIO
from PIL import Image
import numpy as np
@ -10,7 +11,7 @@ import numpy as np
import modules.scripts as scripts
import gradio as gr
from modules import images, sd_samplers, processing, sd_models, sd_vae, sd_samplers_kdiffusion
from modules import images, sd_samplers, processing, sd_models, sd_vae, sd_samplers_kdiffusion, errors
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
from modules.shared import opts, state
import modules.shared as shared
@ -66,14 +67,6 @@ def apply_order(p, x, xs):
p.prompt = prompt_tmp + p.prompt
def apply_sampler(p, x, xs):
sampler_name = sd_samplers.samplers_map.get(x.lower(), None)
if sampler_name is None:
raise RuntimeError(f"Unknown sampler: {x}")
p.sampler_name = sampler_name
def confirm_samplers(p, xs):
for x in xs:
if x.lower() not in sd_samplers.samplers_map:
@ -144,11 +137,20 @@ def apply_face_restore(p, opt, x):
p.restore_faces = is_active
def apply_override(field):
def apply_override(field, boolean: bool = False):
def fun(p, x, xs):
if boolean:
x = True if x.lower() == "true" else False
p.override_settings[field] = x
return fun
def boolean_choice(reverse: bool = False):
def choice():
return ["False", "True"] if reverse else ["True", "False"]
return choice
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
@ -173,6 +175,8 @@ def do_nothing(p, x, xs):
def format_nothing(p, opt, x):
return ""
def format_remove_path(p, opt, x):
return os.path.basename(x)
def str_permutations(x):
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
@ -212,9 +216,10 @@ axis_options = [
AxisOptionImg2Img("Image CFG Scale", float, apply_field("image_cfg_scale")),
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
AxisOptionImg2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
AxisOptionTxt2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
AxisOptionTxt2Img("Hires sampler", str, apply_field("hr_sampler_name"), confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
AxisOptionImg2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_remove_path, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
AxisOption("Sigma Churn", float, apply_field("s_churn")),
AxisOption("Sigma min", float, apply_field("s_tmin")),
@ -235,6 +240,7 @@ axis_options = [
AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
AxisOption("Token merging ratio", float, apply_override('token_merging_ratio')),
AxisOption("Token merging ratio high-res", float, apply_override('token_merging_ratio_hr')),
AxisOption("Always discard next-to-last sigma", str, apply_override('always_discard_next_to_last_sigma', boolean=True), choices=boolean_choice(reverse=True)),
]
@ -638,7 +644,12 @@ class Script(scripts.Script):
y_opt.apply(pc, y, ys)
z_opt.apply(pc, z, zs)
try:
res = process_images(pc)
except Exception as e:
errors.display(e, "generating image for xyz plot")
res = Processed(p, [], p.seed, "")
# Sets subgrid infotexts
subgrid_index = 1 + iz

View File

@ -8,6 +8,7 @@
--checkbox-label-gap: 0.25em 0.1em;
--section-header-text-size: 12pt;
--block-background-fill: transparent;
}
.block.padded:not(.gradio-accordion) {
@ -42,7 +43,8 @@ div.form{
.block.gradio-radio,
.block.gradio-checkboxgroup,
.block.gradio-number,
.block.gradio-colorpicker
.block.gradio-colorpicker,
div.gradio-group
{
border-width: 0 !important;
box-shadow: none !important;
@ -133,6 +135,11 @@ a{
cursor: pointer;
}
div.styler{
border: none;
background: var(--background-fill-primary);
}
/* general styled components */
@ -164,7 +171,7 @@ a{
.checkboxes-row > div{
flex: 0;
white-space: nowrap;
min-width: auto;
min-width: auto !important;
}
button.custom-button{
@ -388,6 +395,7 @@ div#extras_scale_to_tab div.form{
#quicksettings > div, #quicksettings > fieldset{
max-width: 24em;
min-width: 24em;
width: 24em;
padding: 0;
border: none;
box-shadow: none;
@ -423,15 +431,16 @@ div#extras_scale_to_tab div.form{
}
table.popup-table{
background: white;
background: var(--body-background-fill);
color: var(--body-text-color);
border-collapse: collapse;
margin: 1em;
border: 4px solid white;
border: 4px solid var(--body-background-fill);
}
table.popup-table td{
padding: 0.4em;
border: 1px solid #ccc;
border: 1px solid rgba(128, 128, 128, 0.5);
max-width: 36em;
}
@ -841,7 +850,7 @@ footer {
.extra-network-cards .card .card-button {
text-shadow: 2px 2px 3px black;
padding: 0.25em;
padding: 0.25em 0.1em;
font-size: 200%;
width: 1.5em;
}
@ -957,6 +966,10 @@ div.block.gradio-box.edit-user-metadata {
text-align: left;
}
.edit-user-metadata .file-metadata th, .edit-user-metadata .file-metadata td{
padding: 0.3em 1em;
}
.edit-user-metadata .wrap.translucent{
background: var(--body-background-fill);
}
@ -967,3 +980,16 @@ div.block.gradio-box.edit-user-metadata {
.edit-user-metadata-buttons{
margin-top: 1.5em;
}
div.block.gradio-box.popup-dialog, .popup-dialog {
width: 56em;
background: var(--body-background-fill);
padding: 2em !important;
}
div.block.gradio-box.popup-dialog > div:last-child, .popup-dialog > div:last-child{
margin-top: 1em;
}

View File

@ -14,7 +14,6 @@ from typing import Iterable
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from packaging import version
import logging
@ -31,24 +30,26 @@ if log_level:
logging.getLogger("torch.distributed.nn").setLevel(logging.ERROR) # sshh...
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
from modules import paths, timer, import_hook, errors, devices # noqa: F401
from modules import timer
startup_timer = timer.startup_timer
startup_timer.record("launcher")
import torch
import pytorch_lightning # noqa: F401 # pytorch_lightning should be imported after torch, but it re-enables warnings on import so import once to disable them
warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning")
warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision")
startup_timer.record("import torch")
import gradio # noqa: F401
startup_timer.record("import gradio")
from modules import paths, timer, import_hook, errors, devices # noqa: F401
startup_timer.record("setup paths")
import ldm.modules.encoders.modules # noqa: F401
startup_timer.record("import ldm")
from modules import extra_networks
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, queue_lock # noqa: F401
@ -57,10 +58,15 @@ if ".dev" in torch.__version__ or "+git" in torch.__version__:
torch.__long_version__ = torch.__version__
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
from modules import shared, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states
from modules import shared
if not shared.cmd_opts.skip_version_check:
errors.check_versions()
import modules.codeformer_model as codeformer
import modules.face_restoration
import modules.gfpgan_model as gfpgan
from modules import sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states
import modules.face_restoration
import modules.img2img
import modules.lowvram
@ -129,37 +135,6 @@ def fix_asyncio_event_loop_policy():
asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
def check_versions():
if shared.cmd_opts.skip_version_check:
return
expected_torch_version = "2.0.0"
if version.parse(torch.__version__) < version.parse(expected_torch_version):
errors.print_error_explanation(f"""
You are running torch {torch.__version__}.
The program is tested to work with torch {expected_torch_version}.
To reinstall the desired version, run with commandline flag --reinstall-torch.
Beware that this will cause a lot of large files to be downloaded, as well as
there are reports of issues with training tab on the latest version.
Use --skip-version-check commandline argument to disable this check.
""".strip())
expected_xformers_version = "0.0.20"
if shared.xformers_available:
import xformers
if version.parse(xformers.__version__) < version.parse(expected_xformers_version):
errors.print_error_explanation(f"""
You are running xformers {xformers.__version__}.
The program is tested to work with xformers {expected_xformers_version}.
To reinstall the desired version, run with commandline flag --reinstall-xformers.
Use --skip-version-check commandline argument to disable this check.
""".strip())
def restore_config_state_file():
config_state_file = shared.opts.restore_config_state_file
if config_state_file == "":
@ -247,7 +222,6 @@ def initialize():
fix_asyncio_event_loop_policy()
validate_tls_options()
configure_sigint_handler()
check_versions()
modelloader.cleanup_models()
configure_opts_onchange()
@ -319,9 +293,9 @@ def initialize_rest(*, reload_script_modules=False):
if modules.sd_hijack.current_optimizer is None:
modules.sd_hijack.apply_optimizations()
Thread(target=load_model).start()
devices.first_time_calculation()
Thread(target=devices.first_time_calculation).start()
Thread(target=load_model).start()
shared.reload_hypernetworks()
startup_timer.record("reload hypernetworks")
@ -373,7 +347,7 @@ def api_only():
api.launch(
server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1",
port=cmd_opts.port if cmd_opts.port else 7861,
root_path = f"/{cmd_opts.subpath}"
root_path=f"/{cmd_opts.subpath}" if cmd_opts.subpath else ""
)
@ -406,7 +380,7 @@ def webui():
ssl_verify=cmd_opts.disable_tls_verify,
debug=cmd_opts.gradio_debug,
auth=gradio_auth_creds,
inbrowser=cmd_opts.autolaunch and os.getenv('SD_WEBUI_RESTARTING ') != '1',
inbrowser=cmd_opts.autolaunch and os.getenv('SD_WEBUI_RESTARTING') != '1',
prevent_thread_lock=True,
allowed_paths=cmd_opts.gradio_allowed_path,
app_kwargs={

View File

@ -4,8 +4,15 @@
# change the variables in webui-user.sh instead #
#################################################
use_venv=1
if [[ $venv_dir == "-" ]]; then
use_venv=0
fi
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
# If run from macOS, load defaults from webui-macos-env.sh
if [[ "$OSTYPE" == "darwin"* ]]; then
if [[ -f "$SCRIPT_DIR"/webui-macos-env.sh ]]
@ -47,7 +54,7 @@ then
fi
# python3 venv without trailing slash (defaults to ${install_dir}/${clone_dir}/venv)
if [[ -z "${venv_dir}" ]]
if [[ -z "${venv_dir}" ]] && [[ $use_venv -eq 1 ]]
then
venv_dir="venv"
fi
@ -164,7 +171,7 @@ do
fi
done
if ! "${python_cmd}" -c "import venv" &>/dev/null
if [[ $use_venv -eq 1 ]] && ! "${python_cmd}" -c "import venv" &>/dev/null
then
printf "\n%s\n" "${delimiter}"
printf "\e[1m\e[31mERROR: python3-venv is not installed, aborting...\e[0m"
@ -184,7 +191,7 @@ else
cd "${clone_dir}"/ || { printf "\e[1m\e[31mERROR: Can't cd to %s/%s/, aborting...\e[0m" "${install_dir}" "${clone_dir}"; exit 1; }
fi
if [[ -z "${VIRTUAL_ENV}" ]];
if [[ $use_venv -eq 1 ]] && [[ -z "${VIRTUAL_ENV}" ]];
then
printf "\n%s\n" "${delimiter}"
printf "Create and activate python venv"
@ -207,7 +214,7 @@ then
fi
else
printf "\n%s\n" "${delimiter}"
printf "python venv already activate: ${VIRTUAL_ENV}"
printf "python venv already activate or run without venv: ${VIRTUAL_ENV}"
printf "\n%s\n" "${delimiter}"
fi