use dataclass for StableDiffusionProcessing

This commit is contained in:
AUTOMATIC1111 2023-08-13 08:24:16 +03:00
parent fa9370b741
commit 599f61a1e0
2 changed files with 172 additions and 143 deletions

View File

@ -1,9 +1,11 @@
from __future__ import annotations
import json
import logging
import math
import os
import sys
import hashlib
from dataclasses import dataclass, field
import torch
import numpy as np
@ -11,7 +13,7 @@ from PIL import Image, ImageOps
import random
import cv2
from skimage import exposure
from typing import Any, Dict, List
from typing import Any
import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng
@ -104,106 +106,126 @@ def txt2img_image_conditioning(sd_model, x, width, height):
return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
@dataclass(repr=False)
class StableDiffusionProcessing:
"""
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
"""
sd_model: object = None
outpath_samples: str = None
outpath_grids: str = None
prompt: str = ""
prompt_for_display: str = None
negative_prompt: str = ""
styles: list[str] = field(default_factory=list)
seed: int = -1
subseed: int = -1
subseed_strength: float = 0
seed_resize_from_h: int = -1
seed_resize_from_w: int = -1
seed_enable_extras: bool = True
sampler_name: str = None
batch_size: int = 1
n_iter: int = 1
steps: int = 50
cfg_scale: float = 7.0
width: int = 512
height: int = 512
restore_faces: bool = None
tiling: bool = None
do_not_save_samples: bool = False
do_not_save_grid: bool = False
extra_generation_params: dict[str, Any] = None
overlay_images: list = None
eta: float = None
do_not_reload_embeddings: bool = False
denoising_strength: float = 0
ddim_discretize: str = None
s_min_uncond: float = None
s_churn: float = None
s_tmax: float = None
s_tmin: float = None
s_noise: float = None
override_settings: dict[str, Any] = None
override_settings_restore_afterwards: bool = True
sampler_index: int = None
refiner_checkpoint: str = None
refiner_switch_at: float = None
token_merging_ratio = 0
token_merging_ratio_hr = 0
disable_extra_networks: bool = False
script_args: list = None
cached_uc = [None, None]
cached_c = [None, None]
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = None, tiling: bool = None, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = None, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, refiner_checkpoint: str = None, refiner_switch_at: float = None, script_args: list = None):
if sampler_index is not None:
sampler: sd_samplers_common.Sampler | None = field(default=None, init=False)
is_using_inpainting_conditioning: bool = field(default=False, init=False)
paste_to: tuple | None = field(default=None, init=False)
is_hr_pass: bool = field(default=False, init=False)
c: tuple = field(default=None, init=False)
uc: tuple = field(default=None, init=False)
rng: rng.ImageRNG | None = field(default=None, init=False)
step_multiplier: int = field(default=1, init=False)
color_corrections: list = field(default=None, init=False)
scripts: list = field(default=None, init=False)
all_prompts: list = field(default=None, init=False)
all_negative_prompts: list = field(default=None, init=False)
all_seeds: list = field(default=None, init=False)
all_subseeds: list = field(default=None, init=False)
iteration: int = field(default=0, init=False)
main_prompt: str = field(default=None, init=False)
main_negative_prompt: str = field(default=None, init=False)
prompts: list = field(default=None, init=False)
negative_prompts: list = field(default=None, init=False)
seeds: list = field(default=None, init=False)
subseeds: list = field(default=None, init=False)
extra_network_data: dict = field(default=None, init=False)
user: str = field(default=None, init=False)
sd_model_name: str = field(default=None, init=False)
sd_model_hash: str = field(default=None, init=False)
sd_vae_name: str = field(default=None, init=False)
sd_vae_hash: str = field(default=None, init=False)
def __post_init__(self):
if self.sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids
self.prompt: str = prompt
self.prompt_for_display: str = None
self.negative_prompt: str = (negative_prompt or "")
self.styles: list = styles or []
self.seed: int = seed
self.subseed: int = subseed
self.subseed_strength: float = subseed_strength
self.seed_resize_from_h: int = seed_resize_from_h
self.seed_resize_from_w: int = seed_resize_from_w
self.sampler_name: str = sampler_name
self.batch_size: int = batch_size
self.n_iter: int = n_iter
self.steps: int = steps
self.cfg_scale: float = cfg_scale
self.width: int = width
self.height: int = height
self.restore_faces: bool = restore_faces
self.tiling: bool = tiling
self.do_not_save_samples: bool = do_not_save_samples
self.do_not_save_grid: bool = do_not_save_grid
self.extra_generation_params: dict = extra_generation_params or {}
self.overlay_images = overlay_images
self.eta = eta
self.do_not_reload_embeddings = do_not_reload_embeddings
self.paste_to = None
self.color_corrections = None
self.denoising_strength: float = denoising_strength
self.sampler_noise_scheduler_override = None
self.ddim_discretize = ddim_discretize or opts.ddim_discretize
self.s_min_uncond = s_min_uncond or opts.s_min_uncond
self.s_churn = s_churn or opts.s_churn
self.s_tmin = s_tmin or opts.s_tmin
self.s_tmax = (s_tmax if s_tmax is not None else opts.s_tmax) or float('inf')
self.s_noise = s_noise if s_noise is not None else opts.s_noise
self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
self.override_settings_restore_afterwards = override_settings_restore_afterwards
self.refiner_checkpoint = refiner_checkpoint
self.refiner_switch_at = refiner_switch_at
self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond
self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn
self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin
self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf')
self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise
self.extra_generation_params = self.extra_generation_params or {}
self.override_settings = self.override_settings or {}
self.script_args = self.script_args or {}
self.is_using_inpainting_conditioning = False
self.disable_extra_networks = False
self.token_merging_ratio = 0
self.token_merging_ratio_hr = 0
self.refiner_checkpoint_info = None
if not seed_enable_extras:
if not self.seed_enable_extras:
self.subseed = -1
self.subseed_strength = 0
self.seed_resize_from_h = 0
self.seed_resize_from_w = 0
self.scripts = None
self.script_args = script_args
self.all_prompts = None
self.all_negative_prompts = None
self.all_seeds = None
self.all_subseeds = None
self.iteration = 0
self.is_hr_pass = False
self.sampler = None
self.main_prompt = None
self.main_negative_prompt = None
self.prompts = None
self.negative_prompts = None
self.extra_network_data = None
self.seeds = None
self.subseeds = None
self.step_multiplier = 1
self.cached_uc = StableDiffusionProcessing.cached_uc
self.cached_c = StableDiffusionProcessing.cached_c
self.uc = None
self.c = None
self.rng: rng.ImageRNG = None
self.user = None
self.sd_model_name = None
self.sd_model_hash = None
self.sd_vae_name = None
self.sd_vae_hash = None
@property
def sd_model(self):
return shared.sd_model
@sd_model.setter
def sd_model(self, value):
pass
def txt2img_image_conditioning(self, x, width=None, height=None):
self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
@ -932,49 +954,51 @@ def old_hires_fix_first_pass_dimensions(width, height):
return width, height
@dataclass(repr=False)
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
sampler = None
enable_hr: bool = False
denoising_strength: float = 0.75
firstphase_width: int = 0
firstphase_height: int = 0
hr_scale: float = 2.0
hr_upscaler: str = None
hr_second_pass_steps: int = 0
hr_resize_x: int = 0
hr_resize_y: int = 0
hr_checkpoint_name: str = None
hr_sampler_name: str = None
hr_prompt: str = ''
hr_negative_prompt: str = ''
cached_hr_uc = [None, None]
cached_hr_c = [None, None]
def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_checkpoint_name: str = None, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs):
super().__init__(**kwargs)
self.enable_hr = enable_hr
self.denoising_strength = denoising_strength
self.hr_scale = hr_scale
self.hr_upscaler = hr_upscaler
self.hr_second_pass_steps = hr_second_pass_steps
self.hr_resize_x = hr_resize_x
self.hr_resize_y = hr_resize_y
self.hr_upscale_to_x = hr_resize_x
self.hr_upscale_to_y = hr_resize_y
self.hr_checkpoint_name = hr_checkpoint_name
self.hr_checkpoint_info = None
self.hr_sampler_name = hr_sampler_name
self.hr_prompt = hr_prompt
self.hr_negative_prompt = hr_negative_prompt
self.all_hr_prompts = None
self.all_hr_negative_prompts = None
self.latent_scale_mode = None
hr_checkpoint_info: dict = field(default=None, init=False)
hr_upscale_to_x: int = field(default=0, init=False)
hr_upscale_to_y: int = field(default=0, init=False)
truncate_x: int = field(default=0, init=False)
truncate_y: int = field(default=0, init=False)
applied_old_hires_behavior_to: tuple = field(default=None, init=False)
latent_scale_mode: dict = field(default=None, init=False)
hr_c: tuple | None = field(default=None, init=False)
hr_uc: tuple | None = field(default=None, init=False)
all_hr_prompts: list = field(default=None, init=False)
all_hr_negative_prompts: list = field(default=None, init=False)
hr_prompts: list = field(default=None, init=False)
hr_negative_prompts: list = field(default=None, init=False)
hr_extra_network_data: list = field(default=None, init=False)
if firstphase_width != 0 or firstphase_height != 0:
def __post_init__(self):
super().__post_init__()
if self.firstphase_width != 0 or self.firstphase_height != 0:
self.hr_upscale_to_x = self.width
self.hr_upscale_to_y = self.height
self.width = firstphase_width
self.height = firstphase_height
self.truncate_x = 0
self.truncate_y = 0
self.applied_old_hires_behavior_to = None
self.hr_prompts = None
self.hr_negative_prompts = None
self.hr_extra_network_data = None
self.width = self.firstphase_width
self.height = self.firstphase_height
self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc
self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c
self.hr_c = None
self.hr_uc = None
def calculate_target_resolution(self):
if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
@ -1252,7 +1276,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
return super().get_conds()
def parse_extra_network_prompts(self):
res = super().parse_extra_network_prompts()
@ -1265,32 +1288,37 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
return res
@dataclass(repr=False)
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None
init_images: list = None
resize_mode: int = 0
denoising_strength: float = 0.75
image_cfg_scale: float = None
mask: Any = None
mask_blur_x: int = 4
mask_blur_y: int = 4
mask_blur: int = None
inpainting_fill: int = 0
inpaint_full_res: bool = True
inpaint_full_res_padding: int = 0
inpainting_mask_invert: int = 0
initial_noise_multiplier: float = None
latent_mask: Image = None
def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = None, mask_blur_x: int = 4, mask_blur_y: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
super().__init__(**kwargs)
image_mask: Any = field(default=None, init=False)
self.init_images = init_images
self.resize_mode: int = resize_mode
self.denoising_strength: float = denoising_strength
self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
self.init_latent = None
self.image_mask = mask
self.latent_mask = None
self.mask_for_overlay = None
self.mask_blur_x = mask_blur_x
self.mask_blur_y = mask_blur_y
if mask_blur is not None:
self.mask_blur = mask_blur
self.inpainting_fill = inpainting_fill
self.inpaint_full_res = inpaint_full_res
self.inpaint_full_res_padding = inpaint_full_res_padding
self.inpainting_mask_invert = inpainting_mask_invert
self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
nmask: torch.Tensor = field(default=None, init=False)
image_conditioning: torch.Tensor = field(default=None, init=False)
init_img_hash: str = field(default=None, init=False)
mask_for_overlay: Image = field(default=None, init=False)
init_latent: torch.Tensor = field(default=None, init=False)
def __post_init__(self):
super().__post_init__()
self.image_mask = self.mask
self.mask = None
self.nmask = None
self.image_conditioning = None
self.initial_noise_multiplier = opts.initial_noise_multiplier if self.initial_noise_multiplier is None else self.initial_noise_multiplier
@property
def mask_blur(self):
@ -1300,15 +1328,13 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
@mask_blur.setter
def mask_blur(self, value):
self.mask_blur_x = value
self.mask_blur_y = value
@mask_blur.deleter
def mask_blur(self):
del self.mask_blur_x
del self.mask_blur_y
if isinstance(value, int):
self.mask_blur_x = value
self.mask_blur_y = value
def init(self, all_prompts, all_seeds, all_subseeds):
self.image_cfg_scale: float = self.image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
crop_region = None

View File

@ -305,5 +305,8 @@ class Sampler:
current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
raise NotImplementedError()
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
raise NotImplementedError()