Added caching optimizations and local config selection

This commit is contained in:
ynimmaga 2023-08-04 15:27:56 -07:00
commit 64ee9ff6bb

View File

@ -26,9 +26,20 @@ from modules.shared import opts, state
from PIL import Image, ImageOps from PIL import Image, ImageOps
from pathlib import Path from pathlib import Path
import openvino.frontend.pytorch.torchdynamo.backend # noqa: F401 #from openvino.frontend import FrontEndManager
from openvino.frontend.pytorch.torchdynamo.execute import partitioned_modules, compiled_cache # noqa: F401 from openvino.frontend.pytorch.torchdynamo import backend, compile # noqa: F401
from openvino.runtime import Core from openvino.frontend.pytorch.torchdynamo.execute import execute, partitioned_modules, compiled_cache # noqa: F401
from openvino.frontend.pytorch.torchdynamo.partition import Partitioner
from openvino.runtime import Core, Type, PartialShape #, serialize
from torch._dynamo.backends.common import fake_tensor_unsupported
from torch._dynamo.backends.registry import register_backend
from torch._inductor.compile_fx import compile_fx
#from torch.fx import GraphModule
from torch.fx.experimental.proxy_tensor import make_fx
#from typing import Callable, Optional
from hashlib import sha256
from diffusers import ( from diffusers import (
StableDiffusionPipeline, StableDiffusionPipeline,
@ -59,9 +70,98 @@ class ModelState:
self.width = 512 self.width = 512
self.batch_size = 1 self.batch_size = 1
self.mode = 0 self.mode = 0
self.partition_id = 0
self.model_hash = ""
model_state = ModelState() model_state = ModelState()
@register_backend
@fake_tensor_unsupported
def openvino_fx(subgraph, example_inputs):
try:
executor_parameters = None
core = Core()
if os.getenv("OPENVINO_TORCH_MODEL_CACHING") is not None:
model_hash_str = sha256(subgraph.code.encode('utf-8')).hexdigest()
model_hash_str_file = model_hash_str + str(model_state.partition_id)
model_state.partition_id = model_state.partition_id + 1
executor_parameters = {"model_hash_str": model_hash_str}
example_inputs.reverse()
cache_root = "./cache/"
if os.getenv("OPENVINO_TORCH_CACHE_DIR") is not None:
cache_root = os.getenv("OPENVINO_TORCH_CACHE_DIR")
device = "CPU"
if os.getenv("OPENVINO_TORCH_BACKEND_DEVICE") is not None:
device = os.getenv("OPENVINO_TORCH_BACKEND_DEVICE")
assert device in core.available_devices, "Specified device " + device + " is not in the list of OpenVINO Available Devices"
file_name = get_cached_file_name(*example_inputs, model_hash_str=model_hash_str_file, device=device, cache_root=cache_root)
if file_name is not None and os.path.isfile(file_name + ".xml") and os.path.isfile(file_name + ".bin"):
om = core.read_model(file_name + ".xml")
dtype_mapping = {
torch.float32: Type.f32,
torch.float64: Type.f64,
torch.float16: Type.f16,
torch.int64: Type.i64,
torch.int32: Type.i32,
torch.uint8: Type.u8,
torch.int8: Type.i8,
torch.bool: Type.boolean
}
for idx, input_data in enumerate(example_inputs):
om.inputs[idx].get_node().set_element_type(dtype_mapping[input_data.dtype])
om.inputs[idx].get_node().set_partial_shape(PartialShape(list(input_data.shape)))
om.validate_nodes_and_infer_types()
if model_hash_str is not None:
core.set_property({'CACHE_DIR': cache_root + '/blob'})
compiled_model = core.compile_model(om, device)
def _call(*args):
ov_inputs = [a.detach().cpu().numpy() for a in args]
ov_inputs.reverse()
res = compiled_model(ov_inputs)
result = [torch.from_numpy(res[out]) for out in compiled_model.outputs]
return result
return _call
else:
example_inputs.reverse()
model = make_fx(subgraph)(*example_inputs)
with torch.no_grad():
model.eval()
partitioner = Partitioner()
compiled_model = partitioner.make_partitions(model)
def _call(*args):
res = execute(compiled_model, *args, executor="openvino",
executor_parameters=executor_parameters)
return res
return _call
except Exception:
return compile_fx(subgraph, example_inputs)
def get_cached_file_name(*args, model_hash_str, device, cache_root):
file_name = None
if model_hash_str is not None:
model_cache_dir = cache_root + "/model/"
try:
os.makedirs(model_cache_dir, exist_ok=True)
file_name = model_cache_dir + model_hash_str + "_" + device
for input_data in args:
if file_name is not None:
file_name += "_" + str(input_data.type()) + str(input_data.size())[11:-1].replace(" ", "")
except OSError as error:
print("Cache directory ", cache_root, " cannot be created. Model caching is disabled. Error: ", error)
file_name = None
model_hash_str = None
return file_name
def from_single_file(self, pretrained_model_link_or_path, **kwargs): def from_single_file(self, pretrained_model_link_or_path, **kwargs):
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
@ -213,16 +313,18 @@ def set_scheduler(sd_model, sampler_name):
return sd_model.scheduler return sd_model.scheduler
def get_diffusers_sd_model(sampler_name, enable_caching, openvino_device, mode): def get_diffusers_sd_model(local_config, model_config, sampler_name, enable_caching, openvino_device, mode):
if (model_state.recompile == 1): if (model_state.recompile == 1):
torch._dynamo.reset() torch._dynamo.reset()
openvino_clear_caches() openvino_clear_caches()
curr_dir_path = os.getcwd() curr_dir_path = os.getcwd()
checkpoint_name = shared.opts.sd_model_checkpoint.split(" ")[0] checkpoint_name = shared.opts.sd_model_checkpoint.split(" ")[0]
checkpoint_path = os.path.join(curr_dir_path, 'models', 'Stable-diffusion', checkpoint_name) checkpoint_path = os.path.join(curr_dir_path, 'models', 'Stable-diffusion', checkpoint_name)
config_name = checkpoint_name.split(".")[0] + ".yaml" if local_config:
local_config_file = os.path.join(curr_dir_path, 'configs',config_name) local_config_file = os.path.join(curr_dir_path, 'configs', model_config)
sd_model = StableDiffusionPipeline.from_single_file(checkpoint_path, local_config_file=local_config_file, load_safety_checker=False) sd_model = StableDiffusionPipeline.from_single_file(checkpoint_path, local_config_file=local_config_file, load_safety_checker=False)
else:
sd_model = StableDiffusionPipeline.from_single_file(checkpoint_path, load_safety_checker=False, torch_dtype=torch.float32)
if (mode == 1): if (mode == 1):
sd_model = StableDiffusionImg2ImgPipeline(**sd_model.components) sd_model = StableDiffusionImg2ImgPipeline(**sd_model.components)
elif (mode == 2): elif (mode == 2):
@ -233,8 +335,8 @@ def get_diffusers_sd_model(sampler_name, enable_caching, openvino_device, mode):
sd_model.safety_checker = None sd_model.safety_checker = None
sd_model.cond_stage_key = functools.partial(cond_stage_key, shared.sd_model) sd_model.cond_stage_key = functools.partial(cond_stage_key, shared.sd_model)
sd_model.scheduler = set_scheduler(sd_model, sampler_name) sd_model.scheduler = set_scheduler(sd_model, sampler_name)
sd_model.unet = torch.compile(sd_model.unet, backend="openvino") sd_model.unet = torch.compile(sd_model.unet, backend="openvino_fx")
sd_model.vae.decode = torch.compile(sd_model.vae.decode, backend="openvino") sd_model.vae.decode = torch.compile(sd_model.vae.decode, backend="openvino_fx")
shared.sd_diffusers_model = sd_model shared.sd_diffusers_model = sd_model
del sd_model del sd_model
return shared.sd_diffusers_model return shared.sd_diffusers_model
@ -335,7 +437,7 @@ def init_new(self, all_prompts, all_seeds, all_subseeds):
raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less") raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
def process_images_openvino(p: StableDiffusionProcessing, sampler_name, enable_caching, openvino_device, mode) -> Processed: def process_images_openvino(p: StableDiffusionProcessing, local_config, model_config, sampler_name, enable_caching, openvino_device, mode) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch""" """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
if (mode == 0 and p.enable_hr): if (mode == 0 and p.enable_hr):
@ -406,14 +508,16 @@ def process_images_openvino(p: StableDiffusionProcessing, sampler_name, enable_c
if len(p.prompts) == 0: if len(p.prompts) == 0:
break break
if (model_state.height != p.height or model_state.width != p.width or model_state.batch_size != p.batch_size or model_state.mode != mode): if (model_state.height != p.height or model_state.width != p.width or model_state.batch_size != p.batch_size
or model_state.mode != mode or model_state.model_hash != shared.sd_model.sd_model_hash):
model_state.recompile = 1 model_state.recompile = 1
model_state.height = p.height model_state.height = p.height
model_state.width = p.width model_state.width = p.width
model_state.batch_size = p.batch_size model_state.batch_size = p.batch_size
model_state.mode = mode model_state.mode = mode
model_state.model_hash = shared.sd_model.sd_model_hash
shared.sd_diffusers_model = get_diffusers_sd_model(sampler_name, enable_caching, openvino_device, mode) shared.sd_diffusers_model = get_diffusers_sd_model(local_config, model_config, sampler_name, enable_caching, openvino_device, mode)
shared.sd_diffusers_model.scheduler = set_scheduler(shared.sd_diffusers_model, sampler_name) shared.sd_diffusers_model.scheduler = set_scheduler(shared.sd_diffusers_model, sampler_name)
extra_network_data = p.parse_extra_network_prompts() extra_network_data = p.parse_extra_network_prompts()
@ -604,6 +708,15 @@ class Script(scripts.Script):
def ui(self, is_img2img): def ui(self, is_img2img):
core = Core() core = Core()
config_dir_list = os.listdir(os.path.join(os.getcwd(), 'configs'))
config_list = []
for file in config_dir_list:
if file.endswith('.yaml'):
config_list.append(file)
local_config = gr.Checkbox(label="Use a local inference config file", value=False)
model_config = gr.Dropdown(label="Select a config for the model (Below config files are listed from the configs directory of the WebUI root)", choices=config_list, value="v1-inference.yaml", visible=False)
openvino_device = gr.Dropdown(label="Select a device", choices=list(core.available_devices), value=model_state.device) openvino_device = gr.Dropdown(label="Select a device", choices=list(core.available_devices), value=model_state.device)
override_sampler = gr.Checkbox(label="Override the sampling selection from the main UI (Recommended as only below sampling methods have been validated for OpenVINO)", value=True) override_sampler = gr.Checkbox(label="Override the sampling selection from the main UI (Recommended as only below sampling methods have been validated for OpenVINO)", value=True)
sampler_name = gr.Radio(label="Select a sampling method", choices=["Euler a", "Euler", "LMS", "Heun", "DPM++ 2M", "LMS Karras", "DPM++ 2M Karras", "DDIM", "PLMS"], value="Euler a") sampler_name = gr.Radio(label="Select a sampling method", choices=["Euler a", "Euler", "LMS", "Heun", "DPM++ 2M", "LMS Karras", "DPM++ 2M Karras", "DDIM", "PLMS"], value="Euler a")
@ -620,6 +733,13 @@ class Script(scripts.Script):
iterations use the cached compiled model for faster inference. iterations use the cached compiled model for faster inference.
""") """)
def local_config_change(choice):
if choice:
return gr.update(visible=True)
else:
return gr.update(visible=False)
local_config.change(local_config_change, local_config, model_config)
def device_change(choice): def device_change(choice):
if (model_state.device == choice): if (model_state.device == choice):
return gr.update(value="Device selected is " + choice, visible=True) return gr.update(value="Device selected is " + choice, visible=True)
@ -629,9 +749,10 @@ class Script(scripts.Script):
return gr.update(value="Device changed to " + choice + ". Model will be re-compiled", visible=True) return gr.update(value="Device changed to " + choice + ". Model will be re-compiled", visible=True)
openvino_device.change(device_change, openvino_device, warmup_status) openvino_device.change(device_change, openvino_device, warmup_status)
return [openvino_device, override_sampler, sampler_name, enable_caching] return [local_config, model_config, openvino_device, override_sampler, sampler_name, enable_caching]
def run(self, p, openvino_device, override_sampler, sampler_name, enable_caching): def run(self, p, local_config, model_config, openvino_device, override_sampler, sampler_name, enable_caching):
model_state.partition_id = 0
os.environ["OPENVINO_TORCH_BACKEND_DEVICE"] = str(openvino_device) os.environ["OPENVINO_TORCH_BACKEND_DEVICE"] = str(openvino_device)
if enable_caching: if enable_caching:
@ -648,14 +769,14 @@ class Script(scripts.Script):
mode = 0 mode = 0
if self.is_txt2img: if self.is_txt2img:
mode = 0 mode = 0
processed = process_images_openvino(p, p.sampler_name, enable_caching, openvino_device, mode) processed = process_images_openvino(p, local_config, model_config, p.sampler_name, enable_caching, openvino_device, mode)
else: else:
if p.image_mask is None: if p.image_mask is None:
mode = 1 mode = 1
else: else:
mode = 2 mode = 2
p.init = functools.partial(init_new, p) p.init = functools.partial(init_new, p)
processed = process_images_openvino(p, p.sampler_name, enable_caching, openvino_device, mode) processed = process_images_openvino(p, local_config, model_config, p.sampler_name, enable_caching, openvino_device, mode)
return processed return processed