diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py
index 17cbe1bb..bc722e90 100644
--- a/extensions-builtin/Lora/networks.py
+++ b/extensions-builtin/Lora/networks.py
@@ -195,6 +195,15 @@ def load_network(name, network_on_disk):
return net
+def purge_networks_from_memory():
+ while len(networks_in_memory) > shared.opts.lora_in_memory_limit and len(networks_in_memory) > 0:
+ name = next(iter(networks_in_memory))
+ networks_in_memory.pop(name, None)
+
+ devices.torch_gc()
+
+
+
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
already_loaded = {}
@@ -212,15 +221,19 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No
failed_to_load_networks = []
- for i, name in enumerate(names):
+ for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)):
net = already_loaded.get(name, None)
- network_on_disk = networks_on_disk[i]
-
if network_on_disk is not None:
+ if net is None:
+ net = networks_in_memory.get(name)
+
if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime:
try:
net = load_network(name, network_on_disk)
+
+ networks_in_memory.pop(name, None)
+ networks_in_memory[name] = net
except Exception as e:
errors.display(e, f"loading network {network_on_disk.filename}")
continue
@@ -242,6 +255,8 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No
if failed_to_load_networks:
sd_hijack.model_hijack.comments.append("Failed to find networks: " + ", ".join(failed_to_load_networks))
+ purge_networks_from_memory()
+
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
weights_backup = getattr(self, "network_weights_backup", None)
@@ -462,6 +477,7 @@ def infotext_pasted(infotext, params):
available_networks = {}
available_network_aliases = {}
loaded_networks = []
+networks_in_memory = {}
available_network_hash_lookup = {}
forbidden_network_aliases = {}
diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py
index cd28afc9..6ab8b6e7 100644
--- a/extensions-builtin/Lora/scripts/lora_script.py
+++ b/extensions-builtin/Lora/scripts/lora_script.py
@@ -65,6 +65,7 @@ shared.options_templates.update(shared.options_section(('extra_networks', "Extra
"lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"),
"lora_show_all": shared.OptionInfo(False, "Always show all networks on the Lora page").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"),
"lora_hide_unknown_for_versions": shared.OptionInfo([], "Hide networks of unknown versions for model versions", gr.CheckboxGroup, {"choices": ["SD1", "SD2", "SDXL"]}),
+ "lora_in_memory_limit": shared.OptionInfo(0, "Number of Lora networks to keep cached in memory", gr.Number, {"precision": 0}),
}))
@@ -121,3 +122,5 @@ def infotext_pasted(infotext, d):
script_callbacks.on_infotext_pasted(infotext_pasted)
+
+shared.opts.onchange("lora_in_memory_limit", networks.purge_networks_from_memory)
diff --git a/extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js b/extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js
index 30199dcd..e7616b98 100644
--- a/extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js
+++ b/extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js
@@ -42,6 +42,11 @@ onUiLoaded(async() => {
}
}
+ // Detect whether the element has a horizontal scroll bar
+ function hasHorizontalScrollbar(element) {
+ return element.scrollWidth > element.clientWidth;
+ }
+
// Function for defining the "Ctrl", "Shift" and "Alt" keys
function isModifierKey(event, key) {
switch (key) {
@@ -201,7 +206,8 @@ onUiLoaded(async() => {
canvas_hotkey_overlap: "KeyO",
canvas_disabled_functions: [],
canvas_show_tooltip: true,
- canvas_blur_prompt: false
+ canvas_auto_expand: true,
+ canvas_blur_prompt: false,
};
const functionMap = {
@@ -648,8 +654,32 @@ onUiLoaded(async() => {
mouseY = e.offsetY;
}
+ // Simulation of the function to put a long image into the screen.
+ // We detect if an image has a scroll bar or not, make a fullscreen to reveal the image, then reduce it to fit into the element.
+ // We hide the image and show it to the user when it is ready.
+ function autoExpand(e) {
+ const canvas = document.querySelector(`${elemId} canvas[key="interface"]`);
+ const isMainTab = activeElement === elementIDs.inpaint || activeElement === elementIDs.inpaintSketch || activeElement === elementIDs.sketch;
+
+ if (canvas && isMainTab) {
+ if (hasHorizontalScrollbar(targetElement)) {
+ targetElement.style.visibility = "hidden";
+ setTimeout(() => {
+ fitToScreen();
+ resetZoom();
+ targetElement.style.visibility = "visible";
+ }, 10);
+ }
+ }
+ }
+
targetElement.addEventListener("mousemove", getMousePosition);
+ // Apply auto expand if enabled
+ if (hotkeysConfig.canvas_auto_expand) {
+ targetElement.addEventListener("mousemove", autoExpand);
+ }
+
// Handle events only inside the targetElement
let isKeyDownHandlerAttached = false;
diff --git a/extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py b/extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py
index 380176ce..2d8d2d1c 100644
--- a/extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py
+++ b/extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py
@@ -9,6 +9,7 @@ shared.options_templates.update(shared.options_section(('canvas_hotkey', "Canvas
"canvas_hotkey_reset": shared.OptionInfo("R", "Reset zoom and canvas positon"),
"canvas_hotkey_overlap": shared.OptionInfo("O", "Toggle overlap").info("Technical button, neededs for testing"),
"canvas_show_tooltip": shared.OptionInfo(True, "Enable tooltip on the canvas"),
+ "canvas_auto_expand": shared.OptionInfo(True, "Automatically expands an image that does not fit completely in the canvas area, similar to manually pressing the S and R buttons"),
"canvas_blur_prompt": shared.OptionInfo(False, "Take the focus off the prompt when working with a canvas"),
"canvas_disabled_functions": shared.OptionInfo(["Overlap"], "Disable function that you don't use", gr.CheckboxGroup, {"choices": ["Zoom","Adjust brush size", "Moving canvas","Fullscreen","Reset Zoom","Overlap"]}),
}))
diff --git a/javascript/inputAccordion.js b/javascript/inputAccordion.js
new file mode 100644
index 00000000..f2839852
--- /dev/null
+++ b/javascript/inputAccordion.js
@@ -0,0 +1,37 @@
+var observerAccordionOpen = new MutationObserver(function(mutations) {
+ mutations.forEach(function(mutationRecord) {
+ var elem = mutationRecord.target;
+ var open = elem.classList.contains('open');
+
+ var accordion = elem.parentNode;
+ accordion.classList.toggle('input-accordion-open', open);
+
+ var checkbox = gradioApp().querySelector('#' + accordion.id + "-checkbox input");
+ checkbox.checked = open;
+ updateInput(checkbox);
+
+ var extra = gradioApp().querySelector('#' + accordion.id + "-extra");
+ if (extra) {
+ extra.style.display = open ? "" : "none";
+ }
+ });
+});
+
+function inputAccordionChecked(id, checked) {
+ var label = gradioApp().querySelector('#' + id + " .label-wrap");
+ if (label.classList.contains('open') != checked) {
+ label.click();
+ }
+}
+
+onUiLoaded(function() {
+ for (var accordion of gradioApp().querySelectorAll('.input-accordion')) {
+ var labelWrap = accordion.querySelector('.label-wrap');
+ observerAccordionOpen.observe(labelWrap, {attributes: true, attributeFilter: ['class']});
+
+ var extra = gradioApp().querySelector('#' + accordion.id + "-extra");
+ if (extra) {
+ labelWrap.insertBefore(extra, labelWrap.lastElementChild);
+ }
+ }
+});
diff --git a/modules/cmd_args.py b/modules/cmd_args.py
index 64f21e01..b0a11538 100644
--- a/modules/cmd_args.py
+++ b/modules/cmd_args.py
@@ -16,6 +16,7 @@ parser.add_argument("--test-server", action='store_true', help="launch.py argume
parser.add_argument("--log-startup", action='store_true', help="launch.py argument: print a detailed log of what's happening at startup")
parser.add_argument("--skip-prepare-environment", action='store_true', help="launch.py argument: skip all environment preparation")
parser.add_argument("--skip-install", action='store_true', help="launch.py argument: skip installation of packages")
+parser.add_argument("--loglevel", type=str, help="log level; one of: CRITICAL, ERROR, WARNING, INFO, DEBUG", default=None)
parser.add_argument("--do-not-download-clip", action='store_true', help="do not download CLIP model even if it's not included in the checkpoint")
parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored")
parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",)
diff --git a/modules/devices.py b/modules/devices.py
index 00a00b18..c01f0602 100644
--- a/modules/devices.py
+++ b/modules/devices.py
@@ -3,7 +3,7 @@ import contextlib
from functools import lru_cache
import torch
-from modules import errors, rng_philox
+from modules import errors, shared
if sys.platform == "darwin":
from modules import mac_specific
@@ -17,8 +17,6 @@ def has_mps() -> bool:
def get_cuda_device_string():
- from modules import shared
-
if shared.cmd_opts.device_id is not None:
return f"cuda:{shared.cmd_opts.device_id}"
@@ -40,8 +38,6 @@ def get_optimal_device():
def get_device_for(task):
- from modules import shared
-
if task in shared.cmd_opts.use_cpu:
return cpu
@@ -96,87 +92,7 @@ def cond_cast_float(input):
nv_rng = None
-def randn(seed, shape):
- """Generate a tensor with random numbers from a normal distribution using seed.
-
- Uses the seed parameter to set the global torch seed; to generate more with that seed, use randn_like/randn_without_seed."""
-
- from modules.shared import opts
-
- manual_seed(seed)
-
- if opts.randn_source == "NV":
- return torch.asarray(nv_rng.randn(shape), device=device)
-
- if opts.randn_source == "CPU" or device.type == 'mps':
- return torch.randn(shape, device=cpu).to(device)
-
- return torch.randn(shape, device=device)
-
-
-def randn_local(seed, shape):
- """Generate a tensor with random numbers from a normal distribution using seed.
-
- Does not change the global random number generator. You can only generate the seed's first tensor using this function."""
-
- from modules.shared import opts
-
- if opts.randn_source == "NV":
- rng = rng_philox.Generator(seed)
- return torch.asarray(rng.randn(shape), device=device)
-
- local_device = cpu if opts.randn_source == "CPU" or device.type == 'mps' else device
- local_generator = torch.Generator(local_device).manual_seed(int(seed))
- return torch.randn(shape, device=local_device, generator=local_generator).to(device)
-
-
-def randn_like(x):
- """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
-
- Use either randn() or manual_seed() to initialize the generator."""
-
- from modules.shared import opts
-
- if opts.randn_source == "NV":
- return torch.asarray(nv_rng.randn(x.shape), device=x.device, dtype=x.dtype)
-
- if opts.randn_source == "CPU" or x.device.type == 'mps':
- return torch.randn_like(x, device=cpu).to(x.device)
-
- return torch.randn_like(x)
-
-
-def randn_without_seed(shape):
- """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
-
- Use either randn() or manual_seed() to initialize the generator."""
-
- from modules.shared import opts
-
- if opts.randn_source == "NV":
- return torch.asarray(nv_rng.randn(shape), device=device)
-
- if opts.randn_source == "CPU" or device.type == 'mps':
- return torch.randn(shape, device=cpu).to(device)
-
- return torch.randn(shape, device=device)
-
-
-def manual_seed(seed):
- """Set up a global random number generator using the specified seed."""
- from modules.shared import opts
-
- if opts.randn_source == "NV":
- global nv_rng
- nv_rng = rng_philox.Generator(seed)
- return
-
- torch.manual_seed(seed)
-
-
def autocast(disable=False):
- from modules import shared
-
if disable:
return contextlib.nullcontext()
@@ -195,8 +111,6 @@ class NansException(Exception):
def test_for_nans(x, where):
- from modules import shared
-
if shared.cmd_opts.disable_nan_check:
return
@@ -236,3 +150,4 @@ def first_time_calculation():
x = torch.zeros((1, 1, 3, 3)).to(device, dtype)
conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype)
conv2d(x)
+
diff --git a/modules/extensions.py b/modules/extensions.py
index e4633af4..bf9a1878 100644
--- a/modules/extensions.py
+++ b/modules/extensions.py
@@ -1,7 +1,7 @@
import os
import threading
-from modules import shared, errors, cache
+from modules import shared, errors, cache, scripts
from modules.gitpython_hack import Repo
from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path # noqa: F401
@@ -90,8 +90,6 @@ class Extension:
self.have_info_from_repo = True
def list_files(self, subdir, extension):
- from modules import scripts
-
dirpath = os.path.join(self.path, subdir)
if not os.path.isdir(dirpath):
return []
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py
index 20e30b53..386517ac 100644
--- a/modules/generation_parameters_copypaste.py
+++ b/modules/generation_parameters_copypaste.py
@@ -6,7 +6,7 @@ import re
import gradio as gr
from modules.paths import data_path
-from modules import shared, ui_tempdir, script_callbacks
+from modules import shared, ui_tempdir, script_callbacks, processing
from PIL import Image
re_param_code = r'\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^\"])+"|[^,]*)(?:,|$)'
@@ -198,7 +198,6 @@ def restore_old_hires_fix_params(res):
height = int(res.get("Size-2", 512))
if firstpass_width == 0 or firstpass_height == 0:
- from modules import processing
firstpass_width, firstpass_height = processing.old_hires_fix_first_pass_dimensions(width, height)
res['Size-1'] = firstpass_width
@@ -317,36 +316,18 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
infotext_to_setting_name_mapping = [
- ('Clip skip', 'CLIP_stop_at_last_layers', ),
+
+]
+"""Mapping of infotext labels to setting names. Only left for backwards compatibility - use OptionInfo(..., infotext='...') instead.
+Example content:
+
+infotext_to_setting_name_mapping = [
('Conditional mask weight', 'inpainting_mask_weight'),
('Model hash', 'sd_model_checkpoint'),
('ENSD', 'eta_noise_seed_delta'),
('Schedule type', 'k_sched_type'),
- ('Schedule max sigma', 'sigma_max'),
- ('Schedule min sigma', 'sigma_min'),
- ('Schedule rho', 'rho'),
- ('Noise multiplier', 'initial_noise_multiplier'),
- ('Eta', 'eta_ancestral'),
- ('Eta DDIM', 'eta_ddim'),
- ('Sigma churn', 's_churn'),
- ('Sigma tmin', 's_tmin'),
- ('Sigma tmax', 's_tmax'),
- ('Sigma noise', 's_noise'),
- ('Discard penultimate sigma', 'always_discard_next_to_last_sigma'),
- ('UniPC variant', 'uni_pc_variant'),
- ('UniPC skip type', 'uni_pc_skip_type'),
- ('UniPC order', 'uni_pc_order'),
- ('UniPC lower order final', 'uni_pc_lower_order_final'),
- ('Token merging ratio', 'token_merging_ratio'),
- ('Token merging ratio hr', 'token_merging_ratio_hr'),
- ('RNG', 'randn_source'),
- ('NGMS', 's_min_uncond'),
- ('Pad conds', 'pad_cond_uncond'),
- ('VAE Encoder', 'sd_vae_encode_method'),
- ('VAE Decoder', 'sd_vae_decode_method'),
- ('Refiner', 'sd_refiner_checkpoint'),
- ('Refiner switch at', 'sd_refiner_switch_at'),
]
+"""
def create_override_settings_dict(text_pairs):
@@ -367,7 +348,8 @@ def create_override_settings_dict(text_pairs):
params[k] = v.strip()
- for param_name, setting_name in infotext_to_setting_name_mapping:
+ mapping = [(info.infotext, k) for k, info in shared.opts.data_labels.items() if info.infotext]
+ for param_name, setting_name in mapping + infotext_to_setting_name_mapping:
value = params.get(param_name, None)
if value is None:
@@ -421,7 +403,8 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component,
def paste_settings(params):
vals = {}
- for param_name, setting_name in infotext_to_setting_name_mapping:
+ mapping = [(info.infotext, k) for k, info in shared.opts.data_labels.items() if info.infotext]
+ for param_name, setting_name in mapping + infotext_to_setting_name_mapping:
if param_name in already_handled_fields:
continue
diff --git a/modules/gradio_extensons.py b/modules/gradio_extensons.py
index 5af7fd8e..77c34c8b 100644
--- a/modules/gradio_extensons.py
+++ b/modules/gradio_extensons.py
@@ -1,6 +1,6 @@
import gradio as gr
-from modules import scripts
+from modules import scripts, ui_tempdir
def add_classes_to_gradio_component(comp):
"""
@@ -58,3 +58,5 @@ original_BlockContext_init = gr.blocks.BlockContext.__init__
gr.components.IOComponent.__init__ = IOComponent_init
gr.blocks.Block.get_config = Block_get_config
gr.blocks.BlockContext.__init__ = BlockContext_init
+
+ui_tempdir.install_ui_tempdir_override()
diff --git a/modules/images.py b/modules/images.py
index ba3c43a4..019c1d60 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -21,8 +21,6 @@ from modules import sd_samplers, shared, script_callbacks, errors
from modules.paths_internal import roboto_ttf_file
from modules.shared import opts
-import modules.sd_vae as sd_vae
-
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
@@ -342,16 +340,6 @@ def sanitize_filename_part(text, replace_spaces=True):
class FilenameGenerator:
- def get_vae_filename(self): #get the name of the VAE file.
- if sd_vae.loaded_vae_file is None:
- return "NoneType"
- file_name = os.path.basename(sd_vae.loaded_vae_file)
- split_file_name = file_name.split('.')
- if len(split_file_name) > 1 and split_file_name[0] == '':
- return split_file_name[1] # if the first character of the filename is "." then [1] is obtained.
- else:
- return split_file_name[0]
-
replacements = {
'seed': lambda self: self.seed if self.seed is not None else '',
'seed_first': lambda self: self.seed if self.p.batch_size == 1 else self.p.all_seeds[0],
@@ -391,6 +379,22 @@ class FilenameGenerator:
self.image = image
self.zip = zip
+ def get_vae_filename(self):
+ """Get the name of the VAE file."""
+
+ import modules.sd_vae as sd_vae
+
+ if sd_vae.loaded_vae_file is None:
+ return "NoneType"
+
+ file_name = os.path.basename(sd_vae.loaded_vae_file)
+ split_file_name = file_name.split('.')
+ if len(split_file_name) > 1 and split_file_name[0] == '':
+ return split_file_name[1] # if the first character of the filename is "." then [1] is obtained.
+ else:
+ return split_file_name[0]
+
+
def hasprompt(self, *args):
lower = self.prompt.lower()
if self.p is None or self.prompt is None:
diff --git a/modules/img2img.py b/modules/img2img.py
index e06ac1d6..c7bbbac8 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -116,7 +116,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
process_images(p)
-def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_name: str, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, request: gr.Request, *args):
+def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_name: str, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, request: gr.Request, *args):
override_settings = create_override_settings_dict(override_settings_texts)
is_batch = mode == 5
@@ -179,8 +179,6 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
cfg_scale=cfg_scale,
width=width,
height=height,
- restore_faces=restore_faces,
- tiling=tiling,
init_images=[image],
mask=mask,
mask_blur=mask_blur,
diff --git a/modules/initialize.py b/modules/initialize.py
new file mode 100644
index 00000000..f24f7637
--- /dev/null
+++ b/modules/initialize.py
@@ -0,0 +1,168 @@
+import importlib
+import logging
+import sys
+import warnings
+from threading import Thread
+
+from modules.timer import startup_timer
+
+
+def imports():
+ logging.getLogger("torch.distributed.nn").setLevel(logging.ERROR) # sshh...
+ logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
+
+ import torch # noqa: F401
+ startup_timer.record("import torch")
+ import pytorch_lightning # noqa: F401
+ startup_timer.record("import torch")
+ warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning")
+ warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision")
+
+ import gradio # noqa: F401
+ startup_timer.record("import gradio")
+
+ from modules import paths, timer, import_hook, errors # noqa: F401
+ startup_timer.record("setup paths")
+
+ import ldm.modules.encoders.modules # noqa: F401
+ startup_timer.record("import ldm")
+
+ import sgm.modules.encoders.modules # noqa: F401
+ startup_timer.record("import sgm")
+
+ from modules import shared_init
+ shared_init.initialize()
+ startup_timer.record("initialize shared")
+
+ from modules import processing, gradio_extensons, ui # noqa: F401
+ startup_timer.record("other imports")
+
+
+def check_versions():
+ from modules.shared_cmd_options import cmd_opts
+
+ if not cmd_opts.skip_version_check:
+ from modules import errors
+ errors.check_versions()
+
+
+def initialize():
+ from modules import initialize_util
+ initialize_util.fix_torch_version()
+ initialize_util.fix_asyncio_event_loop_policy()
+ initialize_util.validate_tls_options()
+ initialize_util.configure_sigint_handler()
+ initialize_util.configure_opts_onchange()
+
+ from modules import modelloader
+ modelloader.cleanup_models()
+
+ from modules import sd_models
+ sd_models.setup_model()
+ startup_timer.record("setup SD model")
+
+ from modules.shared_cmd_options import cmd_opts
+
+ from modules import codeformer_model
+ warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision.transforms.functional_tensor")
+ codeformer_model.setup_model(cmd_opts.codeformer_models_path)
+ startup_timer.record("setup codeformer")
+
+ from modules import gfpgan_model
+ gfpgan_model.setup_model(cmd_opts.gfpgan_models_path)
+ startup_timer.record("setup gfpgan")
+
+ initialize_rest(reload_script_modules=False)
+
+
+def initialize_rest(*, reload_script_modules=False):
+ """
+ Called both from initialize() and when reloading the webui.
+ """
+ from modules.shared_cmd_options import cmd_opts
+
+ from modules import sd_samplers
+ sd_samplers.set_samplers()
+ startup_timer.record("set samplers")
+
+ from modules import extensions
+ extensions.list_extensions()
+ startup_timer.record("list extensions")
+
+ from modules import initialize_util
+ initialize_util.restore_config_state_file()
+ startup_timer.record("restore config state file")
+
+ from modules import shared, upscaler, scripts
+ if cmd_opts.ui_debug_mode:
+ shared.sd_upscalers = upscaler.UpscalerLanczos().scalers
+ scripts.load_scripts()
+ return
+
+ from modules import sd_models
+ sd_models.list_models()
+ startup_timer.record("list SD models")
+
+ from modules import localization
+ localization.list_localizations(cmd_opts.localizations_dir)
+ startup_timer.record("list localizations")
+
+ with startup_timer.subcategory("load scripts"):
+ scripts.load_scripts()
+
+ if reload_script_modules:
+ for module in [module for name, module in sys.modules.items() if name.startswith("modules.ui")]:
+ importlib.reload(module)
+ startup_timer.record("reload script modules")
+
+ from modules import modelloader
+ modelloader.load_upscalers()
+ startup_timer.record("load upscalers")
+
+ from modules import sd_vae
+ sd_vae.refresh_vae_list()
+ startup_timer.record("refresh VAE")
+
+ from modules import textual_inversion
+ textual_inversion.textual_inversion.list_textual_inversion_templates()
+ startup_timer.record("refresh textual inversion templates")
+
+ from modules import script_callbacks, sd_hijack_optimizations, sd_hijack
+ script_callbacks.on_list_optimizers(sd_hijack_optimizations.list_optimizers)
+ sd_hijack.list_optimizers()
+ startup_timer.record("scripts list_optimizers")
+
+ from modules import sd_unet
+ sd_unet.list_unets()
+ startup_timer.record("scripts list_unets")
+
+ def load_model():
+ """
+ Accesses shared.sd_model property to load model.
+ After it's available, if it has been loaded before this access by some extension,
+ its optimization may be None because the list of optimizaers has neet been filled
+ by that time, so we apply optimization again.
+ """
+
+ shared.sd_model # noqa: B018
+
+ if sd_hijack.current_optimizer is None:
+ sd_hijack.apply_optimizations()
+
+ from modules import devices
+ devices.first_time_calculation()
+
+ Thread(target=load_model).start()
+
+ from modules import shared_items
+ shared_items.reload_hypernetworks()
+ startup_timer.record("reload hypernetworks")
+
+ from modules import ui_extra_networks
+ ui_extra_networks.initialize()
+ ui_extra_networks.register_default_pages()
+
+ from modules import extra_networks
+ extra_networks.initialize()
+ extra_networks.register_default_extra_networks()
+ startup_timer.record("initialize extra networks")
diff --git a/modules/initialize_util.py b/modules/initialize_util.py
new file mode 100644
index 00000000..d8370576
--- /dev/null
+++ b/modules/initialize_util.py
@@ -0,0 +1,183 @@
+import json
+import os
+import signal
+import sys
+import re
+
+from modules.timer import startup_timer
+
+
+def gradio_server_name():
+ from modules.shared_cmd_options import cmd_opts
+
+ if cmd_opts.server_name:
+ return cmd_opts.server_name
+ else:
+ return "0.0.0.0" if cmd_opts.listen else None
+
+
+def fix_torch_version():
+ import torch
+
+ # Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
+ if ".dev" in torch.__version__ or "+git" in torch.__version__:
+ torch.__long_version__ = torch.__version__
+ torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
+
+
+def fix_asyncio_event_loop_policy():
+ """
+ The default `asyncio` event loop policy only automatically creates
+ event loops in the main threads. Other threads must create event
+ loops explicitly or `asyncio.get_event_loop` (and therefore
+ `.IOLoop.current`) will fail. Installing this policy allows event
+ loops to be created automatically on any thread, matching the
+ behavior of Tornado versions prior to 5.0 (or 5.0 on Python 2).
+ """
+
+ import asyncio
+
+ if sys.platform == "win32" and hasattr(asyncio, "WindowsSelectorEventLoopPolicy"):
+ # "Any thread" and "selector" should be orthogonal, but there's not a clean
+ # interface for composing policies so pick the right base.
+ _BasePolicy = asyncio.WindowsSelectorEventLoopPolicy # type: ignore
+ else:
+ _BasePolicy = asyncio.DefaultEventLoopPolicy
+
+ class AnyThreadEventLoopPolicy(_BasePolicy): # type: ignore
+ """Event loop policy that allows loop creation on any thread.
+ Usage::
+
+ asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
+ """
+
+ def get_event_loop(self) -> asyncio.AbstractEventLoop:
+ try:
+ return super().get_event_loop()
+ except (RuntimeError, AssertionError):
+ # This was an AssertionError in python 3.4.2 (which ships with debian jessie)
+ # and changed to a RuntimeError in 3.4.3.
+ # "There is no current event loop in thread %r"
+ loop = self.new_event_loop()
+ self.set_event_loop(loop)
+ return loop
+
+ asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
+
+
+def restore_config_state_file():
+ from modules import shared, config_states
+
+ config_state_file = shared.opts.restore_config_state_file
+ if config_state_file == "":
+ return
+
+ shared.opts.restore_config_state_file = ""
+ shared.opts.save(shared.config_filename)
+
+ if os.path.isfile(config_state_file):
+ print(f"*** About to restore extension state from file: {config_state_file}")
+ with open(config_state_file, "r", encoding="utf-8") as f:
+ config_state = json.load(f)
+ config_states.restore_extension_config(config_state)
+ startup_timer.record("restore extension config")
+ elif config_state_file:
+ print(f"!!! Config state backup not found: {config_state_file}")
+
+
+def validate_tls_options():
+ from modules.shared_cmd_options import cmd_opts
+
+ if not (cmd_opts.tls_keyfile and cmd_opts.tls_certfile):
+ return
+
+ try:
+ if not os.path.exists(cmd_opts.tls_keyfile):
+ print("Invalid path to TLS keyfile given")
+ if not os.path.exists(cmd_opts.tls_certfile):
+ print(f"Invalid path to TLS certfile: '{cmd_opts.tls_certfile}'")
+ except TypeError:
+ cmd_opts.tls_keyfile = cmd_opts.tls_certfile = None
+ print("TLS setup invalid, running webui without TLS")
+ else:
+ print("Running with TLS")
+ startup_timer.record("TLS")
+
+
+def get_gradio_auth_creds():
+ """
+ Convert the gradio_auth and gradio_auth_path commandline arguments into
+ an iterable of (username, password) tuples.
+ """
+ from modules.shared_cmd_options import cmd_opts
+
+ def process_credential_line(s):
+ s = s.strip()
+ if not s:
+ return None
+ return tuple(s.split(':', 1))
+
+ if cmd_opts.gradio_auth:
+ for cred in cmd_opts.gradio_auth.split(','):
+ cred = process_credential_line(cred)
+ if cred:
+ yield cred
+
+ if cmd_opts.gradio_auth_path:
+ with open(cmd_opts.gradio_auth_path, 'r', encoding="utf8") as file:
+ for line in file.readlines():
+ for cred in line.strip().split(','):
+ cred = process_credential_line(cred)
+ if cred:
+ yield cred
+
+
+def configure_sigint_handler():
+ # make the program just exit at ctrl+c without waiting for anything
+ def sigint_handler(sig, frame):
+ print(f'Interrupted with signal {sig} in {frame}')
+ os._exit(0)
+
+ if not os.environ.get("COVERAGE_RUN"):
+ # Don't install the immediate-quit handler when running under coverage,
+ # as then the coverage report won't be generated.
+ signal.signal(signal.SIGINT, sigint_handler)
+
+
+def configure_opts_onchange():
+ from modules import shared, sd_models, sd_vae, ui_tempdir, sd_hijack
+ from modules.call_queue import wrap_queued_call
+
+ shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False)
+ shared.opts.onchange("sd_vae", wrap_queued_call(lambda: sd_vae.reload_vae_weights()), call=False)
+ shared.opts.onchange("sd_vae_overrides_per_model_preferences", wrap_queued_call(lambda: sd_vae.reload_vae_weights()), call=False)
+ shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
+ shared.opts.onchange("gradio_theme", shared.reload_gradio_theme)
+ shared.opts.onchange("cross_attention_optimization", wrap_queued_call(lambda: sd_hijack.model_hijack.redo_hijack(shared.sd_model)), call=False)
+ startup_timer.record("opts onchange")
+
+
+def setup_middleware(app):
+ from starlette.middleware.gzip import GZipMiddleware
+
+ app.middleware_stack = None # reset current middleware to allow modifying user provided list
+ app.add_middleware(GZipMiddleware, minimum_size=1000)
+ configure_cors_middleware(app)
+ app.build_middleware_stack() # rebuild middleware stack on-the-fly
+
+
+def configure_cors_middleware(app):
+ from starlette.middleware.cors import CORSMiddleware
+ from modules.shared_cmd_options import cmd_opts
+
+ cors_options = {
+ "allow_methods": ["*"],
+ "allow_headers": ["*"],
+ "allow_credentials": True,
+ }
+ if cmd_opts.cors_allow_origins:
+ cors_options["allow_origins"] = cmd_opts.cors_allow_origins.split(',')
+ if cmd_opts.cors_allow_origins_regex:
+ cors_options["allow_origin_regex"] = cmd_opts.cors_allow_origins_regex
+ app.add_middleware(CORSMiddleware, **cors_options)
+
diff --git a/modules/launch_utils.py b/modules/launch_utils.py
index 5be30a18..90c00dd2 100644
--- a/modules/launch_utils.py
+++ b/modules/launch_utils.py
@@ -1,4 +1,5 @@
# this scripts installs necessary requirements and launches main program in webui.py
+import logging
import re
import subprocess
import os
@@ -11,8 +12,10 @@ from functools import lru_cache
from modules import cmd_args, errors
from modules.paths_internal import script_path, extensions_dir
from modules.timer import startup_timer
+from modules import logging_config
args, _ = cmd_args.parser.parse_known_args()
+logging_config.setup_logging(args.loglevel)
python = sys.executable
git = os.environ.get('GIT', "git")
@@ -249,6 +252,8 @@ def run_extensions_installers(settings_file):
with startup_timer.subcategory("run extensions installers"):
for dirname_extension in list_extensions(settings_file):
+ logging.debug(f"Installing {dirname_extension}")
+
path = os.path.join(extensions_dir, dirname_extension)
if os.path.isdir(path):
diff --git a/modules/localization.py b/modules/localization.py
index e8f585da..c1320288 100644
--- a/modules/localization.py
+++ b/modules/localization.py
@@ -1,7 +1,7 @@
import json
import os
-from modules import errors
+from modules import errors, scripts
localizations = {}
@@ -16,7 +16,6 @@ def list_localizations(dirname):
localizations[fn] = os.path.join(dirname, file)
- from modules import scripts
for file in scripts.list_scripts("localizations", ".json"):
fn, ext = os.path.splitext(file.filename)
localizations[fn] = file.path
diff --git a/modules/logging_config.py b/modules/logging_config.py
new file mode 100644
index 00000000..7db23d4b
--- /dev/null
+++ b/modules/logging_config.py
@@ -0,0 +1,16 @@
+import os
+import logging
+
+
+def setup_logging(loglevel):
+ if loglevel is None:
+ loglevel = os.environ.get("SD_WEBUI_LOG_LEVEL")
+
+ if loglevel:
+ log_level = getattr(logging, loglevel.upper(), None) or logging.INFO
+ logging.basicConfig(
+ level=log_level,
+ format='%(asctime)s %(levelname)s [%(name)s] %(message)s',
+ datefmt='%Y-%m-%d %H:%M:%S',
+ )
+
diff --git a/modules/mac_specific.py b/modules/mac_specific.py
index 9ceb43ba..bce527cc 100644
--- a/modules/mac_specific.py
+++ b/modules/mac_specific.py
@@ -4,6 +4,7 @@ import torch
import platform
from modules.sd_hijack_utils import CondFunc
from packaging import version
+from modules import shared
log = logging.getLogger(__name__)
@@ -30,8 +31,7 @@ has_mps = check_for_mps()
def torch_mps_gc() -> None:
try:
- from modules.shared import state
- if state.current_latent is not None:
+ if shared.state.current_latent is not None:
log.debug("`current_latent` is set, skipping MPS garbage collection")
return
from torch.mps import empty_cache
diff --git a/modules/options.py b/modules/options.py
new file mode 100644
index 00000000..db1fb157
--- /dev/null
+++ b/modules/options.py
@@ -0,0 +1,238 @@
+import json
+import sys
+
+import gradio as gr
+
+from modules import errors
+from modules.shared_cmd_options import cmd_opts
+
+
+class OptionInfo:
+ def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before='', comment_after='', infotext=None):
+ self.default = default
+ self.label = label
+ self.component = component
+ self.component_args = component_args
+ self.onchange = onchange
+ self.section = section
+ self.refresh = refresh
+ self.do_not_save = False
+
+ self.comment_before = comment_before
+ """HTML text that will be added after label in UI"""
+
+ self.comment_after = comment_after
+ """HTML text that will be added before label in UI"""
+
+ self.infotext = infotext
+
+ def link(self, label, url):
+ self.comment_before += f"[{label}]"
+ return self
+
+ def js(self, label, js_func):
+ self.comment_before += f"[{label}]"
+ return self
+
+ def info(self, info):
+ self.comment_after += f"({info})"
+ return self
+
+ def html(self, html):
+ self.comment_after += html
+ return self
+
+ def needs_restart(self):
+ self.comment_after += " (requires restart)"
+ return self
+
+ def needs_reload_ui(self):
+ self.comment_after += " (requires Reload UI)"
+ return self
+
+
+class OptionHTML(OptionInfo):
+ def __init__(self, text):
+ super().__init__(str(text).strip(), label='', component=lambda **kwargs: gr.HTML(elem_classes="settings-info", **kwargs))
+
+ self.do_not_save = True
+
+
+def options_section(section_identifier, options_dict):
+ for v in options_dict.values():
+ v.section = section_identifier
+
+ return options_dict
+
+
+options_builtin_fields = {"data_labels", "data", "restricted_opts", "typemap"}
+
+
+class Options:
+ typemap = {int: float}
+
+ def __init__(self, data_labels, restricted_opts):
+ self.data_labels = data_labels
+ self.data = {k: v.default for k, v in self.data_labels.items()}
+ self.restricted_opts = restricted_opts
+
+ def __setattr__(self, key, value):
+ if key in options_builtin_fields:
+ return super(Options, self).__setattr__(key, value)
+
+ if self.data is not None:
+ if key in self.data or key in self.data_labels:
+ assert not cmd_opts.freeze_settings, "changing settings is disabled"
+
+ info = self.data_labels.get(key, None)
+ if info.do_not_save:
+ return
+
+ comp_args = info.component_args if info else None
+ if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
+ raise RuntimeError(f"not possible to set {key} because it is restricted")
+
+ if cmd_opts.hide_ui_dir_config and key in self.restricted_opts:
+ raise RuntimeError(f"not possible to set {key} because it is restricted")
+
+ self.data[key] = value
+ return
+
+ return super(Options, self).__setattr__(key, value)
+
+ def __getattr__(self, item):
+ if item in options_builtin_fields:
+ return super(Options, self).__getattribute__(item)
+
+ if self.data is not None:
+ if item in self.data:
+ return self.data[item]
+
+ if item in self.data_labels:
+ return self.data_labels[item].default
+
+ return super(Options, self).__getattribute__(item)
+
+ def set(self, key, value):
+ """sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
+
+ oldval = self.data.get(key, None)
+ if oldval == value:
+ return False
+
+ if self.data_labels[key].do_not_save:
+ return False
+
+ try:
+ setattr(self, key, value)
+ except RuntimeError:
+ return False
+
+ if self.data_labels[key].onchange is not None:
+ try:
+ self.data_labels[key].onchange()
+ except Exception as e:
+ errors.display(e, f"changing setting {key} to {value}")
+ setattr(self, key, oldval)
+ return False
+
+ return True
+
+ def get_default(self, key):
+ """returns the default value for the key"""
+
+ data_label = self.data_labels.get(key)
+ if data_label is None:
+ return None
+
+ return data_label.default
+
+ def save(self, filename):
+ assert not cmd_opts.freeze_settings, "saving settings is disabled"
+
+ with open(filename, "w", encoding="utf8") as file:
+ json.dump(self.data, file, indent=4)
+
+ def same_type(self, x, y):
+ if x is None or y is None:
+ return True
+
+ type_x = self.typemap.get(type(x), type(x))
+ type_y = self.typemap.get(type(y), type(y))
+
+ return type_x == type_y
+
+ def load(self, filename):
+ with open(filename, "r", encoding="utf8") as file:
+ self.data = json.load(file)
+
+ # 1.6.0 VAE defaults
+ if self.data.get('sd_vae_as_default') is not None and self.data.get('sd_vae_overrides_per_model_preferences') is None:
+ self.data['sd_vae_overrides_per_model_preferences'] = not self.data.get('sd_vae_as_default')
+
+ # 1.1.1 quicksettings list migration
+ if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None:
+ self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')]
+
+ # 1.4.0 ui_reorder
+ if isinstance(self.data.get('ui_reorder'), str) and self.data.get('ui_reorder') and "ui_reorder_list" not in self.data:
+ self.data['ui_reorder_list'] = [i.strip() for i in self.data.get('ui_reorder').split(',')]
+
+ bad_settings = 0
+ for k, v in self.data.items():
+ info = self.data_labels.get(k, None)
+ if info is not None and not self.same_type(info.default, v):
+ print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr)
+ bad_settings += 1
+
+ if bad_settings > 0:
+ print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
+
+ def onchange(self, key, func, call=True):
+ item = self.data_labels.get(key)
+ item.onchange = func
+
+ if call:
+ func()
+
+ def dumpjson(self):
+ d = {k: self.data.get(k, v.default) for k, v in self.data_labels.items()}
+ d["_comments_before"] = {k: v.comment_before for k, v in self.data_labels.items() if v.comment_before is not None}
+ d["_comments_after"] = {k: v.comment_after for k, v in self.data_labels.items() if v.comment_after is not None}
+ return json.dumps(d)
+
+ def add_option(self, key, info):
+ self.data_labels[key] = info
+
+ def reorder(self):
+ """reorder settings so that all items related to section always go together"""
+
+ section_ids = {}
+ settings_items = self.data_labels.items()
+ for _, item in settings_items:
+ if item.section not in section_ids:
+ section_ids[item.section] = len(section_ids)
+
+ self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section]))
+
+ def cast_value(self, key, value):
+ """casts an arbitrary to the same type as this setting's value with key
+ Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
+ """
+
+ if value is None:
+ return None
+
+ default_value = self.data_labels[key].default
+ if default_value is None:
+ default_value = getattr(self, key, None)
+ if default_value is None:
+ return None
+
+ expected_type = type(default_value)
+ if expected_type == bool and value == "False":
+ value = False
+ else:
+ value = expected_type(value)
+
+ return value
diff --git a/modules/processing.py b/modules/processing.py
index cf62cdd3..efa6eafa 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -14,7 +14,8 @@ from skimage import exposure
from typing import Any, Dict, List
import modules.sd_hijack
-from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors
+from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng
+from modules.rng import slerp # noqa: F401
from modules.sd_hijack import model_hijack
from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes
from modules.shared import opts, cmd_opts, state
@@ -110,7 +111,7 @@ class StableDiffusionProcessing:
cached_uc = [None, None]
cached_c = [None, None]
- def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = None, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
+ def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = None, tiling: bool = None, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = None, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
if sampler_index is not None:
print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
@@ -172,6 +173,8 @@ class StableDiffusionProcessing:
self.iteration = 0
self.is_hr_pass = False
self.sampler = None
+ self.main_prompt = None
+ self.main_negative_prompt = None
self.prompts = None
self.negative_prompts = None
@@ -184,6 +187,7 @@ class StableDiffusionProcessing:
self.cached_c = StableDiffusionProcessing.cached_c
self.uc = None
self.c = None
+ self.rng: rng.ImageRNG = None
self.user = None
@@ -319,6 +323,9 @@ class StableDiffusionProcessing:
self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
+ self.main_prompt = self.all_prompts[0]
+ self.main_negative_prompt = self.all_negative_prompts[0]
+
def cached_params(self, required_prompts, steps, extra_network_data):
"""Returns parameters that invalidate the cond cache if changed"""
@@ -473,82 +480,9 @@ class Processed:
return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
-# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
-def slerp(val, low, high):
- low_norm = low/torch.norm(low, dim=1, keepdim=True)
- high_norm = high/torch.norm(high, dim=1, keepdim=True)
- dot = (low_norm*high_norm).sum(1)
-
- if dot.mean() > 0.9995:
- return low * val + high * (1 - val)
-
- omega = torch.acos(dot)
- so = torch.sin(omega)
- res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
- return res
-
-
def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
- eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
- xs = []
-
- # if we have multiple seeds, this means we are working with batch size>1; this then
- # enables the generation of additional tensors with noise that the sampler will use during its processing.
- # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
- # produce the same images as with two batches [100], [101].
- if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
- sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
- else:
- sampler_noises = None
-
- for i, seed in enumerate(seeds):
- noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
-
- subnoise = None
- if subseeds is not None and subseed_strength != 0:
- subseed = 0 if i >= len(subseeds) else subseeds[i]
-
- subnoise = devices.randn(subseed, noise_shape)
-
- # randn results depend on device; gpu and cpu get different results for same seed;
- # the way I see it, it's better to do this on CPU, so that everyone gets same result;
- # but the original script had it like this, so I do not dare change it for now because
- # it will break everyone's seeds.
- noise = devices.randn(seed, noise_shape)
-
- if subnoise is not None:
- noise = slerp(subseed_strength, noise, subnoise)
-
- if noise_shape != shape:
- x = devices.randn(seed, shape)
- dx = (shape[2] - noise_shape[2]) // 2
- dy = (shape[1] - noise_shape[1]) // 2
- w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
- h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
- tx = 0 if dx < 0 else dx
- ty = 0 if dy < 0 else dy
- dx = max(-dx, 0)
- dy = max(-dy, 0)
-
- x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
- noise = x
-
- if sampler_noises is not None:
- cnt = p.sampler.number_of_needed_noises(p)
-
- if eta_noise_seed_delta > 0:
- devices.manual_seed(seed + eta_noise_seed_delta)
-
- for j in range(cnt):
- sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
-
- xs.append(noise)
-
- if sampler_noises is not None:
- p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
-
- x = torch.stack(xs).to(shared.device)
- return x
+ g = rng.ImageRNG(shape, seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=seed_resize_from_h, seed_resize_from_w=seed_resize_from_w)
+ return g.next()
class DecodedSamples(list):
@@ -571,7 +505,7 @@ def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
errors.print_error_explanation(
"A tensor with all NaNs was produced in VAE.\n"
"Web UI will now convert VAE into 32-bit float and retry.\n"
- "To disable this behavior, disable the 'Automaticlly revert VAE to 32-bit floats' setting.\n"
+ "To disable this behavior, disable the 'Automatically revert VAE to 32-bit floats' setting.\n"
"To always start with 32-bit VAE, use --no-half-vae commandline flag."
)
@@ -590,7 +524,15 @@ def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
def get_fixed_seed(seed):
- if seed is None or seed == '' or seed == -1:
+ if seed == '' or seed is None:
+ seed = -1
+ elif isinstance(seed, str):
+ try:
+ seed = int(seed)
+ except Exception:
+ seed = -1
+
+ if seed == -1:
return int(random.randrange(4294967294))
return seed
@@ -633,10 +575,12 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"CFG scale": p.cfg_scale,
"Image CFG scale": getattr(p, 'image_cfg_scale', None),
"Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
- "Face restoration": (opts.face_restoration_model if p.restore_faces else None),
+ "Face restoration": opts.face_restoration_model if p.restore_faces else None,
"Size": f"{p.width}x{p.height}",
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
"Model": (None if not opts.add_model_name_to_info else shared.sd_model.sd_checkpoint_info.name_for_extra),
+ "VAE hash": sd_vae.get_loaded_vae_hash() if opts.add_model_hash_to_info else None,
+ "VAE": sd_vae.get_loaded_vae_name() if opts.add_model_name_to_info else None,
"Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
@@ -649,6 +593,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Init image hash": getattr(p, 'init_img_hash', None),
"RNG": opts.randn_source if opts.randn_source != "GPU" and opts.randn_source != "NV" else None,
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
+ "Tiling": "True" if p.tiling else None,
**p.extra_generation_params,
"Version": program_version() if opts.add_version_to_infotext else None,
"User": p.user if opts.add_user_name_to_info else None,
@@ -656,8 +601,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
- prompt_text = p.prompt if use_main_prompt else all_prompts[index]
- negative_prompt_text = f"\nNegative prompt: {all_negative_prompts[index]}" if all_negative_prompts[index] else ""
+ prompt_text = p.main_prompt if use_main_prompt else all_prompts[index]
+ negative_prompt_text = f"\nNegative prompt: {p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]}" if all_negative_prompts[index] else ""
return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
@@ -718,6 +663,12 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
seed = get_fixed_seed(p.seed)
subseed = get_fixed_seed(p.subseed)
+ if p.restore_faces is None:
+ p.restore_faces = opts.face_restoration
+
+ if p.tiling is None:
+ p.tiling = opts.tiling
+
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
modules.sd_hijack.model_hijack.clear_comments()
@@ -773,6 +724,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
+ p.rng = rng.ImageRNG((opt_C, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w)
+
if p.scripts is not None:
p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
@@ -794,7 +747,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
# strength, which is saved as "Model Strength: 1.0" in the infotext
if n == 0:
with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
- processed = Processed(p, [], p.seed, "")
+ processed = Processed(p, [])
file.write(processed.infotext(p, 0))
p.setup_conds()
@@ -997,6 +950,45 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.hr_c = None
self.hr_uc = None
+ def calculate_target_resolution(self):
+ if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
+ self.hr_resize_x = self.width
+ self.hr_resize_y = self.height
+ self.hr_upscale_to_x = self.width
+ self.hr_upscale_to_y = self.height
+
+ self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
+ self.applied_old_hires_behavior_to = (self.width, self.height)
+
+ if self.hr_resize_x == 0 and self.hr_resize_y == 0:
+ self.extra_generation_params["Hires upscale"] = self.hr_scale
+ self.hr_upscale_to_x = int(self.width * self.hr_scale)
+ self.hr_upscale_to_y = int(self.height * self.hr_scale)
+ else:
+ self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
+
+ if self.hr_resize_y == 0:
+ self.hr_upscale_to_x = self.hr_resize_x
+ self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
+ elif self.hr_resize_x == 0:
+ self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
+ self.hr_upscale_to_y = self.hr_resize_y
+ else:
+ target_w = self.hr_resize_x
+ target_h = self.hr_resize_y
+ src_ratio = self.width / self.height
+ dst_ratio = self.hr_resize_x / self.hr_resize_y
+
+ if src_ratio < dst_ratio:
+ self.hr_upscale_to_x = self.hr_resize_x
+ self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
+ else:
+ self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
+ self.hr_upscale_to_y = self.hr_resize_y
+
+ self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
+ self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
+
def init(self, all_prompts, all_seeds, all_subseeds):
if self.enable_hr:
if self.hr_checkpoint_name:
@@ -1021,43 +1013,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
raise Exception(f"could not find upscaler named {self.hr_upscaler}")
- if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
- self.hr_resize_x = self.width
- self.hr_resize_y = self.height
- self.hr_upscale_to_x = self.width
- self.hr_upscale_to_y = self.height
-
- self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
- self.applied_old_hires_behavior_to = (self.width, self.height)
-
- if self.hr_resize_x == 0 and self.hr_resize_y == 0:
- self.extra_generation_params["Hires upscale"] = self.hr_scale
- self.hr_upscale_to_x = int(self.width * self.hr_scale)
- self.hr_upscale_to_y = int(self.height * self.hr_scale)
- else:
- self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
-
- if self.hr_resize_y == 0:
- self.hr_upscale_to_x = self.hr_resize_x
- self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
- elif self.hr_resize_x == 0:
- self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
- self.hr_upscale_to_y = self.hr_resize_y
- else:
- target_w = self.hr_resize_x
- target_h = self.hr_resize_y
- src_ratio = self.width / self.height
- dst_ratio = self.hr_resize_x / self.hr_resize_y
-
- if src_ratio < dst_ratio:
- self.hr_upscale_to_x = self.hr_resize_x
- self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
- else:
- self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
- self.hr_upscale_to_y = self.hr_resize_y
-
- self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
- self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
+ self.calculate_target_resolution()
if not state.processing_has_refined_job_count:
if state.job_count == -1:
@@ -1076,7 +1032,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
- x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ x = self.rng.next()
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
del x
@@ -1164,7 +1120,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
- noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
+ self.rng = rng.ImageRNG(samples.shape[1:], self.seeds, subseeds=self.subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w)
+ noise = self.rng.next()
# GC now before running the next img2img to prevent running out of memory
devices.torch_gc()
@@ -1429,7 +1386,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
- x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ x = self.rng.next()
if self.initial_noise_multiplier != 1.0:
self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
diff --git a/modules/rng.py b/modules/rng.py
new file mode 100644
index 00000000..f927a318
--- /dev/null
+++ b/modules/rng.py
@@ -0,0 +1,170 @@
+import torch
+
+from modules import devices, rng_philox, shared
+
+
+def randn(seed, shape, generator=None):
+ """Generate a tensor with random numbers from a normal distribution using seed.
+
+ Uses the seed parameter to set the global torch seed; to generate more with that seed, use randn_like/randn_without_seed."""
+
+ manual_seed(seed)
+
+ if shared.opts.randn_source == "NV":
+ return torch.asarray((generator or nv_rng).randn(shape), device=devices.device)
+
+ if shared.opts.randn_source == "CPU" or devices.device.type == 'mps':
+ return torch.randn(shape, device=devices.cpu, generator=generator).to(devices.device)
+
+ return torch.randn(shape, device=devices.device, generator=generator)
+
+
+def randn_local(seed, shape):
+ """Generate a tensor with random numbers from a normal distribution using seed.
+
+ Does not change the global random number generator. You can only generate the seed's first tensor using this function."""
+
+ if shared.opts.randn_source == "NV":
+ rng = rng_philox.Generator(seed)
+ return torch.asarray(rng.randn(shape), device=devices.device)
+
+ local_device = devices.cpu if shared.opts.randn_source == "CPU" or devices.device.type == 'mps' else devices.device
+ local_generator = torch.Generator(local_device).manual_seed(int(seed))
+ return torch.randn(shape, device=local_device, generator=local_generator).to(devices.device)
+
+
+def randn_like(x):
+ """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
+
+ Use either randn() or manual_seed() to initialize the generator."""
+
+ if shared.opts.randn_source == "NV":
+ return torch.asarray(nv_rng.randn(x.shape), device=x.device, dtype=x.dtype)
+
+ if shared.opts.randn_source == "CPU" or x.device.type == 'mps':
+ return torch.randn_like(x, device=devices.cpu).to(x.device)
+
+ return torch.randn_like(x)
+
+
+def randn_without_seed(shape, generator=None):
+ """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
+
+ Use either randn() or manual_seed() to initialize the generator."""
+
+ if shared.opts.randn_source == "NV":
+ return torch.asarray((generator or nv_rng).randn(shape), device=devices.device)
+
+ if shared.opts.randn_source == "CPU" or devices.device.type == 'mps':
+ return torch.randn(shape, device=devices.cpu, generator=generator).to(devices.device)
+
+ return torch.randn(shape, device=devices.device, generator=generator)
+
+
+def manual_seed(seed):
+ """Set up a global random number generator using the specified seed."""
+
+ if shared.opts.randn_source == "NV":
+ global nv_rng
+ nv_rng = rng_philox.Generator(seed)
+ return
+
+ torch.manual_seed(seed)
+
+
+def create_generator(seed):
+ if shared.opts.randn_source == "NV":
+ return rng_philox.Generator(seed)
+
+ device = devices.cpu if shared.opts.randn_source == "CPU" or devices.device.type == 'mps' else devices.device
+ generator = torch.Generator(device).manual_seed(int(seed))
+ return generator
+
+
+# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
+def slerp(val, low, high):
+ low_norm = low/torch.norm(low, dim=1, keepdim=True)
+ high_norm = high/torch.norm(high, dim=1, keepdim=True)
+ dot = (low_norm*high_norm).sum(1)
+
+ if dot.mean() > 0.9995:
+ return low * val + high * (1 - val)
+
+ omega = torch.acos(dot)
+ so = torch.sin(omega)
+ res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
+ return res
+
+
+class ImageRNG:
+ def __init__(self, shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0):
+ self.shape = shape
+ self.seeds = seeds
+ self.subseeds = subseeds
+ self.subseed_strength = subseed_strength
+ self.seed_resize_from_h = seed_resize_from_h
+ self.seed_resize_from_w = seed_resize_from_w
+
+ self.generators = [create_generator(seed) for seed in seeds]
+
+ self.is_first = True
+
+ def first(self):
+ noise_shape = self.shape if self.seed_resize_from_h <= 0 or self.seed_resize_from_w <= 0 else (self.shape[0], self.seed_resize_from_h // 8, self.seed_resize_from_w // 8)
+
+ xs = []
+
+ for i, (seed, generator) in enumerate(zip(self.seeds, self.generators)):
+ subnoise = None
+ if self.subseeds is not None and self.subseed_strength != 0:
+ subseed = 0 if i >= len(self.subseeds) else self.subseeds[i]
+ subnoise = randn(subseed, noise_shape)
+
+ if noise_shape != self.shape:
+ noise = randn(seed, noise_shape)
+ else:
+ noise = randn(seed, self.shape, generator=generator)
+
+ if subnoise is not None:
+ noise = slerp(self.subseed_strength, noise, subnoise)
+
+ if noise_shape != self.shape:
+ x = randn(seed, self.shape, generator=generator)
+ dx = (self.shape[2] - noise_shape[2]) // 2
+ dy = (self.shape[1] - noise_shape[1]) // 2
+ w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
+ h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
+ tx = 0 if dx < 0 else dx
+ ty = 0 if dy < 0 else dy
+ dx = max(-dx, 0)
+ dy = max(-dy, 0)
+
+ x[:, ty:ty + h, tx:tx + w] = noise[:, dy:dy + h, dx:dx + w]
+ noise = x
+
+ xs.append(noise)
+
+ eta_noise_seed_delta = shared.opts.eta_noise_seed_delta or 0
+ if eta_noise_seed_delta:
+ self.generators = [create_generator(seed + eta_noise_seed_delta) for seed in self.seeds]
+
+ return torch.stack(xs).to(shared.device)
+
+ def next(self):
+ if self.is_first:
+ self.is_first = False
+ return self.first()
+
+ xs = []
+ for generator in self.generators:
+ x = randn_without_seed(self.shape, generator=generator)
+ xs.append(x)
+
+ return torch.stack(xs).to(shared.device)
+
+
+devices.randn = randn
+devices.randn_local = randn_local
+devices.randn_like = randn_like
+devices.randn_without_seed = randn_without_seed
+devices.manual_seed = manual_seed
diff --git a/modules/sd_models.py b/modules/sd_models.py
index a97af215..f6cb2f34 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -14,7 +14,7 @@ import ldm.modules.midas as midas
from ldm.util import instantiate_from_config
-from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache
+from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache, extra_networks, processing, lowvram, sd_hijack
from modules.timer import Timer
import tomesd
@@ -68,7 +68,9 @@ class CheckpointInfo:
self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]'
self.short_title = self.name_for_extra if self.shorthash is None else f'{self.name_for_extra} [{self.shorthash}]'
- self.ids = [self.hash, self.model_name, self.title, name, self.name_for_extra, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else [])
+ self.ids = [self.hash, self.model_name, self.title, name, self.name_for_extra, f'{name} [{self.hash}]']
+ if self.shorthash:
+ self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]', f'{self.name_for_extra} [{self.shorthash}]']
def register(self):
checkpoints_list[self.title] = self
@@ -80,10 +82,14 @@ class CheckpointInfo:
if self.sha256 is None:
return
- self.shorthash = self.sha256[0:10]
+ shorthash = self.sha256[0:10]
+ if self.shorthash == self.sha256[0:10]:
+ return self.shorthash
+
+ self.shorthash = shorthash
if self.shorthash not in self.ids:
- self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]']
+ self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]', f'{self.name_for_extra} [{self.shorthash}]']
checkpoints_list.pop(self.title, None)
self.title = f'{self.name} [{self.shorthash}]'
@@ -489,7 +495,6 @@ model_data = SdModelData()
def get_empty_cond(sd_model):
- from modules import extra_networks, processing
p = processing.StableDiffusionProcessingTxt2Img()
extra_networks.activate(p, {})
@@ -502,8 +507,6 @@ def get_empty_cond(sd_model):
def send_model_to_cpu(m):
- from modules import lowvram
-
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
else:
@@ -513,8 +516,6 @@ def send_model_to_cpu(m):
def send_model_to_device(m):
- from modules import lowvram
-
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.setup_for_low_vram(m, shared.cmd_opts.medvram)
else:
@@ -639,6 +640,8 @@ def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer):
timer.record("send model to device")
model_data.set_sd_model(already_loaded)
+ shared.opts.data["sd_model_checkpoint"] = already_loaded.sd_checkpoint_info.title
+ shared.opts.data["sd_checkpoint_hash"] = already_loaded.sd_checkpoint_info.sha256
print(f"Using already loaded model {already_loaded.sd_checkpoint_info.title}: done in {timer.summary()}")
return model_data.sd_model
elif shared.opts.sd_checkpoints_limit > 1 and len(model_data.loaded_sd_models) < shared.opts.sd_checkpoints_limit:
@@ -658,7 +661,6 @@ def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer):
def reload_model_weights(sd_model=None, info=None):
- from modules import devices, sd_hijack
checkpoint_info = info or select_checkpoint()
timer = Timer()
@@ -721,7 +723,6 @@ def reload_model_weights(sd_model=None, info=None):
def unload_model_weights(sd_model=None, info=None):
- from modules import devices, sd_hijack
timer = Timer()
if model_data.sd_model:
diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py
index 8266fa39..08dd03f1 100644
--- a/modules/sd_models_config.py
+++ b/modules/sd_models_config.py
@@ -2,7 +2,7 @@ import os
import torch
-from modules import shared, paths, sd_disable_initialization
+from modules import shared, paths, sd_disable_initialization, devices
sd_configs_path = shared.sd_configs_path
sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
@@ -29,7 +29,6 @@ def is_using_v_parameterization_for_sd2(state_dict):
"""
import ldm.modules.diffusionmodules.openaimodel
- from modules import devices
device = devices.cpu
diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py
index b6ad6830..35c4d657 100644
--- a/modules/sd_samplers_common.py
+++ b/modules/sd_samplers_common.py
@@ -1,5 +1,5 @@
import inspect
-from collections import namedtuple, deque
+from collections import namedtuple
import numpy as np
import torch
from PIL import Image
@@ -161,10 +161,15 @@ def apply_refiner(sampler):
class TorchHijack:
- def __init__(self, sampler_noises):
- # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
- # implementation.
- self.sampler_noises = deque(sampler_noises)
+ """This is here to replace torch.randn_like of k-diffusion.
+
+ k-diffusion has random_sampler argument for most samplers, but not for all, so
+ this is needed to properly replace every use of torch.randn_like.
+
+ We need to replace to make images generated in batches to be same as images generated individually."""
+
+ def __init__(self, p):
+ self.rng = p.rng
def __getattr__(self, item):
if item == 'randn_like':
@@ -176,12 +181,7 @@ class TorchHijack:
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
def randn_like(self, x):
- if self.sampler_noises:
- noise = self.sampler_noises.popleft()
- if noise.shape == x.shape:
- return noise
-
- return devices.randn_like(x)
+ return self.rng.next()
class Sampler:
@@ -248,7 +248,7 @@ class Sampler:
self.eta = p.eta if p.eta is not None else getattr(opts, self.eta_option_field, 0.0)
self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
- k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
+ k_diffusion.sampling.torch = TorchHijack(p)
extra_params_kwargs = {}
for param_name in self.extra_params:
diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py
index 95a43cef..e1854980 100644
--- a/modules/sd_samplers_kdiffusion.py
+++ b/modules/sd_samplers_kdiffusion.py
@@ -1,7 +1,8 @@
import torch
import inspect
import k_diffusion.sampling
-from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser
+from modules import sd_samplers_common, sd_samplers_extra
+from modules.sd_samplers_cfg_denoiser import CFGDenoiser
from modules.shared import opts
import modules.shared as shared
diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py
index 965e61c6..16572c7e 100644
--- a/modules/sd_samplers_timesteps.py
+++ b/modules/sd_samplers_timesteps.py
@@ -1,5 +1,6 @@
import torch
import inspect
+import sys
from modules import devices, sd_samplers_common, sd_samplers_timesteps_impl
from modules.sd_samplers_cfg_denoiser import CFGDenoiser
@@ -152,3 +153,6 @@ class CompVisSampler(sd_samplers_common.Sampler):
return samples
+
+sys.modules['modules.sd_samplers_compvis'] = sys.modules[__name__]
+VanillaStableDiffusionSampler = CompVisSampler # temp. compatibility with older extensions
diff --git a/modules/sd_vae.py b/modules/sd_vae.py
index 38bcb840..1db01992 100644
--- a/modules/sd_vae.py
+++ b/modules/sd_vae.py
@@ -2,7 +2,8 @@ import os
import collections
from dataclasses import dataclass
-from modules import paths, shared, devices, script_callbacks, sd_models, extra_networks
+from modules import paths, shared, devices, script_callbacks, sd_models, extra_networks, lowvram, sd_hijack, hashes
+
import glob
from copy import deepcopy
@@ -19,6 +20,20 @@ checkpoint_info = None
checkpoints_loaded = collections.OrderedDict()
+def get_loaded_vae_name():
+ if loaded_vae_file is None:
+ return None
+
+ return os.path.basename(loaded_vae_file)
+
+
+def get_loaded_vae_hash():
+ if loaded_vae_file is None:
+ return None
+
+ return hashes.sha256(loaded_vae_file, 'vae')[0:10]
+
+
def get_base_vae(model):
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model:
return base_vae
@@ -231,8 +246,6 @@ unspecified = object()
def reload_vae_weights(sd_model=None, vae_file=unspecified):
- from modules import lowvram, devices, sd_hijack
-
if not sd_model:
sd_model = shared.sd_model
diff --git a/modules/shared.py b/modules/shared.py
index 9935d2a7..d9d01484 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -1,845 +1,52 @@
-import datetime
-import json
-import os
-import re
import sys
-import threading
-import time
-import logging
import gradio as gr
-import torch
-import tqdm
-import launch
-import modules.interrogate
-import modules.memmon
-import modules.styles
-import modules.devices as devices
-from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args
+from modules import shared_cmd_options, shared_gradio_themes, options, shared_items
from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401
from ldm.models.diffusion.ddpm import LatentDiffusion
-from typing import Optional
+from modules import util
-log = logging.getLogger(__name__)
-
-demo = None
-
-parser = cmd_args.parser
-
-script_loading.preload_extensions(extensions_dir, parser, extension_list=launch.list_extensions(launch.args.ui_settings_file))
-script_loading.preload_extensions(extensions_builtin_dir, parser)
-
-if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
- cmd_opts = parser.parse_args()
-else:
- cmd_opts, _ = parser.parse_known_args()
-
-
-restricted_opts = {
- "samples_filename_pattern",
- "directories_filename_pattern",
- "outdir_samples",
- "outdir_txt2img_samples",
- "outdir_img2img_samples",
- "outdir_extras_samples",
- "outdir_grids",
- "outdir_txt2img_grids",
- "outdir_save",
- "outdir_init_images"
-}
-
-# https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json
-gradio_hf_hub_themes = [
- "gradio/base",
- "gradio/glass",
- "gradio/monochrome",
- "gradio/seafoam",
- "gradio/soft",
- "gradio/dracula_test",
- "abidlabs/dracula_test",
- "abidlabs/Lime",
- "abidlabs/pakistan",
- "Ama434/neutral-barlow",
- "dawood/microsoft_windows",
- "finlaymacklon/smooth_slate",
- "Franklisi/darkmode",
- "freddyaboulton/dracula_revamped",
- "freddyaboulton/test-blue",
- "gstaff/xkcd",
- "Insuz/Mocha",
- "Insuz/SimpleIndigo",
- "JohnSmith9982/small_and_pretty",
- "nota-ai/theme",
- "nuttea/Softblue",
- "ParityError/Anime",
- "reilnuud/polite",
- "remilia/Ghostly",
- "rottenlittlecreature/Moon_Goblin",
- "step-3-profit/Midnight-Deep",
- "Taithrah/Minimal",
- "ysharma/huggingface",
- "ysharma/steampunk"
-]
-
-
-cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
-
-devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
- (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
-
-devices.dtype = torch.float32 if cmd_opts.no_half else torch.float16
-devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16
-
-device = devices.device
-weight_load_location = None if cmd_opts.lowram else "cpu"
+cmd_opts = shared_cmd_options.cmd_opts
+parser = shared_cmd_options.parser
batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
-xformers_available = False
+styles_filename = cmd_opts.styles_file
config_filename = cmd_opts.ui_settings_file
+hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
+
+demo = None
+
+device = None
+
+weight_load_location = None
+
+xformers_available = False
-os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
hypernetworks = {}
+
loaded_hypernetworks = []
+state = None
-def reload_hypernetworks():
- from modules.hypernetworks import hypernetwork
- global hypernetworks
+prompt_styles = None
- hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
-
-
-class State:
- skipped = False
- interrupted = False
- job = ""
- job_no = 0
- job_count = 0
- processing_has_refined_job_count = False
- job_timestamp = '0'
- sampling_step = 0
- sampling_steps = 0
- current_latent = None
- current_image = None
- current_image_sampling_step = 0
- id_live_preview = 0
- textinfo = None
- time_start = None
- server_start = None
- _server_command_signal = threading.Event()
- _server_command: Optional[str] = None
-
- @property
- def need_restart(self) -> bool:
- # Compatibility getter for need_restart.
- return self.server_command == "restart"
-
- @need_restart.setter
- def need_restart(self, value: bool) -> None:
- # Compatibility setter for need_restart.
- if value:
- self.server_command = "restart"
-
- @property
- def server_command(self):
- return self._server_command
-
- @server_command.setter
- def server_command(self, value: Optional[str]) -> None:
- """
- Set the server command to `value` and signal that it's been set.
- """
- self._server_command = value
- self._server_command_signal.set()
-
- def wait_for_server_command(self, timeout: Optional[float] = None) -> Optional[str]:
- """
- Wait for server command to get set; return and clear the value and signal.
- """
- if self._server_command_signal.wait(timeout):
- self._server_command_signal.clear()
- req = self._server_command
- self._server_command = None
- return req
- return None
-
- def request_restart(self) -> None:
- self.interrupt()
- self.server_command = "restart"
- log.info("Received restart request")
-
- def skip(self):
- self.skipped = True
- log.info("Received skip request")
-
- def interrupt(self):
- self.interrupted = True
- log.info("Received interrupt request")
-
- def nextjob(self):
- if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
- self.do_set_current_image()
-
- self.job_no += 1
- self.sampling_step = 0
- self.current_image_sampling_step = 0
-
- def dict(self):
- obj = {
- "skipped": self.skipped,
- "interrupted": self.interrupted,
- "job": self.job,
- "job_count": self.job_count,
- "job_timestamp": self.job_timestamp,
- "job_no": self.job_no,
- "sampling_step": self.sampling_step,
- "sampling_steps": self.sampling_steps,
- }
-
- return obj
-
- def begin(self, job: str = "(unknown)"):
- self.sampling_step = 0
- self.job_count = -1
- self.processing_has_refined_job_count = False
- self.job_no = 0
- self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
- self.current_latent = None
- self.current_image = None
- self.current_image_sampling_step = 0
- self.id_live_preview = 0
- self.skipped = False
- self.interrupted = False
- self.textinfo = None
- self.time_start = time.time()
- self.job = job
- devices.torch_gc()
- log.info("Starting job %s", job)
-
- def end(self):
- duration = time.time() - self.time_start
- log.info("Ending job %s (%.2f seconds)", self.job, duration)
- self.job = ""
- self.job_count = 0
-
- devices.torch_gc()
-
- def set_current_image(self):
- """sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
- if not parallel_processing_allowed:
- return
-
- if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.live_previews_enable and opts.show_progress_every_n_steps != -1:
- self.do_set_current_image()
-
- def do_set_current_image(self):
- if self.current_latent is None:
- return
-
- import modules.sd_samplers
-
- try:
- if opts.show_progress_grid:
- self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent))
- else:
- self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent))
-
- self.current_image_sampling_step = self.sampling_step
-
- except Exception:
- # when switching models during genration, VAE would be on CPU, so creating an image will fail.
- # we silently ignore this error
- errors.record_exception()
-
- def assign_current_image(self, image):
- self.current_image = image
- self.id_live_preview += 1
-
-
-state = State()
-state.server_start = time.time()
-
-styles_filename = cmd_opts.styles_file
-prompt_styles = modules.styles.StyleDatabase(styles_filename)
-
-interrogator = modules.interrogate.InterrogateModels("interrogate")
+interrogator = None
face_restorers = []
+options_templates = None
+opts = None
+restricted_opts = None
-class OptionInfo:
- def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before='', comment_after=''):
- self.default = default
- self.label = label
- self.component = component
- self.component_args = component_args
- self.onchange = onchange
- self.section = section
- self.refresh = refresh
- self.do_not_save = False
-
- self.comment_before = comment_before
- """HTML text that will be added after label in UI"""
-
- self.comment_after = comment_after
- """HTML text that will be added before label in UI"""
-
- def link(self, label, url):
- self.comment_before += f"[{label}]"
- return self
-
- def js(self, label, js_func):
- self.comment_before += f"[{label}]"
- return self
-
- def info(self, info):
- self.comment_after += f"({info})"
- return self
-
- def html(self, html):
- self.comment_after += html
- return self
-
- def needs_restart(self):
- self.comment_after += " (requires restart)"
- return self
-
- def needs_reload_ui(self):
- self.comment_after += " (requires Reload UI)"
- return self
-
-
-class OptionHTML(OptionInfo):
- def __init__(self, text):
- super().__init__(str(text).strip(), label='', component=lambda **kwargs: gr.HTML(elem_classes="settings-info", **kwargs))
-
- self.do_not_save = True
-
-
-def options_section(section_identifier, options_dict):
- for v in options_dict.values():
- v.section = section_identifier
-
- return options_dict
-
-
-def list_checkpoint_tiles():
- import modules.sd_models
- return modules.sd_models.checkpoint_tiles()
-
-
-def refresh_checkpoints():
- import modules.sd_models
- return modules.sd_models.list_models()
-
-
-def list_samplers():
- import modules.sd_samplers
- return modules.sd_samplers.all_samplers
-
-
-hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
-tab_names = []
-
-options_templates = {}
-
-options_templates.update(options_section(('saving-images', "Saving images/grids"), {
- "samples_save": OptionInfo(True, "Always save all generated images"),
- "samples_format": OptionInfo('png', 'File format for images'),
- "samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
- "save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
-
- "grid_save": OptionInfo(True, "Always save all generated image grids"),
- "grid_format": OptionInfo('png', 'File format for grids'),
- "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
- "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
- "grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
- "grid_zip_filename_pattern": OptionInfo("", "Archive filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
- "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
- "font": OptionInfo("", "Font for image grids that have text"),
- "grid_text_active_color": OptionInfo("#000000", "Text color for image grids", ui_components.FormColorPicker, {}),
- "grid_text_inactive_color": OptionInfo("#999999", "Inactive text color for image grids", ui_components.FormColorPicker, {}),
- "grid_background_color": OptionInfo("#ffffff", "Background color for image grids", ui_components.FormColorPicker, {}),
-
- "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
- "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
- "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
- "save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
- "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
- "save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"),
- "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"),
- "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
- "webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
- "export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"),
- "img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
- "target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number),
- "img_max_size_mp": OptionInfo(200, "Maximum image size", gr.Number).info("in megapixels"),
-
- "use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
- "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
- "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
- "save_init_img": OptionInfo(False, "Save init images when using img2img"),
-
- "temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
- "clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
-
- "save_incomplete_images": OptionInfo(False, "Save incomplete images").info("save images that has been interrupted in mid-generation; even if not saved, they will still show up in webui output."),
-}))
-
-options_templates.update(options_section(('saving-paths', "Paths for saving"), {
- "outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
- "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs),
- "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs),
- "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs),
- "outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
- "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
- "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
- "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
- "outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs),
-}))
-
-options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
- "save_to_dirs": OptionInfo(True, "Save images to a subdirectory"),
- "grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"),
- "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
- "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
- "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
-}))
-
-options_templates.update(options_section(('upscaling', "Upscaling"), {
- "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"),
- "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"),
- "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
- "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
-}))
-
-options_templates.update(options_section(('face-restoration', "Face restoration"), {
- "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
- "code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"),
- "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
-}))
-
-options_templates.update(options_section(('system', "System"), {
- "auto_launch_browser": OptionInfo("Local", "Automatically open webui in browser on startup", gr.Radio, lambda: {"choices": ["Disable", "Local", "Remote"]}),
- "show_warnings": OptionInfo(False, "Show warnings in console.").needs_reload_ui(),
- "show_gradio_deprecation_warnings": OptionInfo(True, "Show gradio deprecation warnings in console.").needs_reload_ui(),
- "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"),
- "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
- "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
- "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
- "list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""),
- "disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"),
- "hide_ldm_prints": OptionInfo(True, "Prevent Stability-AI's ldm/sgm modules from printing noise to console."),
-}))
-
-options_templates.update(options_section(('training', "Training"), {
- "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
- "pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
- "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
- "save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."),
- "dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
- "dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
- "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
- "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
- "training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"),
- "training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."),
- "training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."),
- "training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."),
-}))
-
-options_templates.update(options_section(('sd', "Stable Diffusion"), {
- "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
- "sd_checkpoints_limit": OptionInfo(1, "Maximum number of checkpoints loaded at the same time", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}),
- "sd_checkpoints_keep_in_cpu": OptionInfo(True, "Only keep one model on device").info("will keep models other than the currently used one in RAM rather than VRAM"),
- "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}).info("obsolete; set to 0 and use the two settings above instead"),
- "sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"),
- "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds").needs_reload_ui(),
- "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"),
- "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
- "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
- "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
- "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
- "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
- "sd_refiner_checkpoint": OptionInfo("None", "Refiner checkpoint", gr.Dropdown, lambda: {"choices": ["None"] + list_checkpoint_tiles()}, refresh=refresh_checkpoints).info("switch to another model in the middle of generation"),
- "sd_refiner_switch_at": OptionInfo(1.0, "Refiner switch at", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}).info("fraction of sampling steps when the swtch to refiner model should happen; 1=never, 0.5=switch in the middle of generation"),
-}))
-
-options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
- "sdxl_crop_top": OptionInfo(0, "crop top coordinate"),
- "sdxl_crop_left": OptionInfo(0, "crop left coordinate"),
- "sdxl_refiner_low_aesthetic_score": OptionInfo(2.5, "SDXL low aesthetic score", gr.Number).info("used for refiner model negative prompt"),
- "sdxl_refiner_high_aesthetic_score": OptionInfo(6.0, "SDXL high aesthetic score", gr.Number).info("used for refiner model prompt"),
-}))
-
-options_templates.update(options_section(('vae', "VAE"), {
- "sd_vae_explanation": OptionHTML("""
-VAE is a neural network that transforms a standard RGB
-image into latent space representation and back. Latent space representation is what stable diffusion is working on during sampling
-(i.e. when the progress bar is between empty and full). For txt2img, VAE is used to create a resulting image after the sampling is finished.
-For img2img, VAE is used to process user's input image before the sampling, and to create an image after sampling.
-"""),
- "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
- "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
- "sd_vae_overrides_per_model_preferences": OptionInfo(True, "Selected VAE overrides per-model preferences").info("you can set per-model VAE either by editing user metadata for checkpoints, or by making the VAE have same name as checkpoint"),
- "auto_vae_precision": OptionInfo(True, "Automaticlly revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"),
- "sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to encode image to latent (use in img2img, hires-fix or inpaint mask)"),
- "sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to decode latent to image"),
-}))
-
-options_templates.update(options_section(('img2img', "img2img"), {
- "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
- "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
- "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"),
- "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill transparent parts of the input image with this color.", ui_components.FormColorPicker, {}),
- "img2img_editor_height": OptionInfo(720, "Height of the image editor", gr.Slider, {"minimum": 80, "maximum": 1600, "step": 1}).info("in pixels").needs_reload_ui(),
- "img2img_sketch_default_brush_color": OptionInfo("#ffffff", "Sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img sketch").needs_reload_ui(),
- "img2img_inpaint_mask_brush_color": OptionInfo("#ffffff", "Inpaint mask brush color", ui_components.FormColorPicker, {}).info("brush color of inpaint mask").needs_reload_ui(),
- "img2img_inpaint_sketch_default_brush_color": OptionInfo("#ffffff", "Inpaint sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img inpaint sketch").needs_reload_ui(),
- "return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
- "return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
-}))
-
-options_templates.update(options_section(('optimizations', "Optimizations"), {
- "cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
- "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
- "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
- "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
- "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
- "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length").info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
- "persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("Do not recalculate conds from prompts if prompts have not changed since previous calculation"),
-}))
-
-options_templates.update(options_section(('compatibility', "Compatibility"), {
- "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
- "use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
- "no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
- "use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
- "dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
- "hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."),
-}))
-
-options_templates.update(options_section(('interrogate', "Interrogate"), {
- "interrogate_keep_models_in_memory": OptionInfo(False, "Keep models in VRAM"),
- "interrogate_return_ranks": OptionInfo(False, "Include ranks of model tags matches in results.").info("booru only"),
- "interrogate_clip_num_beams": OptionInfo(1, "BLIP: num_beams", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
- "interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
- "interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
- "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"),
- "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
- "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
- "deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"),
- "deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"),
- "deepbooru_escape": OptionInfo(True, "deepbooru: escape (\\) brackets").info("so they are used as literal brackets and not for emphasis"),
- "deepbooru_filter_tags": OptionInfo("", "deepbooru: filter out those tags").info("separate by comma"),
-}))
-
-options_templates.update(options_section(('extra_networks', "Extra Networks"), {
- "extra_networks_show_hidden_directories": OptionInfo(True, "Show hidden directories").info("directory is hidden if its name starts with \".\"."),
- "extra_networks_hidden_models": OptionInfo("When searched", "Show cards for models in hidden directories", gr.Radio, {"choices": ["Always", "When searched", "Never"]}).info('"When searched" option will only show the item when the search string has 4 characters or more'),
- "extra_networks_default_multiplier": OptionInfo(1.0, "Default multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}),
- "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"),
- "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"),
- "extra_networks_card_text_scale": OptionInfo(1.0, "Card text scale", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}).info("1 = original size"),
- "extra_networks_card_show_desc": OptionInfo(True, "Show description on card"),
- "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"),
- "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_reload_ui(),
- "textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"),
- "textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"),
- "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks),
-}))
-
-options_templates.update(options_section(('ui', "User interface"), {
- "localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_reload_ui(),
- "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}).info("you can also manually enter any of themes from the gallery.").needs_reload_ui(),
- "gradio_themes_cache": OptionInfo(True, "Cache gradio themes locally").info("disable to update the selected Gradio theme"),
- "return_grid": OptionInfo(True, "Show grid in results for web"),
- "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
- "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
- "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
- "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
- "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
- "js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"),
- "js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"),
- "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
- "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_reload_ui(),
- "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_reload_ui(),
- "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
- "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing ", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
- "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
- "keyedit_move": OptionInfo(True, "Alt+left/right moves prompt elements"),
- "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_reload_ui(),
- "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_reload_ui(),
- "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_reload_ui(),
- "ui_reorder_list": OptionInfo([], "txt2img/img2img UI item order", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_reload_ui(),
- "hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires checkpoint and sampler selection").needs_reload_ui(),
- "hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_reload_ui(),
- "disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_reload_ui(),
-}))
-
-
-options_templates.update(options_section(('infotext', "Infotext"), {
- "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
- "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
- "add_user_name_to_info": OptionInfo(False, "Add user name to generation information when authenticated"),
- "add_version_to_infotext": OptionInfo(True, "Add program version to generation information"),
- "disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"),
- "infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html("""
-- Ignore: keep prompt and styles dropdown as it is.
-- Apply: remove style text from prompt, always replace styles dropdown value with found styles (even if none are found).
-- Discard: remove style text from prompt, keep styles dropdown as it is.
-- Apply if any: remove style text from prompt; if any styles are found in prompt, put them into styles dropdown, otherwise keep it as it is.
-
"""),
-
-}))
-
-options_templates.update(options_section(('ui', "Live previews"), {
- "show_progressbar": OptionInfo(True, "Show progressbar"),
- "live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
- "live_previews_image_format": OptionInfo("png", "Live preview file format", gr.Radio, {"choices": ["jpeg", "png", "webp"]}),
- "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
- "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"),
- "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"),
- "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
- "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"),
-}))
-
-options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
- "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}).needs_reload_ui(),
- "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"),
- "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"),
- "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
- 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}).info('amount of stochasticity; only applies to Euler, Heun, and DPM2'),
- 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}).info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'),
- 's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}).info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"),
- 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}).info('amount of additional noise to counteract loss of detail during sampling; only applies to Euler, Heun, and DPM2'),
- 'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}).info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
- 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
- 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"),
- 'rho': OptionInfo(0.0, "rho", gr.Number).info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"),
- 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
- 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
- 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
- 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
- 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}).info("must be < sampling steps"),
- 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
-}))
-
-options_templates.update(options_section(('postprocessing', "Postprocessing"), {
- 'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
- 'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
- 'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
-}))
-
-options_templates.update(options_section((None, "Hidden options"), {
- "disabled_extensions": OptionInfo([], "Disable these extensions"),
- "disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}),
- "restore_config_state_file": OptionInfo("", "Config state file to restore from, under 'config-states/' folder"),
- "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
-}))
-
-
-options_templates.update()
-
-
-class Options:
- data = None
- data_labels = options_templates
- typemap = {int: float}
-
- def __init__(self):
- self.data = {k: v.default for k, v in self.data_labels.items()}
-
- def __setattr__(self, key, value):
- if self.data is not None:
- if key in self.data or key in self.data_labels:
- assert not cmd_opts.freeze_settings, "changing settings is disabled"
-
- info = opts.data_labels.get(key, None)
- if info.do_not_save:
- return
-
- comp_args = info.component_args if info else None
- if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
- raise RuntimeError(f"not possible to set {key} because it is restricted")
-
- if cmd_opts.hide_ui_dir_config and key in restricted_opts:
- raise RuntimeError(f"not possible to set {key} because it is restricted")
-
- self.data[key] = value
- return
-
- return super(Options, self).__setattr__(key, value)
-
- def __getattr__(self, item):
- if self.data is not None:
- if item in self.data:
- return self.data[item]
-
- if item in self.data_labels:
- return self.data_labels[item].default
-
- return super(Options, self).__getattribute__(item)
-
- def set(self, key, value):
- """sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
-
- oldval = self.data.get(key, None)
- if oldval == value:
- return False
-
- if self.data_labels[key].do_not_save:
- return False
-
- try:
- setattr(self, key, value)
- except RuntimeError:
- return False
-
- if self.data_labels[key].onchange is not None:
- try:
- self.data_labels[key].onchange()
- except Exception as e:
- errors.display(e, f"changing setting {key} to {value}")
- setattr(self, key, oldval)
- return False
-
- return True
-
- def get_default(self, key):
- """returns the default value for the key"""
-
- data_label = self.data_labels.get(key)
- if data_label is None:
- return None
-
- return data_label.default
-
- def save(self, filename):
- assert not cmd_opts.freeze_settings, "saving settings is disabled"
-
- with open(filename, "w", encoding="utf8") as file:
- json.dump(self.data, file, indent=4)
-
- def same_type(self, x, y):
- if x is None or y is None:
- return True
-
- type_x = self.typemap.get(type(x), type(x))
- type_y = self.typemap.get(type(y), type(y))
-
- return type_x == type_y
-
- def load(self, filename):
- with open(filename, "r", encoding="utf8") as file:
- self.data = json.load(file)
-
- # 1.6.0 VAE defaults
- if self.data.get('sd_vae_as_default') is not None and self.data.get('sd_vae_overrides_per_model_preferences') is None:
- self.data['sd_vae_overrides_per_model_preferences'] = not self.data.get('sd_vae_as_default')
-
- # 1.1.1 quicksettings list migration
- if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None:
- self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')]
-
- # 1.4.0 ui_reorder
- if isinstance(self.data.get('ui_reorder'), str) and self.data.get('ui_reorder') and "ui_reorder_list" not in self.data:
- self.data['ui_reorder_list'] = [i.strip() for i in self.data.get('ui_reorder').split(',')]
-
- bad_settings = 0
- for k, v in self.data.items():
- info = self.data_labels.get(k, None)
- if info is not None and not self.same_type(info.default, v):
- print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr)
- bad_settings += 1
-
- if bad_settings > 0:
- print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
-
- def onchange(self, key, func, call=True):
- item = self.data_labels.get(key)
- item.onchange = func
-
- if call:
- func()
-
- def dumpjson(self):
- d = {k: self.data.get(k, v.default) for k, v in self.data_labels.items()}
- d["_comments_before"] = {k: v.comment_before for k, v in self.data_labels.items() if v.comment_before is not None}
- d["_comments_after"] = {k: v.comment_after for k, v in self.data_labels.items() if v.comment_after is not None}
- return json.dumps(d)
-
- def add_option(self, key, info):
- self.data_labels[key] = info
-
- def reorder(self):
- """reorder settings so that all items related to section always go together"""
-
- section_ids = {}
- settings_items = self.data_labels.items()
- for _, item in settings_items:
- if item.section not in section_ids:
- section_ids[item.section] = len(section_ids)
-
- self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section]))
-
- def cast_value(self, key, value):
- """casts an arbitrary to the same type as this setting's value with key
- Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
- """
-
- if value is None:
- return None
-
- default_value = self.data_labels[key].default
- if default_value is None:
- default_value = getattr(self, key, None)
- if default_value is None:
- return None
-
- expected_type = type(default_value)
- if expected_type == bool and value == "False":
- value = False
- else:
- value = expected_type(value)
-
- return value
-
-
-opts = Options()
-if os.path.exists(config_filename):
- opts.load(config_filename)
-
-
-class Shared(sys.modules[__name__].__class__):
- """
- this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than
- at program startup.
- """
-
- sd_model_val = None
-
- @property
- def sd_model(self):
- import modules.sd_models
-
- return modules.sd_models.model_data.get_sd_model()
-
- @sd_model.setter
- def sd_model(self, value):
- import modules.sd_models
-
- modules.sd_models.model_data.set_sd_model(value)
-
-
-sd_model: LatentDiffusion = None # this var is here just for IDE's type checking; it cannot be accessed because the class field above will be accessed instead
-sys.modules[__name__].__class__ = Shared
+sd_model: LatentDiffusion = None
settings_components = None
"""assinged from ui.py, a mapping on setting names to gradio components repsponsible for those settings"""
+tab_names = []
+
latent_upscale_default_mode = "Latent"
latent_upscale_modes = {
"Latent": {"mode": "bilinear", "antialias": False},
@@ -858,121 +65,24 @@ progress_print_out = sys.stdout
gradio_theme = gr.themes.Base()
+total_tqdm = None
-def reload_gradio_theme(theme_name=None):
- global gradio_theme
- if not theme_name:
- theme_name = opts.gradio_theme
+mem_mon = None
- default_theme_args = dict(
- font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'],
- font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
- )
+options_section = options.options_section
+OptionInfo = options.OptionInfo
+OptionHTML = options.OptionHTML
- if theme_name == "Default":
- gradio_theme = gr.themes.Default(**default_theme_args)
- else:
- try:
- theme_cache_dir = os.path.join(script_path, 'tmp', 'gradio_themes')
- theme_cache_path = os.path.join(theme_cache_dir, f'{theme_name.replace("/", "_")}.json')
- if opts.gradio_themes_cache and os.path.exists(theme_cache_path):
- gradio_theme = gr.themes.ThemeClass.load(theme_cache_path)
- else:
- os.makedirs(theme_cache_dir, exist_ok=True)
- gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
- gradio_theme.dump(theme_cache_path)
- except Exception as e:
- errors.display(e, "changing gradio theme")
- gradio_theme = gr.themes.Default(**default_theme_args)
+natural_sort_key = util.natural_sort_key
+listfiles = util.listfiles
+html_path = util.html_path
+html = util.html
+walk_files = util.walk_files
+ldm_print = util.ldm_print
+reload_gradio_theme = shared_gradio_themes.reload_gradio_theme
-class TotalTQDM:
- def __init__(self):
- self._tqdm = None
-
- def reset(self):
- self._tqdm = tqdm.tqdm(
- desc="Total progress",
- total=state.job_count * state.sampling_steps,
- position=1,
- file=progress_print_out
- )
-
- def update(self):
- if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
- return
- if self._tqdm is None:
- self.reset()
- self._tqdm.update()
-
- def updateTotal(self, new_total):
- if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
- return
- if self._tqdm is None:
- self.reset()
- self._tqdm.total = new_total
-
- def clear(self):
- if self._tqdm is not None:
- self._tqdm.refresh()
- self._tqdm.close()
- self._tqdm = None
-
-
-total_tqdm = TotalTQDM()
-
-mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
-mem_mon.start()
-
-
-def natural_sort_key(s, regex=re.compile('([0-9]+)')):
- return [int(text) if text.isdigit() else text.lower() for text in regex.split(s)]
-
-
-def listfiles(dirname):
- filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=natural_sort_key) if not x.startswith(".")]
- return [file for file in filenames if os.path.isfile(file)]
-
-
-def html_path(filename):
- return os.path.join(script_path, "html", filename)
-
-
-def html(filename):
- path = html_path(filename)
-
- if os.path.exists(path):
- with open(path, encoding="utf8") as file:
- return file.read()
-
- return ""
-
-
-def walk_files(path, allowed_extensions=None):
- if not os.path.exists(path):
- return
-
- if allowed_extensions is not None:
- allowed_extensions = set(allowed_extensions)
-
- items = list(os.walk(path, followlinks=True))
- items = sorted(items, key=lambda x: natural_sort_key(x[0]))
-
- for root, _, files in items:
- for filename in sorted(files, key=natural_sort_key):
- if allowed_extensions is not None:
- _, ext = os.path.splitext(filename)
- if ext not in allowed_extensions:
- continue
-
- if not opts.list_hidden_files and ("/." in root or "\\." in root):
- continue
-
- yield os.path.join(root, filename)
-
-
-def ldm_print(*args, **kwargs):
- if opts.hide_ldm_prints:
- return
-
- print(*args, **kwargs)
+list_checkpoint_tiles = shared_items.list_checkpoint_tiles
+refresh_checkpoints = shared_items.refresh_checkpoints
+list_samplers = shared_items.list_samplers
+reload_hypernetworks = shared_items.reload_hypernetworks
diff --git a/modules/shared_cmd_options.py b/modules/shared_cmd_options.py
new file mode 100644
index 00000000..af24938b
--- /dev/null
+++ b/modules/shared_cmd_options.py
@@ -0,0 +1,18 @@
+import os
+
+import launch
+from modules import cmd_args, script_loading
+from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401
+
+parser = cmd_args.parser
+
+script_loading.preload_extensions(extensions_dir, parser, extension_list=launch.list_extensions(launch.args.ui_settings_file))
+script_loading.preload_extensions(extensions_builtin_dir, parser)
+
+if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
+ cmd_opts = parser.parse_args()
+else:
+ cmd_opts, _ = parser.parse_known_args()
+
+
+cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
diff --git a/modules/shared_gradio_themes.py b/modules/shared_gradio_themes.py
new file mode 100644
index 00000000..485e89d5
--- /dev/null
+++ b/modules/shared_gradio_themes.py
@@ -0,0 +1,66 @@
+import os
+
+import gradio as gr
+
+from modules import errors, shared
+from modules.paths_internal import script_path
+
+
+# https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json
+gradio_hf_hub_themes = [
+ "gradio/base",
+ "gradio/glass",
+ "gradio/monochrome",
+ "gradio/seafoam",
+ "gradio/soft",
+ "gradio/dracula_test",
+ "abidlabs/dracula_test",
+ "abidlabs/Lime",
+ "abidlabs/pakistan",
+ "Ama434/neutral-barlow",
+ "dawood/microsoft_windows",
+ "finlaymacklon/smooth_slate",
+ "Franklisi/darkmode",
+ "freddyaboulton/dracula_revamped",
+ "freddyaboulton/test-blue",
+ "gstaff/xkcd",
+ "Insuz/Mocha",
+ "Insuz/SimpleIndigo",
+ "JohnSmith9982/small_and_pretty",
+ "nota-ai/theme",
+ "nuttea/Softblue",
+ "ParityError/Anime",
+ "reilnuud/polite",
+ "remilia/Ghostly",
+ "rottenlittlecreature/Moon_Goblin",
+ "step-3-profit/Midnight-Deep",
+ "Taithrah/Minimal",
+ "ysharma/huggingface",
+ "ysharma/steampunk"
+]
+
+
+def reload_gradio_theme(theme_name=None):
+ if not theme_name:
+ theme_name = shared.opts.gradio_theme
+
+ default_theme_args = dict(
+ font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'],
+ font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
+ )
+
+ if theme_name == "Default":
+ shared.gradio_theme = gr.themes.Default(**default_theme_args)
+ else:
+ try:
+ theme_cache_dir = os.path.join(script_path, 'tmp', 'gradio_themes')
+ theme_cache_path = os.path.join(theme_cache_dir, f'{theme_name.replace("/", "_")}.json')
+ if shared.opts.gradio_themes_cache and os.path.exists(theme_cache_path):
+ shared.gradio_theme = gr.themes.ThemeClass.load(theme_cache_path)
+ else:
+ os.makedirs(theme_cache_dir, exist_ok=True)
+ shared.gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
+ shared.gradio_theme.dump(theme_cache_path)
+ except Exception as e:
+ errors.display(e, "changing gradio theme")
+ shared.gradio_theme = gr.themes.Default(**default_theme_args)
diff --git a/modules/shared_init.py b/modules/shared_init.py
new file mode 100644
index 00000000..d3fb687e
--- /dev/null
+++ b/modules/shared_init.py
@@ -0,0 +1,49 @@
+import os
+
+import torch
+
+from modules import shared
+from modules.shared import cmd_opts
+
+
+def initialize():
+ """Initializes fields inside the shared module in a controlled manner.
+
+ Should be called early because some other modules you can import mingt need these fields to be already set.
+ """
+
+ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
+
+ from modules import options, shared_options
+ shared.options_templates = shared_options.options_templates
+ shared.opts = options.Options(shared_options.options_templates, shared_options.restricted_opts)
+ shared.restricted_opts = shared_options.restricted_opts
+ if os.path.exists(shared.config_filename):
+ shared.opts.load(shared.config_filename)
+
+ from modules import devices
+ devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
+ (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
+
+ devices.dtype = torch.float32 if cmd_opts.no_half else torch.float16
+ devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16
+
+ shared.device = devices.device
+ shared.weight_load_location = None if cmd_opts.lowram else "cpu"
+
+ from modules import shared_state
+ shared.state = shared_state.State()
+
+ from modules import styles
+ shared.prompt_styles = styles.StyleDatabase(shared.styles_filename)
+
+ from modules import interrogate
+ shared.interrogator = interrogate.InterrogateModels("interrogate")
+
+ from modules import shared_total_tqdm
+ shared.total_tqdm = shared_total_tqdm.TotalTQDM()
+
+ from modules import memmon, devices
+ shared.mem_mon = memmon.MemUsageMonitor("MemMon", devices.device, shared.opts)
+ shared.mem_mon.start()
+
diff --git a/modules/shared_items.py b/modules/shared_items.py
index 89792e88..e4ec40a8 100644
--- a/modules/shared_items.py
+++ b/modules/shared_items.py
@@ -1,3 +1,6 @@
+import sys
+
+from modules.shared_cmd_options import cmd_opts
def realesrgan_models_names():
@@ -41,6 +44,28 @@ def refresh_unet_list():
modules.sd_unet.list_unets()
+def list_checkpoint_tiles():
+ import modules.sd_models
+ return modules.sd_models.checkpoint_tiles()
+
+
+def refresh_checkpoints():
+ import modules.sd_models
+ return modules.sd_models.list_models()
+
+
+def list_samplers():
+ import modules.sd_samplers
+ return modules.sd_samplers.all_samplers
+
+
+def reload_hypernetworks():
+ from modules.hypernetworks import hypernetwork
+ from modules import shared
+
+ shared.hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
+
+
ui_reorder_categories_builtin_items = [
"inpaint",
"sampler",
@@ -67,3 +92,27 @@ def ui_reorder_categories():
yield from sections
yield "scripts"
+
+
+class Shared(sys.modules[__name__].__class__):
+ """
+ this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than
+ at program startup.
+ """
+
+ sd_model_val = None
+
+ @property
+ def sd_model(self):
+ import modules.sd_models
+
+ return modules.sd_models.model_data.get_sd_model()
+
+ @sd_model.setter
+ def sd_model(self, value):
+ import modules.sd_models
+
+ modules.sd_models.model_data.set_sd_model(value)
+
+
+sys.modules['modules.shared'].__class__ = Shared
diff --git a/modules/shared_options.py b/modules/shared_options.py
new file mode 100644
index 00000000..9ae51f18
--- /dev/null
+++ b/modules/shared_options.py
@@ -0,0 +1,318 @@
+import gradio as gr
+
+from modules import localization, ui_components, shared_items, shared, interrogate, shared_gradio_themes
+from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401
+from modules.shared_cmd_options import cmd_opts
+from modules.options import options_section, OptionInfo, OptionHTML
+
+options_templates = {}
+hide_dirs = shared.hide_dirs
+
+restricted_opts = {
+ "samples_filename_pattern",
+ "directories_filename_pattern",
+ "outdir_samples",
+ "outdir_txt2img_samples",
+ "outdir_img2img_samples",
+ "outdir_extras_samples",
+ "outdir_grids",
+ "outdir_txt2img_grids",
+ "outdir_save",
+ "outdir_init_images"
+}
+
+options_templates.update(options_section(('saving-images', "Saving images/grids"), {
+ "samples_save": OptionInfo(True, "Always save all generated images"),
+ "samples_format": OptionInfo('png', 'File format for images'),
+ "samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
+ "save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
+
+ "grid_save": OptionInfo(True, "Always save all generated image grids"),
+ "grid_format": OptionInfo('png', 'File format for grids'),
+ "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
+ "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
+ "grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
+ "grid_zip_filename_pattern": OptionInfo("", "Archive filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
+ "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
+ "font": OptionInfo("", "Font for image grids that have text"),
+ "grid_text_active_color": OptionInfo("#000000", "Text color for image grids", ui_components.FormColorPicker, {}),
+ "grid_text_inactive_color": OptionInfo("#999999", "Inactive text color for image grids", ui_components.FormColorPicker, {}),
+ "grid_background_color": OptionInfo("#ffffff", "Background color for image grids", ui_components.FormColorPicker, {}),
+
+ "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
+ "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
+ "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
+ "save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
+ "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
+ "save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"),
+ "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"),
+ "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
+ "webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
+ "export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"),
+ "img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
+ "target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number),
+ "img_max_size_mp": OptionInfo(200, "Maximum image size", gr.Number).info("in megapixels"),
+
+ "use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
+ "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
+ "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
+ "save_init_img": OptionInfo(False, "Save init images when using img2img"),
+
+ "temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
+ "clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
+
+ "save_incomplete_images": OptionInfo(False, "Save incomplete images").info("save images that has been interrupted in mid-generation; even if not saved, they will still show up in webui output."),
+}))
+
+options_templates.update(options_section(('saving-paths', "Paths for saving"), {
+ "outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
+ "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs),
+ "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs),
+ "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs),
+ "outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
+ "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
+ "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
+ "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
+ "outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs),
+}))
+
+options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
+ "save_to_dirs": OptionInfo(True, "Save images to a subdirectory"),
+ "grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"),
+ "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
+ "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
+ "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
+}))
+
+options_templates.update(options_section(('upscaling', "Upscaling"), {
+ "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"),
+ "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"),
+ "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
+ "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in shared.sd_upscalers]}),
+}))
+
+options_templates.update(options_section(('face-restoration', "Face restoration"), {
+ "face_restoration": OptionInfo(False, "Restore faces", infotext='Face restoration').info("will use a third-party model on generation result to reconstruct faces"),
+ "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in shared.face_restorers]}),
+ "code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"),
+ "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
+}))
+
+options_templates.update(options_section(('system', "System"), {
+ "auto_launch_browser": OptionInfo("Local", "Automatically open webui in browser on startup", gr.Radio, lambda: {"choices": ["Disable", "Local", "Remote"]}),
+ "show_warnings": OptionInfo(False, "Show warnings in console.").needs_reload_ui(),
+ "show_gradio_deprecation_warnings": OptionInfo(True, "Show gradio deprecation warnings in console.").needs_reload_ui(),
+ "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"),
+ "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
+ "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
+ "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
+ "list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""),
+ "disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"),
+ "hide_ldm_prints": OptionInfo(True, "Prevent Stability-AI's ldm/sgm modules from printing noise to console."),
+}))
+
+options_templates.update(options_section(('training', "Training"), {
+ "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
+ "pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
+ "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
+ "save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."),
+ "dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
+ "dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
+ "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
+ "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
+ "training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"),
+ "training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."),
+ "training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."),
+ "training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."),
+}))
+
+options_templates.update(options_section(('sd', "Stable Diffusion"), {
+ "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": shared_items.list_checkpoint_tiles()}, refresh=shared_items.refresh_checkpoints, infotext='Model hash'),
+ "sd_checkpoints_limit": OptionInfo(1, "Maximum number of checkpoints loaded at the same time", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}),
+ "sd_checkpoints_keep_in_cpu": OptionInfo(True, "Only keep one model on device").info("will keep models other than the currently used one in RAM rather than VRAM"),
+ "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}).info("obsolete; set to 0 and use the two settings above instead"),
+ "sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"),
+ "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds").needs_reload_ui(),
+ "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"),
+ "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
+ "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
+ "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}, infotext="Clip skip").link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
+ "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
+ "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
+ "tiling": OptionInfo(False, "Tiling", infotext='Tiling').info("produce a tileable picture"),
+}))
+
+options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
+ "sdxl_crop_top": OptionInfo(0, "crop top coordinate"),
+ "sdxl_crop_left": OptionInfo(0, "crop left coordinate"),
+ "sdxl_refiner_low_aesthetic_score": OptionInfo(2.5, "SDXL low aesthetic score", gr.Number).info("used for refiner model negative prompt"),
+ "sdxl_refiner_high_aesthetic_score": OptionInfo(6.0, "SDXL high aesthetic score", gr.Number).info("used for refiner model prompt"),
+}))
+
+options_templates.update(options_section(('vae', "VAE"), {
+ "sd_vae_explanation": OptionHTML("""
+VAE is a neural network that transforms a standard RGB
+image into latent space representation and back. Latent space representation is what stable diffusion is working on during sampling
+(i.e. when the progress bar is between empty and full). For txt2img, VAE is used to create a resulting image after the sampling is finished.
+For img2img, VAE is used to process user's input image before the sampling, and to create an image after sampling.
+"""),
+ "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
+ "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list, infotext='VAE').info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
+ "sd_vae_overrides_per_model_preferences": OptionInfo(True, "Selected VAE overrides per-model preferences").info("you can set per-model VAE either by editing user metadata for checkpoints, or by making the VAE have same name as checkpoint"),
+ "auto_vae_precision": OptionInfo(True, "Automatically revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"),
+ "sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}, infotext='VAE Encoder').info("method to encode image to latent (use in img2img, hires-fix or inpaint mask)"),
+ "sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}, infotext='VAE Decoder').info("method to decode latent to image"),
+}))
+
+options_templates.update(options_section(('img2img', "img2img"), {
+ "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Conditional mask weight'),
+ "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}, infotext='Noise multiplier'),
+ "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
+ "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"),
+ "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill transparent parts of the input image with this color.", ui_components.FormColorPicker, {}),
+ "img2img_editor_height": OptionInfo(720, "Height of the image editor", gr.Slider, {"minimum": 80, "maximum": 1600, "step": 1}).info("in pixels").needs_reload_ui(),
+ "img2img_sketch_default_brush_color": OptionInfo("#ffffff", "Sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img sketch").needs_reload_ui(),
+ "img2img_inpaint_mask_brush_color": OptionInfo("#ffffff", "Inpaint mask brush color", ui_components.FormColorPicker, {}).info("brush color of inpaint mask").needs_reload_ui(),
+ "img2img_inpaint_sketch_default_brush_color": OptionInfo("#ffffff", "Inpaint sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img inpaint sketch").needs_reload_ui(),
+ "return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
+ "return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
+}))
+
+options_templates.update(options_section(('optimizations', "Optimizations"), {
+ "cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
+ "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
+ "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
+ "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
+ "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio hr').info("only applies if non-zero and overrides above"),
+ "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length", infotext='Pad conds').info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
+ "persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("Do not recalculate conds from prompts if prompts have not changed since previous calculation"),
+}))
+
+options_templates.update(options_section(('compatibility', "Compatibility"), {
+ "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
+ "use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
+ "no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
+ "use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
+ "dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
+ "hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."),
+}))
+
+options_templates.update(options_section(('interrogate', "Interrogate"), {
+ "interrogate_keep_models_in_memory": OptionInfo(False, "Keep models in VRAM"),
+ "interrogate_return_ranks": OptionInfo(False, "Include ranks of model tags matches in results.").info("booru only"),
+ "interrogate_clip_num_beams": OptionInfo(1, "BLIP: num_beams", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
+ "interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
+ "interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
+ "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"),
+ "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": interrogate.category_types()}, refresh=interrogate.category_types),
+ "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
+ "deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"),
+ "deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"),
+ "deepbooru_escape": OptionInfo(True, "deepbooru: escape (\\) brackets").info("so they are used as literal brackets and not for emphasis"),
+ "deepbooru_filter_tags": OptionInfo("", "deepbooru: filter out those tags").info("separate by comma"),
+}))
+
+options_templates.update(options_section(('extra_networks', "Extra Networks"), {
+ "extra_networks_show_hidden_directories": OptionInfo(True, "Show hidden directories").info("directory is hidden if its name starts with \".\"."),
+ "extra_networks_hidden_models": OptionInfo("When searched", "Show cards for models in hidden directories", gr.Radio, {"choices": ["Always", "When searched", "Never"]}).info('"When searched" option will only show the item when the search string has 4 characters or more'),
+ "extra_networks_default_multiplier": OptionInfo(1.0, "Default multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}),
+ "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"),
+ "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"),
+ "extra_networks_card_text_scale": OptionInfo(1.0, "Card text scale", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}).info("1 = original size"),
+ "extra_networks_card_show_desc": OptionInfo(True, "Show description on card"),
+ "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"),
+ "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_reload_ui(),
+ "textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"),
+ "textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"),
+ "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *shared.hypernetworks]}, refresh=shared_items.reload_hypernetworks),
+}))
+
+options_templates.update(options_section(('ui', "User interface"), {
+ "localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_reload_ui(),
+ "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + shared_gradio_themes.gradio_hf_hub_themes}).info("you can also manually enter any of themes from the gallery.").needs_reload_ui(),
+ "gradio_themes_cache": OptionInfo(True, "Cache gradio themes locally").info("disable to update the selected Gradio theme"),
+ "return_grid": OptionInfo(True, "Show grid in results for web"),
+ "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
+ "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
+ "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
+ "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
+ "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
+ "js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"),
+ "js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"),
+ "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
+ "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_reload_ui(),
+ "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_reload_ui(),
+ "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
+ "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing ", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
+ "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
+ "keyedit_move": OptionInfo(True, "Alt+left/right moves prompt elements"),
+ "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_reload_ui(),
+ "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(shared.tab_names)}).needs_reload_ui(),
+ "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(shared.tab_names)}).needs_reload_ui(),
+ "ui_reorder_list": OptionInfo([], "txt2img/img2img UI item order", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_reload_ui(),
+ "hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires checkpoint and sampler selection").needs_reload_ui(),
+ "hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_reload_ui(),
+ "disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_reload_ui(),
+}))
+
+
+options_templates.update(options_section(('infotext', "Infotext"), {
+ "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
+ "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
+ "add_user_name_to_info": OptionInfo(False, "Add user name to generation information when authenticated"),
+ "add_version_to_infotext": OptionInfo(True, "Add program version to generation information"),
+ "disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"),
+ "infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html("""
+- Ignore: keep prompt and styles dropdown as it is.
+- Apply: remove style text from prompt, always replace styles dropdown value with found styles (even if none are found).
+- Discard: remove style text from prompt, keep styles dropdown as it is.
+- Apply if any: remove style text from prompt; if any styles are found in prompt, put them into styles dropdown, otherwise keep it as it is.
+
"""),
+
+}))
+
+options_templates.update(options_section(('ui', "Live previews"), {
+ "show_progressbar": OptionInfo(True, "Show progressbar"),
+ "live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
+ "live_previews_image_format": OptionInfo("png", "Live preview file format", gr.Radio, {"choices": ["jpeg", "png", "webp"]}),
+ "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
+ "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"),
+ "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"),
+ "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
+ "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"),
+}))
+
+options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
+ "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in shared_items.list_samplers()]}).needs_reload_ui(),
+ "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Eta DDIM').info("noise multiplier; higher = more unperdictable results"),
+ "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Eta').info("noise multiplier; applies to Euler a and other samplers that have a in them"),
+ "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
+ 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}, infotext='Sigma churn').info('amount of stochasticity; only applies to Euler, Heun, and DPM2'),
+ 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}, infotext='Sigma tmin').info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'),
+ 's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}, infotext='Sigma tmax').info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"),
+ 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling; only applies to Euler, Heun, and DPM2'),
+ 'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}, infotext='Schedule type').info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
+ 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number, infotext='Schedule max sigma').info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
+ 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number, infotext='Schedule min sigma').info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"),
+ 'rho': OptionInfo(0.0, "rho", gr.Number, infotext='Schedule rho').info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"),
+ 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}, infotext='ENSD').info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
+ 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma", infotext='Discard penultimate sigma').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
+ 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}, infotext='UniPC variant'),
+ 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}, infotext='UniPC skip type'),
+ 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}, infotext='UniPC order').info("must be < sampling steps"),
+ 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final", infotext='UniPC lower order final'),
+}))
+
+options_templates.update(options_section(('postprocessing', "Postprocessing"), {
+ 'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
+ 'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
+ 'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
+}))
+
+options_templates.update(options_section((None, "Hidden options"), {
+ "disabled_extensions": OptionInfo([], "Disable these extensions"),
+ "disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}),
+ "restore_config_state_file": OptionInfo("", "Config state file to restore from, under 'config-states/' folder"),
+ "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
+}))
+
diff --git a/modules/shared_state.py b/modules/shared_state.py
new file mode 100644
index 00000000..3dc9c788
--- /dev/null
+++ b/modules/shared_state.py
@@ -0,0 +1,159 @@
+import datetime
+import logging
+import threading
+import time
+
+from modules import errors, shared, devices
+from typing import Optional
+
+log = logging.getLogger(__name__)
+
+
+class State:
+ skipped = False
+ interrupted = False
+ job = ""
+ job_no = 0
+ job_count = 0
+ processing_has_refined_job_count = False
+ job_timestamp = '0'
+ sampling_step = 0
+ sampling_steps = 0
+ current_latent = None
+ current_image = None
+ current_image_sampling_step = 0
+ id_live_preview = 0
+ textinfo = None
+ time_start = None
+ server_start = None
+ _server_command_signal = threading.Event()
+ _server_command: Optional[str] = None
+
+ def __init__(self):
+ self.server_start = time.time()
+
+ @property
+ def need_restart(self) -> bool:
+ # Compatibility getter for need_restart.
+ return self.server_command == "restart"
+
+ @need_restart.setter
+ def need_restart(self, value: bool) -> None:
+ # Compatibility setter for need_restart.
+ if value:
+ self.server_command = "restart"
+
+ @property
+ def server_command(self):
+ return self._server_command
+
+ @server_command.setter
+ def server_command(self, value: Optional[str]) -> None:
+ """
+ Set the server command to `value` and signal that it's been set.
+ """
+ self._server_command = value
+ self._server_command_signal.set()
+
+ def wait_for_server_command(self, timeout: Optional[float] = None) -> Optional[str]:
+ """
+ Wait for server command to get set; return and clear the value and signal.
+ """
+ if self._server_command_signal.wait(timeout):
+ self._server_command_signal.clear()
+ req = self._server_command
+ self._server_command = None
+ return req
+ return None
+
+ def request_restart(self) -> None:
+ self.interrupt()
+ self.server_command = "restart"
+ log.info("Received restart request")
+
+ def skip(self):
+ self.skipped = True
+ log.info("Received skip request")
+
+ def interrupt(self):
+ self.interrupted = True
+ log.info("Received interrupt request")
+
+ def nextjob(self):
+ if shared.opts.live_previews_enable and shared.opts.show_progress_every_n_steps == -1:
+ self.do_set_current_image()
+
+ self.job_no += 1
+ self.sampling_step = 0
+ self.current_image_sampling_step = 0
+
+ def dict(self):
+ obj = {
+ "skipped": self.skipped,
+ "interrupted": self.interrupted,
+ "job": self.job,
+ "job_count": self.job_count,
+ "job_timestamp": self.job_timestamp,
+ "job_no": self.job_no,
+ "sampling_step": self.sampling_step,
+ "sampling_steps": self.sampling_steps,
+ }
+
+ return obj
+
+ def begin(self, job: str = "(unknown)"):
+ self.sampling_step = 0
+ self.job_count = -1
+ self.processing_has_refined_job_count = False
+ self.job_no = 0
+ self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
+ self.current_latent = None
+ self.current_image = None
+ self.current_image_sampling_step = 0
+ self.id_live_preview = 0
+ self.skipped = False
+ self.interrupted = False
+ self.textinfo = None
+ self.time_start = time.time()
+ self.job = job
+ devices.torch_gc()
+ log.info("Starting job %s", job)
+
+ def end(self):
+ duration = time.time() - self.time_start
+ log.info("Ending job %s (%.2f seconds)", self.job, duration)
+ self.job = ""
+ self.job_count = 0
+
+ devices.torch_gc()
+
+ def set_current_image(self):
+ """sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
+ if not shared.parallel_processing_allowed:
+ return
+
+ if self.sampling_step - self.current_image_sampling_step >= shared.opts.show_progress_every_n_steps and shared.opts.live_previews_enable and shared.opts.show_progress_every_n_steps != -1:
+ self.do_set_current_image()
+
+ def do_set_current_image(self):
+ if self.current_latent is None:
+ return
+
+ import modules.sd_samplers
+
+ try:
+ if shared.opts.show_progress_grid:
+ self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent))
+ else:
+ self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent))
+
+ self.current_image_sampling_step = self.sampling_step
+
+ except Exception:
+ # when switching models during genration, VAE would be on CPU, so creating an image will fail.
+ # we silently ignore this error
+ errors.record_exception()
+
+ def assign_current_image(self, image):
+ self.current_image = image
+ self.id_live_preview += 1
diff --git a/modules/shared_total_tqdm.py b/modules/shared_total_tqdm.py
new file mode 100644
index 00000000..cf82e104
--- /dev/null
+++ b/modules/shared_total_tqdm.py
@@ -0,0 +1,37 @@
+import tqdm
+
+from modules import shared
+
+
+class TotalTQDM:
+ def __init__(self):
+ self._tqdm = None
+
+ def reset(self):
+ self._tqdm = tqdm.tqdm(
+ desc="Total progress",
+ total=shared.state.job_count * shared.state.sampling_steps,
+ position=1,
+ file=shared.progress_print_out
+ )
+
+ def update(self):
+ if not shared.opts.multiple_tqdm or shared.cmd_opts.disable_console_progressbars:
+ return
+ if self._tqdm is None:
+ self.reset()
+ self._tqdm.update()
+
+ def updateTotal(self, new_total):
+ if not shared.opts.multiple_tqdm or shared.cmd_opts.disable_console_progressbars:
+ return
+ if self._tqdm is None:
+ self.reset()
+ self._tqdm.total = new_total
+
+ def clear(self):
+ if self._tqdm is not None:
+ self._tqdm.refresh()
+ self._tqdm.close()
+ self._tqdm = None
+
diff --git a/modules/sysinfo.py b/modules/sysinfo.py
index cf24c6dd..7d906e1f 100644
--- a/modules/sysinfo.py
+++ b/modules/sysinfo.py
@@ -10,7 +10,7 @@ import psutil
import re
import launch
-from modules import paths_internal, timer
+from modules import paths_internal, timer, shared, extensions, errors
checksum_token = "DontStealMyGamePlz__WINNERS_DONT_USE_DRUGS__DONT_COPY_THAT_FLOPPY"
environment_whitelist = {
@@ -115,8 +115,6 @@ def format_exception(e, tb):
def get_exceptions():
try:
- from modules import errors
-
return list(reversed(errors.exception_records))
except Exception as e:
return str(e)
@@ -142,8 +140,6 @@ def get_torch_sysinfo():
def get_extensions(*, enabled):
try:
- from modules import extensions
-
def to_json(x: extensions.Extension):
return {
"name": x.name,
@@ -160,7 +156,6 @@ def get_extensions(*, enabled):
def get_config():
try:
- from modules import shared
return shared.opts.data
except Exception as e:
return str(e)
diff --git a/modules/txt2img.py b/modules/txt2img.py
index 8fa389b5..5ea96bba 100644
--- a/modules/txt2img.py
+++ b/modules/txt2img.py
@@ -9,7 +9,7 @@ from modules.ui import plaintext_to_html
import gradio as gr
-def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_name: str, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_checkpoint_name: str, hr_sampler_name: str, hr_prompt: str, hr_negative_prompt, override_settings_texts, request: gr.Request, *args):
+def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_name: str, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_checkpoint_name: str, hr_sampler_name: str, hr_prompt: str, hr_negative_prompt, override_settings_texts, request: gr.Request, *args):
override_settings = create_override_settings_dict(override_settings_texts)
p = processing.StableDiffusionProcessingTxt2Img(
@@ -32,8 +32,6 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step
cfg_scale=cfg_scale,
width=width,
height=height,
- restore_faces=restore_faces,
- tiling=tiling,
enable_hr=enable_hr,
denoising_strength=denoising_strength if enable_hr else None,
hr_scale=hr_scale,
@@ -42,7 +40,7 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step
hr_resize_x=hr_resize_x,
hr_resize_y=hr_resize_y,
hr_checkpoint_name=None if hr_checkpoint_name == 'Use same checkpoint' else hr_checkpoint_name,
- hr_sampler_name=hr_sampler_name,
+ hr_sampler_name=None if hr_sampler_name == 'Use same sampler' else hr_sampler_name,
hr_prompt=hr_prompt,
hr_negative_prompt=hr_negative_prompt,
override_settings=override_settings,
diff --git a/modules/ui.py b/modules/ui.py
index e3753e97..c08f412d 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -13,8 +13,8 @@ from PIL import Image, PngImagePlugin # noqa: F401
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
from modules import gradio_extensons # noqa: F401
-from modules import sd_hijack, sd_models, script_callbacks, ui_extensions, deepbooru, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, errors, shared_items, ui_settings, timer, sysinfo, ui_checkpoint_merger, ui_prompt_styles, scripts, sd_samplers
-from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
+from modules import sd_hijack, sd_models, script_callbacks, ui_extensions, deepbooru, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, errors, shared_items, ui_settings, timer, sysinfo, ui_checkpoint_merger, ui_prompt_styles, scripts, sd_samplers, processing, ui_extra_networks
+from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML, InputAccordion
from modules.paths import script_path
from modules.ui_common import create_refresh_button
from modules.ui_gradio_extensions import reload_javascript
@@ -78,7 +78,6 @@ extra_networks_symbol = '\U0001F3B4' # 🎴
switch_values_symbol = '\U000021C5' # ⇅
restore_progress_symbol = '\U0001F300' # 🌀
detect_image_size_symbol = '\U0001F4D0' # 📐
-up_down_symbol = '\u2195\ufe0f' # ↕️
plaintext_to_html = ui_common.plaintext_to_html
@@ -91,17 +90,13 @@ def send_gradio_gallery_to_image(x):
def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y):
- from modules import processing, devices
-
if not enable:
return ""
p = processing.StableDiffusionProcessingTxt2Img(width=width, height=height, enable_hr=True, hr_scale=hr_scale, hr_resize_x=hr_resize_x, hr_resize_y=hr_resize_y)
+ p.calculate_target_resolution()
- with devices.autocast():
- p.init([""], [0], [0])
-
- return f"resize: from {p.width}x{p.height} to {p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}"
+ return f"from {p.width}x{p.height} to {p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}"
def resize_from_to_html(width, height, scale_by):
@@ -149,7 +144,11 @@ def interrogate_deepbooru(image):
def create_seed_inputs(target_interface):
with FormRow(elem_id=f"{target_interface}_seed_row", variant="compact"):
- seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=f"{target_interface}_seed")
+ if cmd_opts.use_textbox_seed:
+ seed = gr.Textbox(label='Seed', value="", elem_id=f"{target_interface}_seed")
+ else:
+ seed = gr.Number(label='Seed', value=-1, elem_id=f"{target_interface}_seed", precision=0)
+
random_seed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_seed", label='Random seed')
reuse_seed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_seed", label='Reuse seed')
@@ -160,7 +159,7 @@ def create_seed_inputs(target_interface):
with FormRow(visible=False, elem_id=f"{target_interface}_subseed_row") as seed_extra_row_1:
seed_extras.append(seed_extra_row_1)
- subseed = gr.Number(label='Variation seed', value=-1, elem_id=f"{target_interface}_subseed")
+ subseed = gr.Number(label='Variation seed', value=-1, elem_id=f"{target_interface}_subseed", precision=0)
random_subseed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_subseed")
reuse_subseed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_subseed")
subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=f"{target_interface}_subseed_strength")
@@ -437,13 +436,13 @@ def create_ui():
elif category == "checkboxes":
with FormRow(elem_classes="checkboxes-row", variant="compact"):
- restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces")
- tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling")
- enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr")
- hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False)
+ pass
elif category == "hires_fix":
- with FormGroup(visible=False, elem_id="txt2img_hires_fix") as hr_options:
+ with InputAccordion(False, label="Hires. fix") as enable_hr:
+ with enable_hr.extra():
+ hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False, min_width=0)
+
with FormRow(elem_id="txt2img_hires_fix_row1", variant="compact"):
hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode)
hr_second_pass_steps = gr.Slider(minimum=0, maximum=150, step=1, label='Hires steps', value=0, elem_id="txt2img_hires_steps")
@@ -520,8 +519,6 @@ def create_ui():
toprow.ui_styles.dropdown,
steps,
sampler_name,
- restore_faces,
- tiling,
batch_count,
batch_size,
cfg_scale,
@@ -571,19 +568,11 @@ def create_ui():
show_progress=False,
)
- enable_hr.change(
- fn=lambda x: gr_show(x),
- inputs=[enable_hr],
- outputs=[hr_options],
- show_progress = False,
- )
-
txt2img_paste_fields = [
(toprow.prompt, "Prompt"),
(toprow.negative_prompt, "Negative prompt"),
(steps, "Steps"),
(sampler_name, "Sampler"),
- (restore_faces, "Face restoration"),
(cfg_scale, "CFG scale"),
(seed, "Seed"),
(width, "Size-1"),
@@ -597,7 +586,6 @@ def create_ui():
(toprow.ui_styles.dropdown, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
(denoising_strength, "Denoising strength"),
(enable_hr, lambda d: "Denoising strength" in d and ("Hires upscale" in d or "Hires upscaler" in d or "Hires resize-1" in d)),
- (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d and ("Hires upscale" in d or "Hires upscaler" in d or "Hires resize-1" in d))),
(hr_scale, "Hires upscale"),
(hr_upscaler, "Hires upscaler"),
(hr_second_pass_steps, "Hires steps"),
@@ -630,7 +618,6 @@ def create_ui():
toprow.token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[toprow.prompt, steps], outputs=[toprow.token_counter])
toprow.negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[toprow.negative_prompt, steps], outputs=[toprow.negative_token_counter])
- from modules import ui_extra_networks
extra_networks_ui = ui_extra_networks.create_ui(txt2img_interface, [txt2img_generation_tab], 'txt2img')
ui_extra_networks.setup_ui(extra_networks_ui, txt2img_gallery)
@@ -805,8 +792,7 @@ def create_ui():
elif category == "checkboxes":
with FormRow(elem_classes="checkboxes-row", variant="compact"):
- restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces")
- tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling")
+ pass
elif category == "batch":
if not opts.dimensions_and_batch_together:
@@ -879,8 +865,6 @@ def create_ui():
mask_blur,
mask_alpha,
inpainting_fill,
- restore_faces,
- tiling,
batch_count,
batch_size,
cfg_scale,
@@ -972,7 +956,6 @@ def create_ui():
(toprow.negative_prompt, "Negative prompt"),
(steps, "Steps"),
(sampler_name, "Sampler"),
- (restore_faces, "Face restoration"),
(cfg_scale, "CFG scale"),
(image_cfg_scale, "Image CFG scale"),
(seed, "Seed"),
@@ -995,7 +978,6 @@ def create_ui():
paste_button=toprow.paste, tabname="img2img", source_text_component=toprow.prompt, source_image_component=None,
))
- from modules import ui_extra_networks
extra_networks_ui_img2img = ui_extra_networks.create_ui(img2img_interface, [img2img_generation_tab], 'img2img')
ui_extra_networks.setup_ui(extra_networks_ui_img2img, img2img_gallery)
diff --git a/modules/ui_common.py b/modules/ui_common.py
index 303af9cd..99d19ff0 100644
--- a/modules/ui_common.py
+++ b/modules/ui_common.py
@@ -11,7 +11,7 @@ from modules import call_queue, shared
from modules.generation_parameters_copypaste import image_from_url_text
import modules.images
from modules.ui_components import ToolButton
-
+import modules.generation_parameters_copypaste as parameters_copypaste
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
@@ -105,8 +105,6 @@ def save_files(js_data, images, do_make_zip, index):
def create_output_panel(tabname, outdir):
- from modules import shared
- import modules.generation_parameters_copypaste as parameters_copypaste
def open_folder(f):
if not os.path.exists(f):
diff --git a/modules/ui_components.py b/modules/ui_components.py
index 8f8a7088..bfe2fbd9 100644
--- a/modules/ui_components.py
+++ b/modules/ui_components.py
@@ -72,3 +72,52 @@ class DropdownEditable(FormComponent, gr.Dropdown):
def get_block_name(self):
return "dropdown"
+
+class InputAccordion(gr.Checkbox):
+ """A gr.Accordion that can be used as an input - returns True if open, False if closed.
+
+ Actaully just a hidden checkbox, but creates an accordion that follows and is followed by the state of the checkbox.
+ """
+
+ global_index = 0
+
+ def __init__(self, value, **kwargs):
+ self.accordion_id = kwargs.get('elem_id')
+ if self.accordion_id is None:
+ self.accordion_id = f"input-accordion-{InputAccordion.global_index}"
+ InputAccordion.global_index += 1
+
+ kwargs['elem_id'] = self.accordion_id + "-checkbox"
+ kwargs['visible'] = False
+ super().__init__(value, **kwargs)
+
+ self.change(fn=None, _js='function(checked){ inputAccordionChecked("' + self.accordion_id + '", checked); }', inputs=[self])
+
+ self.accordion = gr.Accordion(kwargs.get('label', 'Accordion'), open=value, elem_id=self.accordion_id, elem_classes=['input-accordion'])
+
+ def extra(self):
+ """Allows you to put something into the label of the accordion.
+
+ Use it like this:
+
+ ```
+ with InputAccordion(False, label="Accordion") as acc:
+ with acc.extra():
+ FormHTML(value="hello", min_width=0)
+
+ ...
+ ```
+ """
+
+ return gr.Column(elem_id=self.accordion_id + '-extra', elem_classes='input-accordion-extra', min_width=0)
+
+ def __enter__(self):
+ self.accordion.__enter__()
+ return self
+
+ def __exit__(self, exc_type, exc_val, exc_tb):
+ self.accordion.__exit__(exc_type, exc_val, exc_tb)
+
+ def get_block_name(self):
+ return "checkbox"
+
diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py
index e0b932b9..063bd7b8 100644
--- a/modules/ui_extra_networks.py
+++ b/modules/ui_extra_networks.py
@@ -4,7 +4,6 @@ from pathlib import Path
from modules import shared, ui_extra_networks_user_metadata, errors, extra_networks
from modules.images import read_info_from_image, save_image_with_geninfo
-from modules.ui import up_down_symbol
import gradio as gr
import json
import html
@@ -348,6 +347,8 @@ def pages_in_preferred_order(pages):
def create_ui(interface: gr.Blocks, unrelated_tabs, tabname):
+ from modules.ui import switch_values_symbol
+
ui = ExtraNetworksUi()
ui.pages = []
ui.pages_contents = []
@@ -373,7 +374,7 @@ def create_ui(interface: gr.Blocks, unrelated_tabs, tabname):
edit_search = gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", elem_classes="search", placeholder="Search...", visible=False, interactive=True)
dropdown_sort = gr.Dropdown(choices=['Default Sort', 'Date Created', 'Date Modified', 'Name'], value='Default Sort', elem_id=tabname+"_extra_sort", elem_classes="sort", multiselect=False, visible=False, show_label=False, interactive=True, label=tabname+"_extra_sort_order")
- button_sortorder = ToolButton(up_down_symbol, elem_id=tabname+"_extra_sortorder", elem_classes="sortorder", visible=False)
+ button_sortorder = ToolButton(switch_values_symbol, elem_id=tabname+"_extra_sortorder", elem_classes="sortorder", visible=False)
button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh", visible=False)
checkbox_show_dirs = gr.Checkbox(True, label='Show dirs', elem_id=tabname+"_extra_show_dirs", elem_classes="show-dirs", visible=False)
diff --git a/modules/ui_extra_networks_user_metadata.py b/modules/ui_extra_networks_user_metadata.py
index 1cb9eb6f..a5423fd8 100644
--- a/modules/ui_extra_networks_user_metadata.py
+++ b/modules/ui_extra_networks_user_metadata.py
@@ -36,8 +36,8 @@ class UserMetadataEditor:
item = self.page.items.get(name, {})
user_metadata = item.get('user_metadata', None)
- if user_metadata is None:
- user_metadata = {}
+ if not user_metadata:
+ user_metadata = {'description': item.get('description', '')}
item['user_metadata'] = user_metadata
return user_metadata
diff --git a/modules/ui_loadsave.py b/modules/ui_loadsave.py
index 0052a5cc..ef6b0154 100644
--- a/modules/ui_loadsave.py
+++ b/modules/ui_loadsave.py
@@ -8,7 +8,7 @@ from modules.ui_components import ToolButton
class UiLoadsave:
- """allows saving and restorig default values for gradio components"""
+ """allows saving and restoring default values for gradio components"""
def __init__(self, filename):
self.filename = filename
@@ -48,6 +48,11 @@ class UiLoadsave:
elif condition and not condition(saved_value):
pass
else:
+ if isinstance(x, gr.Textbox) and field == 'value': # due to an undersirable behavior of gr.Textbox, if you give it an int value instead of str, everything dies
+ saved_value = str(saved_value)
+ elif isinstance(x, gr.Number) and field == 'value':
+ saved_value = float(saved_value)
+
setattr(obj, field, saved_value)
if init_field is not None:
init_field(saved_value)
diff --git a/modules/ui_tempdir.py b/modules/ui_tempdir.py
index fb75137e..506017e5 100644
--- a/modules/ui_tempdir.py
+++ b/modules/ui_tempdir.py
@@ -57,8 +57,9 @@ def save_pil_to_file(self, pil_image, dir=None, format="png"):
return file_obj.name
-# override save to file function so that it also writes PNG info
-gradio.components.IOComponent.pil_to_temp_file = save_pil_to_file
+def install_ui_tempdir_override():
+ """override save to file function so that it also writes PNG info"""
+ gradio.components.IOComponent.pil_to_temp_file = save_pil_to_file
def on_tmpdir_changed():
diff --git a/modules/util.py b/modules/util.py
new file mode 100644
index 00000000..60afc067
--- /dev/null
+++ b/modules/util.py
@@ -0,0 +1,58 @@
+import os
+import re
+
+from modules import shared
+from modules.paths_internal import script_path
+
+
+def natural_sort_key(s, regex=re.compile('([0-9]+)')):
+ return [int(text) if text.isdigit() else text.lower() for text in regex.split(s)]
+
+
+def listfiles(dirname):
+ filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=natural_sort_key) if not x.startswith(".")]
+ return [file for file in filenames if os.path.isfile(file)]
+
+
+def html_path(filename):
+ return os.path.join(script_path, "html", filename)
+
+
+def html(filename):
+ path = html_path(filename)
+
+ if os.path.exists(path):
+ with open(path, encoding="utf8") as file:
+ return file.read()
+
+ return ""
+
+
+def walk_files(path, allowed_extensions=None):
+ if not os.path.exists(path):
+ return
+
+ if allowed_extensions is not None:
+ allowed_extensions = set(allowed_extensions)
+
+ items = list(os.walk(path, followlinks=True))
+ items = sorted(items, key=lambda x: natural_sort_key(x[0]))
+
+ for root, _, files in items:
+ for filename in sorted(files, key=natural_sort_key):
+ if allowed_extensions is not None:
+ _, ext = os.path.splitext(filename)
+ if ext not in allowed_extensions:
+ continue
+
+ if not shared.opts.list_hidden_files and ("/." in root or "\\." in root):
+ continue
+
+ yield os.path.join(root, filename)
+
+
+def ldm_print(*args, **kwargs):
+ if shared.opts.hide_ldm_prints:
+ return
+
+ print(*args, **kwargs)
diff --git a/requirements.txt b/requirements.txt
index 9a47d6d0..d83092f0 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -6,6 +6,7 @@ basicsr
blendmodes
clean-fid
einops
+fastapi>=0.90.1
gfpgan
gradio==3.39.0
inflection
diff --git a/style.css b/style.css
index 8c1f273c..5163e53c 100644
--- a/style.css
+++ b/style.css
@@ -43,13 +43,15 @@ div.form{
.block.gradio-radio,
.block.gradio-checkboxgroup,
.block.gradio-number,
-.block.gradio-colorpicker,
-div.gradio-group
-{
+.block.gradio-colorpicker {
border-width: 0 !important;
box-shadow: none !important;
}
+div.gradio-group, div.styler{
+ border-width: 0 !important;
+ background: none;
+}
.gap.compact{
padding: 0;
gap: 0.2em 0;
@@ -135,12 +137,8 @@ a{
cursor: pointer;
}
-div.styler{
- border: none;
- background: var(--background-fill-primary);
-}
-
-.block.gradio-textbox{
+/* gradio 3.39 puts a lot of overflow: hidden all over the place for an unknown reqasaon. */
+.block.gradio-textbox, div.gradio-group, div.gradio-group div, div.gradio-dropdown{
overflow: visible !important;
}
@@ -194,6 +192,13 @@ button.custom-button{
text-align: center;
}
+div.gradio-accordion {
+ border: 1px solid var(--block-border-color) !important;
+ border-radius: 8px !important;
+ margin: 2px 0;
+ padding: 8px 8px;
+}
+
/* txt2img/img2img specific */
@@ -324,12 +329,6 @@ button.custom-button{
border-radius: 0 0.5rem 0.5rem 0;
}
-#txtimg_hr_finalres{
- min-height: 0 !important;
- padding: .625rem .75rem;
- margin-left: -0.75em
-}
-
#img2img_scale_resolution_preview.block{
display: flex;
align-items: end;
@@ -1011,3 +1010,12 @@ div.block.gradio-box.popup-dialog, .popup-dialog {
div.block.gradio-box.popup-dialog > div:last-child, .popup-dialog > div:last-child{
margin-top: 1em;
}
+
+div.block.input-accordion{
+ margin-bottom: 0.4em;
+}
+
+.input-accordion-extra{
+ flex: 0 0 auto !important;
+ margin: 0 0.5em 0 auto;
+}
diff --git a/test/conftest.py b/test/conftest.py
index 0723f62a..31a5d9ea 100644
--- a/test/conftest.py
+++ b/test/conftest.py
@@ -1,17 +1,25 @@
import os
import pytest
-from PIL import Image
-from gradio.processing_utils import encode_pil_to_base64
+import base64
+
test_files_path = os.path.dirname(__file__) + "/test_files"
+def file_to_base64(filename):
+ with open(filename, "rb") as file:
+ data = file.read()
+
+ base64_str = str(base64.b64encode(data), "utf-8")
+ return "data:image/png;base64," + base64_str
+
+
@pytest.fixture(scope="session") # session so we don't read this over and over
def img2img_basic_image_base64() -> str:
- return encode_pil_to_base64(Image.open(os.path.join(test_files_path, "img2img_basic.png")))
+ return file_to_base64(os.path.join(test_files_path, "img2img_basic.png"))
@pytest.fixture(scope="session") # session so we don't read this over and over
def mask_basic_image_base64() -> str:
- return encode_pil_to_base64(Image.open(os.path.join(test_files_path, "mask_basic.png")))
+ return file_to_base64(os.path.join(test_files_path, "mask_basic.png"))
diff --git a/webui.py b/webui.py
index 6d36f880..5c827dae 100644
--- a/webui.py
+++ b/webui.py
@@ -1,348 +1,41 @@
from __future__ import annotations
import os
-import sys
import time
-import importlib
-import signal
-import re
-import warnings
-import json
-from threading import Thread
-from typing import Iterable
-
-from fastapi import FastAPI
-from fastapi.middleware.cors import CORSMiddleware
-from fastapi.middleware.gzip import GZipMiddleware
-
-import logging
-
-# We can't use cmd_opts for this because it will not have been initialized at this point.
-log_level = os.environ.get("SD_WEBUI_LOG_LEVEL")
-if log_level:
- log_level = getattr(logging, log_level.upper(), None) or logging.INFO
- logging.basicConfig(
- level=log_level,
- format='%(asctime)s %(levelname)s [%(name)s] %(message)s',
- datefmt='%Y-%m-%d %H:%M:%S',
- )
-
-logging.getLogger("torch.distributed.nn").setLevel(logging.ERROR) # sshh...
-logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
from modules import timer
+from modules import initialize_util
+from modules import initialize
+
startup_timer = timer.startup_timer
startup_timer.record("launcher")
-import torch
-import pytorch_lightning # noqa: F401 # pytorch_lightning should be imported after torch, but it re-enables warnings on import so import once to disable them
-warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning")
-warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision")
-startup_timer.record("import torch")
+initialize.imports()
-import gradio # noqa: F401
-startup_timer.record("import gradio")
-
-from modules import paths, timer, import_hook, errors, devices # noqa: F401
-startup_timer.record("setup paths")
-
-import ldm.modules.encoders.modules # noqa: F401
-startup_timer.record("import ldm")
-
-
-from modules import extra_networks
-from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, queue_lock # noqa: F401
-
-# Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors
-if ".dev" in torch.__version__ or "+git" in torch.__version__:
- torch.__long_version__ = torch.__version__
- torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
-
-from modules import shared
-
-if not shared.cmd_opts.skip_version_check:
- errors.check_versions()
-
-import modules.codeformer_model as codeformer
-import modules.gfpgan_model as gfpgan
-from modules import sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states
-import modules.face_restoration
-import modules.img2img
-
-import modules.lowvram
-import modules.scripts
-import modules.sd_hijack
-import modules.sd_hijack_optimizations
-import modules.sd_models
-import modules.sd_vae
-import modules.sd_unet
-import modules.txt2img
-import modules.script_callbacks
-import modules.textual_inversion.textual_inversion
-import modules.progress
-
-import modules.ui
-from modules import modelloader
-from modules.shared import cmd_opts
-import modules.hypernetworks.hypernetwork
-
-startup_timer.record("other imports")
-
-
-if cmd_opts.server_name:
- server_name = cmd_opts.server_name
-else:
- server_name = "0.0.0.0" if cmd_opts.listen else None
-
-
-def fix_asyncio_event_loop_policy():
- """
- The default `asyncio` event loop policy only automatically creates
- event loops in the main threads. Other threads must create event
- loops explicitly or `asyncio.get_event_loop` (and therefore
- `.IOLoop.current`) will fail. Installing this policy allows event
- loops to be created automatically on any thread, matching the
- behavior of Tornado versions prior to 5.0 (or 5.0 on Python 2).
- """
-
- import asyncio
-
- if sys.platform == "win32" and hasattr(asyncio, "WindowsSelectorEventLoopPolicy"):
- # "Any thread" and "selector" should be orthogonal, but there's not a clean
- # interface for composing policies so pick the right base.
- _BasePolicy = asyncio.WindowsSelectorEventLoopPolicy # type: ignore
- else:
- _BasePolicy = asyncio.DefaultEventLoopPolicy
-
- class AnyThreadEventLoopPolicy(_BasePolicy): # type: ignore
- """Event loop policy that allows loop creation on any thread.
- Usage::
-
- asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
- """
-
- def get_event_loop(self) -> asyncio.AbstractEventLoop:
- try:
- return super().get_event_loop()
- except (RuntimeError, AssertionError):
- # This was an AssertionError in python 3.4.2 (which ships with debian jessie)
- # and changed to a RuntimeError in 3.4.3.
- # "There is no current event loop in thread %r"
- loop = self.new_event_loop()
- self.set_event_loop(loop)
- return loop
-
- asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
-
-
-def restore_config_state_file():
- config_state_file = shared.opts.restore_config_state_file
- if config_state_file == "":
- return
-
- shared.opts.restore_config_state_file = ""
- shared.opts.save(shared.config_filename)
-
- if os.path.isfile(config_state_file):
- print(f"*** About to restore extension state from file: {config_state_file}")
- with open(config_state_file, "r", encoding="utf-8") as f:
- config_state = json.load(f)
- config_states.restore_extension_config(config_state)
- startup_timer.record("restore extension config")
- elif config_state_file:
- print(f"!!! Config state backup not found: {config_state_file}")
-
-
-def validate_tls_options():
- if not (cmd_opts.tls_keyfile and cmd_opts.tls_certfile):
- return
-
- try:
- if not os.path.exists(cmd_opts.tls_keyfile):
- print("Invalid path to TLS keyfile given")
- if not os.path.exists(cmd_opts.tls_certfile):
- print(f"Invalid path to TLS certfile: '{cmd_opts.tls_certfile}'")
- except TypeError:
- cmd_opts.tls_keyfile = cmd_opts.tls_certfile = None
- print("TLS setup invalid, running webui without TLS")
- else:
- print("Running with TLS")
- startup_timer.record("TLS")
-
-
-def get_gradio_auth_creds() -> Iterable[tuple[str, ...]]:
- """
- Convert the gradio_auth and gradio_auth_path commandline arguments into
- an iterable of (username, password) tuples.
- """
- def process_credential_line(s) -> tuple[str, ...] | None:
- s = s.strip()
- if not s:
- return None
- return tuple(s.split(':', 1))
-
- if cmd_opts.gradio_auth:
- for cred in cmd_opts.gradio_auth.split(','):
- cred = process_credential_line(cred)
- if cred:
- yield cred
-
- if cmd_opts.gradio_auth_path:
- with open(cmd_opts.gradio_auth_path, 'r', encoding="utf8") as file:
- for line in file.readlines():
- for cred in line.strip().split(','):
- cred = process_credential_line(cred)
- if cred:
- yield cred
-
-
-def configure_sigint_handler():
- # make the program just exit at ctrl+c without waiting for anything
- def sigint_handler(sig, frame):
- print(f'Interrupted with signal {sig} in {frame}')
- os._exit(0)
-
- if not os.environ.get("COVERAGE_RUN"):
- # Don't install the immediate-quit handler when running under coverage,
- # as then the coverage report won't be generated.
- signal.signal(signal.SIGINT, sigint_handler)
-
-
-def configure_opts_onchange():
- shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()), call=False)
- shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
- shared.opts.onchange("sd_vae_overrides_per_model_preferences", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False)
- shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed)
- shared.opts.onchange("gradio_theme", shared.reload_gradio_theme)
- shared.opts.onchange("cross_attention_optimization", wrap_queued_call(lambda: modules.sd_hijack.model_hijack.redo_hijack(shared.sd_model)), call=False)
- startup_timer.record("opts onchange")
-
-
-def initialize():
- fix_asyncio_event_loop_policy()
- validate_tls_options()
- configure_sigint_handler()
- modelloader.cleanup_models()
- configure_opts_onchange()
-
- modules.sd_models.setup_model()
- startup_timer.record("setup SD model")
-
- codeformer.setup_model(cmd_opts.codeformer_models_path)
- startup_timer.record("setup codeformer")
-
- gfpgan.setup_model(cmd_opts.gfpgan_models_path)
- startup_timer.record("setup gfpgan")
-
- initialize_rest(reload_script_modules=False)
-
-
-def initialize_rest(*, reload_script_modules=False):
- """
- Called both from initialize() and when reloading the webui.
- """
- sd_samplers.set_samplers()
- extensions.list_extensions()
- startup_timer.record("list extensions")
-
- restore_config_state_file()
-
- if cmd_opts.ui_debug_mode:
- shared.sd_upscalers = upscaler.UpscalerLanczos().scalers
- modules.scripts.load_scripts()
- return
-
- modules.sd_models.list_models()
- startup_timer.record("list SD models")
-
- localization.list_localizations(cmd_opts.localizations_dir)
-
- with startup_timer.subcategory("load scripts"):
- modules.scripts.load_scripts()
-
- if reload_script_modules:
- for module in [module for name, module in sys.modules.items() if name.startswith("modules.ui")]:
- importlib.reload(module)
- startup_timer.record("reload script modules")
-
- modelloader.load_upscalers()
- startup_timer.record("load upscalers")
-
- modules.sd_vae.refresh_vae_list()
- startup_timer.record("refresh VAE")
- modules.textual_inversion.textual_inversion.list_textual_inversion_templates()
- startup_timer.record("refresh textual inversion templates")
-
- modules.script_callbacks.on_list_optimizers(modules.sd_hijack_optimizations.list_optimizers)
- modules.sd_hijack.list_optimizers()
- startup_timer.record("scripts list_optimizers")
-
- modules.sd_unet.list_unets()
- startup_timer.record("scripts list_unets")
-
- def load_model():
- """
- Accesses shared.sd_model property to load model.
- After it's available, if it has been loaded before this access by some extension,
- its optimization may be None because the list of optimizaers has neet been filled
- by that time, so we apply optimization again.
- """
-
- shared.sd_model # noqa: B018
-
- if modules.sd_hijack.current_optimizer is None:
- modules.sd_hijack.apply_optimizations()
-
- devices.first_time_calculation()
-
- Thread(target=load_model).start()
-
- shared.reload_hypernetworks()
- startup_timer.record("reload hypernetworks")
-
- ui_extra_networks.initialize()
- ui_extra_networks.register_default_pages()
-
- extra_networks.initialize()
- extra_networks.register_default_extra_networks()
- startup_timer.record("initialize extra networks")
-
-
-def setup_middleware(app):
- app.middleware_stack = None # reset current middleware to allow modifying user provided list
- app.add_middleware(GZipMiddleware, minimum_size=1000)
- configure_cors_middleware(app)
- app.build_middleware_stack() # rebuild middleware stack on-the-fly
-
-
-def configure_cors_middleware(app):
- cors_options = {
- "allow_methods": ["*"],
- "allow_headers": ["*"],
- "allow_credentials": True,
- }
- if cmd_opts.cors_allow_origins:
- cors_options["allow_origins"] = cmd_opts.cors_allow_origins.split(',')
- if cmd_opts.cors_allow_origins_regex:
- cors_options["allow_origin_regex"] = cmd_opts.cors_allow_origins_regex
- app.add_middleware(CORSMiddleware, **cors_options)
+initialize.check_versions()
def create_api(app):
from modules.api.api import Api
+ from modules.call_queue import queue_lock
+
api = Api(app, queue_lock)
return api
def api_only():
- initialize()
+ from fastapi import FastAPI
+ from modules.shared_cmd_options import cmd_opts
+
+ initialize.initialize()
app = FastAPI()
- setup_middleware(app)
+ initialize_util.setup_middleware(app)
api = create_api(app)
- modules.script_callbacks.before_ui_callback()
- modules.script_callbacks.app_started_callback(None, app)
+ from modules import script_callbacks
+ script_callbacks.before_ui_callback()
+ script_callbacks.app_started_callback(None, app)
print(f"Startup time: {startup_timer.summary()}.")
api.launch(
@@ -353,24 +46,28 @@ def api_only():
def webui():
+ from modules.shared_cmd_options import cmd_opts
+
launch_api = cmd_opts.api
- initialize()
+ initialize.initialize()
+
+ from modules import shared, ui_tempdir, script_callbacks, ui, progress, ui_extra_networks
while 1:
if shared.opts.clean_temp_dir_at_start:
ui_tempdir.cleanup_tmpdr()
startup_timer.record("cleanup temp dir")
- modules.script_callbacks.before_ui_callback()
+ script_callbacks.before_ui_callback()
startup_timer.record("scripts before_ui_callback")
- shared.demo = modules.ui.create_ui()
+ shared.demo = ui.create_ui()
startup_timer.record("create ui")
if not cmd_opts.no_gradio_queue:
shared.demo.queue(64)
- gradio_auth_creds = list(get_gradio_auth_creds()) or None
+ gradio_auth_creds = list(initialize_util.get_gradio_auth_creds()) or None
auto_launch_browser = False
if os.getenv('SD_WEBUI_RESTARTING') != '1':
@@ -381,7 +78,7 @@ def webui():
app, local_url, share_url = shared.demo.launch(
share=cmd_opts.share,
- server_name=server_name,
+ server_name=initialize_util.gradio_server_name(),
server_port=cmd_opts.port,
ssl_keyfile=cmd_opts.tls_keyfile,
ssl_certfile=cmd_opts.tls_certfile,
@@ -406,10 +103,10 @@ def webui():
# running its code. We disable this here. Suggested by RyotaK.
app.user_middleware = [x for x in app.user_middleware if x.cls.__name__ != 'CORSMiddleware']
- setup_middleware(app)
+ initialize_util.setup_middleware(app)
- modules.progress.setup_progress_api(app)
- modules.ui.setup_ui_api(app)
+ progress.setup_progress_api(app)
+ ui.setup_ui_api(app)
if launch_api:
create_api(app)
@@ -419,7 +116,7 @@ def webui():
startup_timer.record("add APIs")
with startup_timer.subcategory("app_started_callback"):
- modules.script_callbacks.app_started_callback(shared.demo, app)
+ script_callbacks.app_started_callback(shared.demo, app)
timer.startup_record = startup_timer.dump()
print(f"Startup time: {startup_timer.summary()}.")
@@ -449,14 +146,16 @@ def webui():
shared.demo.close()
time.sleep(0.5)
startup_timer.reset()
- modules.script_callbacks.app_reload_callback()
+ script_callbacks.app_reload_callback()
startup_timer.record("app reload callback")
- modules.script_callbacks.script_unloaded_callback()
+ script_callbacks.script_unloaded_callback()
startup_timer.record("scripts unloaded callback")
- initialize_rest(reload_script_modules=True)
+ initialize.initialize_rest(reload_script_modules=True)
if __name__ == "__main__":
+ from modules.shared_cmd_options import cmd_opts
+
if cmd_opts.nowebui:
api_only()
else: