diff --git a/README.md b/README.md index 1ac794e8..9c0cd1ef 100644 --- a/README.md +++ b/README.md @@ -51,6 +51,7 @@ A browser interface based on Gradio library for Stable Diffusion. - Possible to change defaults/mix/max/step values for UI elements via text config - Tiling support, a checkbox to create images that can be tiled like textures - Progress bar and live image generation preview + - Can use a separate neural network to produce previews with almost none VRAM or compute requirement - Negative prompt, an extra text field that allows you to list what you don't want to see in generated image - Styles, a way to save part of prompt and easily apply them via dropdown later - Variations, a way to generate same image but with tiny differences @@ -75,13 +76,22 @@ A browser interface based on Gradio library for Stable Diffusion. - hypernetworks and embeddings options - Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime) - Clip skip -- Use Hypernetworks -- Use VAEs +- Hypernetworks +- Loras (same as Hypernetworks but more pretty) +- A sparate UI where you can choose, with preview, which embeddings, hypernetworks or Loras to add to your prompt. +- Can select to load a different VAE from settings screen - Estimated completion time in progress bar - API - Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML. - via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)) - [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions +- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions +- Now without any bad letters! +- Load checkpoints in safetensors format +- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64 +- Now with a license! +- Reorder elements in the UI from settings screen +- ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. diff --git a/extensions-builtin/Lora/extra_networks_lora.py b/extensions-builtin/Lora/extra_networks_lora.py new file mode 100644 index 00000000..8f2e753e --- /dev/null +++ b/extensions-builtin/Lora/extra_networks_lora.py @@ -0,0 +1,20 @@ +from modules import extra_networks +import lora + +class ExtraNetworkLora(extra_networks.ExtraNetwork): + def __init__(self): + super().__init__('lora') + + def activate(self, p, params_list): + names = [] + multipliers = [] + for params in params_list: + assert len(params.items) > 0 + + names.append(params.items[0]) + multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0) + + lora.load_loras(names, multipliers) + + def deactivate(self, p): + pass diff --git a/extensions-builtin/Lora/lora.py b/extensions-builtin/Lora/lora.py new file mode 100644 index 00000000..7a3ad9a9 --- /dev/null +++ b/extensions-builtin/Lora/lora.py @@ -0,0 +1,198 @@ +import glob +import os +import re +import torch + +from modules import shared, devices, sd_models + +re_digits = re.compile(r"\d+") +re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)") +re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)") +re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)") +re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)") + + +def convert_diffusers_name_to_compvis(key): + def match(match_list, regex): + r = re.match(regex, key) + if not r: + return False + + match_list.clear() + match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()]) + return True + + m = [] + + if match(m, re_unet_down_blocks): + return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}" + + if match(m, re_unet_mid_blocks): + return f"diffusion_model_middle_block_1_{m[1]}" + + if match(m, re_unet_up_blocks): + return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}" + + if match(m, re_text_block): + return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" + + return key + + +class LoraOnDisk: + def __init__(self, name, filename): + self.name = name + self.filename = filename + + +class LoraModule: + def __init__(self, name): + self.name = name + self.multiplier = 1.0 + self.modules = {} + self.mtime = None + + +class LoraUpDownModule: + def __init__(self): + self.up = None + self.down = None + + +def assign_lora_names_to_compvis_modules(sd_model): + lora_layer_mapping = {} + + for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): + lora_name = name.replace(".", "_") + lora_layer_mapping[lora_name] = module + module.lora_layer_name = lora_name + + for name, module in shared.sd_model.model.named_modules(): + lora_name = name.replace(".", "_") + lora_layer_mapping[lora_name] = module + module.lora_layer_name = lora_name + + sd_model.lora_layer_mapping = lora_layer_mapping + + +def load_lora(name, filename): + lora = LoraModule(name) + lora.mtime = os.path.getmtime(filename) + + sd = sd_models.read_state_dict(filename) + + keys_failed_to_match = [] + + for key_diffusers, weight in sd.items(): + fullkey = convert_diffusers_name_to_compvis(key_diffusers) + key, lora_key = fullkey.split(".", 1) + + sd_module = shared.sd_model.lora_layer_mapping.get(key, None) + if sd_module is None: + keys_failed_to_match.append(key_diffusers) + continue + + if type(sd_module) == torch.nn.Linear: + module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) + elif type(sd_module) == torch.nn.Conv2d: + module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) + else: + assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}' + + with torch.no_grad(): + module.weight.copy_(weight) + + module.to(device=devices.device, dtype=devices.dtype) + + lora_module = lora.modules.get(key, None) + if lora_module is None: + lora_module = LoraUpDownModule() + lora.modules[key] = lora_module + + if lora_key == "lora_up.weight": + lora_module.up = module + elif lora_key == "lora_down.weight": + lora_module.down = module + else: + assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight or lora_down.weight' + + if len(keys_failed_to_match) > 0: + print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}") + + return lora + + +def load_loras(names, multipliers=None): + already_loaded = {} + + for lora in loaded_loras: + if lora.name in names: + already_loaded[lora.name] = lora + + loaded_loras.clear() + + loras_on_disk = [available_loras.get(name, None) for name in names] + if any([x is None for x in loras_on_disk]): + list_available_loras() + + loras_on_disk = [available_loras.get(name, None) for name in names] + + for i, name in enumerate(names): + lora = already_loaded.get(name, None) + + lora_on_disk = loras_on_disk[i] + if lora_on_disk is not None: + if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime: + lora = load_lora(name, lora_on_disk.filename) + + if lora is None: + print(f"Couldn't find Lora with name {name}") + continue + + lora.multiplier = multipliers[i] if multipliers else 1.0 + loaded_loras.append(lora) + + +def lora_forward(module, input, res): + if len(loaded_loras) == 0: + return res + + lora_layer_name = getattr(module, 'lora_layer_name', None) + for lora in loaded_loras: + module = lora.modules.get(lora_layer_name, None) + if module is not None: + res = res + module.up(module.down(input)) * lora.multiplier + + return res + + +def lora_Linear_forward(self, input): + return lora_forward(self, input, torch.nn.Linear_forward_before_lora(self, input)) + + +def lora_Conv2d_forward(self, input): + return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora(self, input)) + + +def list_available_loras(): + available_loras.clear() + + os.makedirs(lora_dir, exist_ok=True) + + candidates = glob.glob(os.path.join(lora_dir, '**/*.pt'), recursive=True) + glob.glob(os.path.join(lora_dir, '**/*.safetensors'), recursive=True) + + for filename in sorted(candidates): + if os.path.isdir(filename): + continue + + name = os.path.splitext(os.path.basename(filename))[0] + + available_loras[name] = LoraOnDisk(name, filename) + + +lora_dir = os.path.join(shared.models_path, "Lora") +available_loras = {} +loaded_loras = [] + +list_available_loras() + diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py new file mode 100644 index 00000000..60b9eb64 --- /dev/null +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -0,0 +1,30 @@ +import torch + +import lora +import extra_networks_lora +import ui_extra_networks_lora +from modules import script_callbacks, ui_extra_networks, extra_networks + + +def unload(): + torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora + torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora + + +def before_ui(): + ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora()) + extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora()) + + +if not hasattr(torch.nn, 'Linear_forward_before_lora'): + torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward + +if not hasattr(torch.nn, 'Conv2d_forward_before_lora'): + torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward + +torch.nn.Linear.forward = lora.lora_Linear_forward +torch.nn.Conv2d.forward = lora.lora_Conv2d_forward + +script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules) +script_callbacks.on_script_unloaded(unload) +script_callbacks.on_before_ui(before_ui) diff --git a/extensions-builtin/Lora/ui_extra_networks_lora.py b/extensions-builtin/Lora/ui_extra_networks_lora.py new file mode 100644 index 00000000..65397890 --- /dev/null +++ b/extensions-builtin/Lora/ui_extra_networks_lora.py @@ -0,0 +1,35 @@ +import os +import lora + +from modules import shared, ui_extra_networks + + +class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage): + def __init__(self): + super().__init__('Lora') + + def refresh(self): + lora.list_available_loras() + + def list_items(self): + for name, lora_on_disk in lora.available_loras.items(): + path, ext = os.path.splitext(lora_on_disk.filename) + previews = [path + ".png", path + ".preview.png"] + + preview = None + for file in previews: + if os.path.isfile(file): + preview = "./file=" + file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(file)) + break + + yield { + "name": name, + "filename": path, + "preview": preview, + "prompt": f"", + "local_preview": path + ".png", + } + + def allowed_directories_for_previews(self): + return [lora.lora_dir] + diff --git a/modules/extra_networks_hypernet.py b/modules/extra_networks_hypernet.py index 6a0c4ba8..ff279a1f 100644 --- a/modules/extra_networks_hypernet.py +++ b/modules/extra_networks_hypernet.py @@ -17,5 +17,5 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork): hypernetwork.load_hypernetworks(names, multipliers) - def deactivate(p, self): + def deactivate(self, p): pass diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py index a9e19236..4bb45ec7 100644 --- a/modules/script_callbacks.py +++ b/modules/script_callbacks.py @@ -73,6 +73,7 @@ callback_map = dict( callbacks_image_grid=[], callbacks_infotext_pasted=[], callbacks_script_unloaded=[], + callbacks_before_ui=[], ) @@ -189,6 +190,14 @@ def script_unloaded_callback(): report_exception(c, 'script_unloaded') +def before_ui_callback(): + for c in reversed(callback_map['callbacks_before_ui']): + try: + c.callback() + except Exception: + report_exception(c, 'before_ui') + + def add_callback(callbacks, fun): stack = [x for x in inspect.stack() if x.filename != __file__] filename = stack[0].filename if len(stack) > 0 else 'unknown file' @@ -313,3 +322,9 @@ def on_script_unloaded(callback): the script did should be reverted here""" add_callback(callback_map['callbacks_script_unloaded'], callback) + + +def on_before_ui(callback): + """register a function to be called before the UI is created.""" + + add_callback(callback_map['callbacks_before_ui'], callback) diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index 253e90f7..796e879c 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -10,7 +10,7 @@ extra_pages = [] def register_page(page): - """registers extra networks page for the UI; recommend doing it in on_app_started() callback for extensions""" + """registers extra networks page for the UI; recommend doing it in on_before_ui() callback for extensions""" extra_pages.append(page) diff --git a/webui.py b/webui.py index e8dd822a..88d04840 100644 --- a/webui.py +++ b/webui.py @@ -165,6 +165,8 @@ def webui(): if shared.opts.clean_temp_dir_at_start: ui_tempdir.cleanup_tmpdr() + modules.script_callbacks.before_ui_callback() + shared.demo = modules.ui.create_ui() app, local_url, share_url = shared.demo.launch(