mirror of
https://github.com/openvinotoolkit/stable-diffusion-webui.git
synced 2024-12-14 06:28:12 +03:00
RAM optimization round 2
This commit is contained in:
parent
85fcb7b8df
commit
86221269f9
@ -304,7 +304,10 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
|
||||
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
|
||||
|
||||
weights_backup = getattr(self, "network_weights_backup", None)
|
||||
if weights_backup is None:
|
||||
if weights_backup is None and wanted_names != ():
|
||||
if current_names != ():
|
||||
raise RuntimeError("no backup weights found and current weights are not unchanged")
|
||||
|
||||
if isinstance(self, torch.nn.MultiheadAttention):
|
||||
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
|
||||
else:
|
||||
|
@ -168,22 +168,59 @@ class LoadStateDictOnMeta(ReplaceHelper):
|
||||
device = self.device
|
||||
|
||||
def load_from_state_dict(original, self, state_dict, prefix, *args, **kwargs):
|
||||
params = [(name, param) for name, param in self._parameters.items() if param is not None and param.is_meta]
|
||||
used_param_keys = []
|
||||
|
||||
for name, param in self._parameters.items():
|
||||
if param is None:
|
||||
continue
|
||||
|
||||
key = prefix + name
|
||||
sd_param = sd.pop(key, None)
|
||||
if sd_param is not None:
|
||||
state_dict[key] = sd_param
|
||||
used_param_keys.append(key)
|
||||
|
||||
for name, param in params:
|
||||
if param.is_meta:
|
||||
self._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device), requires_grad=param.requires_grad)
|
||||
dtype = sd_param.dtype if sd_param is not None else param.dtype
|
||||
self._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device, dtype=dtype), requires_grad=param.requires_grad)
|
||||
|
||||
for name in self._buffers:
|
||||
key = prefix + name
|
||||
|
||||
sd_param = sd.pop(key, None)
|
||||
if sd_param is not None:
|
||||
state_dict[key] = sd_param
|
||||
used_param_keys.append(key)
|
||||
|
||||
original(self, state_dict, prefix, *args, **kwargs)
|
||||
|
||||
for name, _ in params:
|
||||
key = prefix + name
|
||||
if key in sd:
|
||||
del sd[key]
|
||||
for key in used_param_keys:
|
||||
state_dict.pop(key, None)
|
||||
|
||||
def load_state_dict(original, self, state_dict, strict=True):
|
||||
"""torch makes a lot of copies of the dictionary with weights, so just deleting entries from state_dict does not help
|
||||
because the same values are stored in multiple copies of the dict. The trick used here is to give torch a dict with
|
||||
all weights on meta device, i.e. deleted, and then it doesn't matter how many copies torch makes.
|
||||
|
||||
In _load_from_state_dict, the correct weight will be obtained from a single dict with the right weights (sd).
|
||||
|
||||
The dangerous thing about this is if _load_from_state_dict is not called, (if some exotic module overloads
|
||||
the function and does not call the original) the state dict will just fail to load because weights
|
||||
would be on the meta device.
|
||||
"""
|
||||
|
||||
if state_dict == sd:
|
||||
state_dict = {k: v.to(device="meta", dtype=v.dtype) for k, v in state_dict.items()}
|
||||
|
||||
original(self, state_dict, strict=strict)
|
||||
|
||||
module_load_state_dict = self.replace(torch.nn.Module, 'load_state_dict', lambda *args, **kwargs: load_state_dict(module_load_state_dict, *args, **kwargs))
|
||||
module_load_from_state_dict = self.replace(torch.nn.Module, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(module_load_from_state_dict, *args, **kwargs))
|
||||
linear_load_from_state_dict = self.replace(torch.nn.Linear, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(linear_load_from_state_dict, *args, **kwargs))
|
||||
conv2d_load_from_state_dict = self.replace(torch.nn.Conv2d, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(conv2d_load_from_state_dict, *args, **kwargs))
|
||||
mha_load_from_state_dict = self.replace(torch.nn.MultiheadAttention, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(mha_load_from_state_dict, *args, **kwargs))
|
||||
layer_norm_load_from_state_dict = self.replace(torch.nn.LayerNorm, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(layer_norm_load_from_state_dict, *args, **kwargs))
|
||||
group_norm_load_from_state_dict = self.replace(torch.nn.GroupNorm, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(group_norm_load_from_state_dict, *args, **kwargs))
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.restore()
|
||||
|
Loading…
Reference in New Issue
Block a user