mirror of
https://github.com/openvinotoolkit/stable-diffusion-webui.git
synced 2024-12-14 22:53:25 +03:00
Back compatibility
This commit is contained in:
parent
c702d4d0df
commit
877d94f97c
@ -28,7 +28,7 @@ class HypernetworkModule(torch.nn.Module):
|
||||
"swish": torch.nn.Hardswish,
|
||||
}
|
||||
|
||||
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
|
||||
def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False, activate_output=False):
|
||||
super().__init__()
|
||||
|
||||
assert layer_structure is not None, "layer_structure must not be None"
|
||||
@ -42,7 +42,7 @@ class HypernetworkModule(torch.nn.Module):
|
||||
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
|
||||
|
||||
# Add an activation func except last layer
|
||||
if activation_func == "linear" or activation_func is None or i >= len(layer_structure) - 2:
|
||||
if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
|
||||
pass
|
||||
elif activation_func in self.activation_dict:
|
||||
linears.append(self.activation_dict[activation_func]())
|
||||
@ -105,7 +105,7 @@ class Hypernetwork:
|
||||
filename = None
|
||||
name = None
|
||||
|
||||
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False):
|
||||
def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, add_layer_norm=False, use_dropout=False, activate_output=False):
|
||||
self.filename = None
|
||||
self.name = name
|
||||
self.layers = {}
|
||||
@ -116,11 +116,12 @@ class Hypernetwork:
|
||||
self.activation_func = activation_func
|
||||
self.add_layer_norm = add_layer_norm
|
||||
self.use_dropout = use_dropout
|
||||
self.activate_output = activate_output
|
||||
|
||||
for size in enable_sizes or []:
|
||||
self.layers[size] = (
|
||||
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
|
||||
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
|
||||
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout, self.activate_output),
|
||||
HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout, self.activate_output),
|
||||
)
|
||||
|
||||
def weights(self):
|
||||
@ -147,6 +148,7 @@ class Hypernetwork:
|
||||
state_dict['use_dropout'] = self.use_dropout
|
||||
state_dict['sd_checkpoint'] = self.sd_checkpoint
|
||||
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
|
||||
state_dict['activate_output'] = self.activate_output
|
||||
|
||||
torch.save(state_dict, filename)
|
||||
|
||||
@ -161,12 +163,13 @@ class Hypernetwork:
|
||||
self.activation_func = state_dict.get('activation_func', None)
|
||||
self.add_layer_norm = state_dict.get('is_layer_norm', False)
|
||||
self.use_dropout = state_dict.get('use_dropout', False)
|
||||
self.activate_output = state_dict.get('activate_output', True)
|
||||
|
||||
for size, sd in state_dict.items():
|
||||
if type(size) == int:
|
||||
self.layers[size] = (
|
||||
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
|
||||
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout),
|
||||
HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout, self.activate_output),
|
||||
HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.add_layer_norm, self.use_dropout, self.activate_output),
|
||||
)
|
||||
|
||||
self.name = state_dict.get('name', self.name)
|
||||
|
Loading…
Reference in New Issue
Block a user