Merge pull request #7 from openvinotoolkit/dev

Dev
This commit is contained in:
Ravi Panchumarthy 2023-08-10 17:37:54 -07:00 committed by GitHub
commit 8c0590797e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 789 additions and 4 deletions

View File

@ -7,7 +7,7 @@ blendmodes
clean-fid
einops
gfpgan
gradio==3.32.0
gradio==3.39.0
inflection
jsonmerge
kornia
@ -30,4 +30,6 @@ tomesd
torch
torchdiffeq
torchsde
transformers==4.25.1
transformers==4.30.0
diffusers==0.18.2
openvino==2023.1.0.dev20230728

View File

@ -7,7 +7,7 @@ clean-fid==0.1.35
einops==0.4.1
fastapi==0.94.0
gfpgan==1.3.8
gradio==3.32.0
gradio==3.39.0
httpcore==0.15
inflection==0.5.1
jsonmerge==1.8.0
@ -28,4 +28,7 @@ tomesd==0.1.2
torch
torchdiffeq==0.2.3
torchsde==0.2.5
transformers==4.25.1
transformers==4.30.0
diffusers==0.18.2
openvino==2023.1.0.dev20230728

View File

@ -0,0 +1,780 @@
# Copyright (C) 2023 Intel Corporation
# SPDX-License-Identifier: AGPL-3.0
import cv2
import os
import torch
import time
import hashlib
import functools
import gradio as gr
import numpy as np
import modules
import modules.paths as paths
import modules.scripts as scripts
from modules import images, devices, extra_networks, masking, shared
from modules.processing import (
StableDiffusionProcessing, Processed, apply_overlay, apply_color_correction,
get_fixed_seed, create_infotext, setup_color_correction,
process_images
)
from modules.sd_models import CheckpointInfo
from modules.shared import opts, state
from PIL import Image, ImageOps
from pathlib import Path
from openvino.frontend.pytorch.torchdynamo import backend, compile # noqa: F401
from openvino.frontend.pytorch.torchdynamo.execute import execute, partitioned_modules, compiled_cache # noqa: F401
from openvino.frontend.pytorch.torchdynamo.partition import Partitioner
from openvino.runtime import Core, Type, PartialShape
from torch._dynamo.backends.common import fake_tensor_unsupported
from torch._dynamo.backends.registry import register_backend
from torch._inductor.compile_fx import compile_fx
from torch.fx.experimental.proxy_tensor import make_fx
from hashlib import sha256
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
from diffusers.utils import (
DIFFUSERS_CACHE,
HF_HUB_OFFLINE,
is_safetensors_available,
)
class ModelState:
def __init__(self):
self.recompile = 1
self.device = "CPU"
self.height = 512
self.width = 512
self.batch_size = 1
self.mode = 0
self.partition_id = 0
self.model_hash = ""
model_state = ModelState()
@register_backend
@fake_tensor_unsupported
def openvino_fx(subgraph, example_inputs):
try:
executor_parameters = None
core = Core()
if os.getenv("OPENVINO_TORCH_MODEL_CACHING") is not None:
model_hash_str = sha256(subgraph.code.encode('utf-8')).hexdigest()
model_hash_str_file = model_hash_str + str(model_state.partition_id)
model_state.partition_id = model_state.partition_id + 1
executor_parameters = {"model_hash_str": model_hash_str}
example_inputs.reverse()
cache_root = "./cache/"
if os.getenv("OPENVINO_TORCH_CACHE_DIR") is not None:
cache_root = os.getenv("OPENVINO_TORCH_CACHE_DIR")
device = "CPU"
if os.getenv("OPENVINO_TORCH_BACKEND_DEVICE") is not None:
device = os.getenv("OPENVINO_TORCH_BACKEND_DEVICE")
assert device in core.available_devices, "Specified device " + device + " is not in the list of OpenVINO Available Devices"
file_name = get_cached_file_name(*example_inputs, model_hash_str=model_hash_str_file, device=device, cache_root=cache_root)
if file_name is not None and os.path.isfile(file_name + ".xml") and os.path.isfile(file_name + ".bin"):
om = core.read_model(file_name + ".xml")
dtype_mapping = {
torch.float32: Type.f32,
torch.float64: Type.f64,
torch.float16: Type.f16,
torch.int64: Type.i64,
torch.int32: Type.i32,
torch.uint8: Type.u8,
torch.int8: Type.i8,
torch.bool: Type.boolean
}
for idx, input_data in enumerate(example_inputs):
om.inputs[idx].get_node().set_element_type(dtype_mapping[input_data.dtype])
om.inputs[idx].get_node().set_partial_shape(PartialShape(list(input_data.shape)))
om.validate_nodes_and_infer_types()
if model_hash_str is not None:
core.set_property({'CACHE_DIR': cache_root + '/blob'})
compiled_model = core.compile_model(om, device)
def _call(*args):
ov_inputs = [a.detach().cpu().numpy() for a in args]
ov_inputs.reverse()
res = compiled_model(ov_inputs)
result = [torch.from_numpy(res[out]) for out in compiled_model.outputs]
return result
return _call
else:
example_inputs.reverse()
model = make_fx(subgraph)(*example_inputs)
with torch.no_grad():
model.eval()
partitioner = Partitioner()
compiled_model = partitioner.make_partitions(model)
def _call(*args):
res = execute(compiled_model, *args, executor="openvino",
executor_parameters=executor_parameters)
return res
return _call
except Exception:
return compile_fx(subgraph, example_inputs)
def get_cached_file_name(*args, model_hash_str, device, cache_root):
file_name = None
if model_hash_str is not None:
model_cache_dir = cache_root + "/model/"
try:
os.makedirs(model_cache_dir, exist_ok=True)
file_name = model_cache_dir + model_hash_str + "_" + device
for input_data in args:
if file_name is not None:
file_name += "_" + str(input_data.type()) + str(input_data.size())[11:-1].replace(" ", "")
except OSError as error:
print("Cache directory ", cache_root, " cannot be created. Model caching is disabled. Error: ", error)
file_name = None
model_hash_str = None
return file_name
def from_single_file(self, pretrained_model_link_or_path, **kwargs):
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
resume_download = kwargs.pop("resume_download", False)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
extract_ema = kwargs.pop("extract_ema", False)
image_size = kwargs.pop("image_size", None)
scheduler_type = kwargs.pop("scheduler_type", "pndm")
num_in_channels = kwargs.pop("num_in_channels", None)
upcast_attention = kwargs.pop("upcast_attention", None)
load_safety_checker = kwargs.pop("load_safety_checker", True)
prediction_type = kwargs.pop("prediction_type", None)
text_encoder = kwargs.pop("text_encoder", None)
tokenizer = kwargs.pop("tokenizer", None)
local_config_file = kwargs.pop("local_config_file", None)
torch_dtype = kwargs.pop("torch_dtype", None)
use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)
pipeline_name = self.__name__
file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
from_safetensors = file_extension == "safetensors"
if from_safetensors and use_safetensors is False:
raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
# TODO: For now we only support stable diffusion
stable_unclip = None
model_type = None
controlnet = False
if pipeline_name == "StableDiffusionControlNetPipeline":
# Model type will be inferred from the checkpoint.
controlnet = True
elif "StableDiffusion" in pipeline_name:
# Model type will be inferred from the checkpoint.
pass
elif pipeline_name == "StableUnCLIPPipeline":
model_type = "FrozenOpenCLIPEmbedder"
stable_unclip = "txt2img"
elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
model_type = "FrozenOpenCLIPEmbedder"
stable_unclip = "img2img"
elif pipeline_name == "PaintByExamplePipeline":
model_type = "PaintByExample"
elif pipeline_name == "LDMTextToImagePipeline":
model_type = "LDMTextToImage"
else:
raise ValueError(f"Unhandled pipeline class: {pipeline_name}")
# remove huggingface url
for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
if pretrained_model_link_or_path.startswith(prefix):
pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
# Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
ckpt_path = Path(pretrained_model_link_or_path)
if not ckpt_path.is_file():
# get repo_id and (potentially nested) file path of ckpt in repo
repo_id = "/".join(ckpt_path.parts[:2])
file_path = "/".join(ckpt_path.parts[2:])
if file_path.startswith("blob/"):
file_path = file_path[len("blob/") :]
if file_path.startswith("main/"):
file_path = file_path[len("main/") :]
from huggingface_hub import hf_hub_download
pretrained_model_link_or_path = hf_hub_download(
repo_id,
filename=file_path,
cache_dir=cache_dir,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
force_download=force_download,
)
pipe = download_from_original_stable_diffusion_ckpt(
pretrained_model_link_or_path,
original_config_file=local_config_file,
pipeline_class=self,
model_type=model_type,
stable_unclip=stable_unclip,
controlnet=controlnet,
from_safetensors=from_safetensors,
extract_ema=extract_ema,
image_size=image_size,
scheduler_type=scheduler_type,
num_in_channels=num_in_channels,
upcast_attention=upcast_attention,
load_safety_checker=load_safety_checker,
prediction_type=prediction_type,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
if torch_dtype is not None:
pipe.to(torch_dtype=torch_dtype)
return pipe
StableDiffusionPipeline.from_single_file = functools.partial(from_single_file, StableDiffusionPipeline)
def openvino_clear_caches():
global partitioned_modules
global compiled_cache
compiled_cache.clear()
partitioned_modules.clear()
def sd_diffusers_model(self):
import modules.sd_models
return modules.sd_models.model_data.get_sd_model()
def cond_stage_key(self):
return None
shared.sd_diffusers_model = sd_diffusers_model
def set_scheduler(sd_model, sampler_name):
if (sampler_name == "Euler a"):
sd_model.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_model.scheduler.config)
elif (sampler_name == "Euler"):
sd_model.scheduler = EulerDiscreteScheduler.from_config(sd_model.scheduler.config)
elif (sampler_name == "LMS"):
sd_model.scheduler = LMSDiscreteScheduler.from_config(sd_model.scheduler.config)
elif (sampler_name == "Heun"):
sd_model.scheduler = HeunDiscreteScheduler.from_config(sd_model.scheduler.config)
elif (sampler_name == "DPM++ 2M"):
sd_model.scheduler = DPMSolverMultistepScheduler.from_config(sd_model.scheduler.config, algorithm_type="dpmsolver++", use_karras_sigmas=False)
elif (sampler_name == "LMS Karras"):
sd_model.scheduler = LMSDiscreteScheduler.from_config(sd_model.scheduler.config, use_karras_sigmas=True)
elif (sampler_name == "DPM++ 2M Karras"):
sd_model.scheduler = DPMSolverMultistepScheduler.from_config(sd_model.scheduler.config, algorithm_type="dpmsolver++", use_karras_sigmas=True)
elif (sampler_name == "DDIM"):
sd_model.scheduler = DDIMScheduler.from_config(sd_model.scheduler.config)
elif (sampler_name == "PLMS"):
sd_model.scheduler = PNDMScheduler.from_config(sd_model.scheduler.config)
else:
sd_model.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_model.scheduler.config)
return sd_model.scheduler
def get_diffusers_sd_model(local_config, model_config, sampler_name, enable_caching, openvino_device, mode):
if (model_state.recompile == 1):
torch._dynamo.reset()
openvino_clear_caches()
curr_dir_path = os.getcwd()
checkpoint_name = shared.opts.sd_model_checkpoint.split(" ")[0]
checkpoint_path = os.path.join(curr_dir_path, 'models', 'Stable-diffusion', checkpoint_name)
if local_config:
local_config_file = os.path.join(curr_dir_path, 'configs', model_config)
sd_model = StableDiffusionPipeline.from_single_file(checkpoint_path, local_config_file=local_config_file, load_safety_checker=False)
else:
sd_model = StableDiffusionPipeline.from_single_file(checkpoint_path, load_safety_checker=False, torch_dtype=torch.float32)
if (mode == 1):
sd_model = StableDiffusionImg2ImgPipeline(**sd_model.components)
elif (mode == 2):
sd_model = StableDiffusionInpaintPipeline(**sd_model.components)
checkpoint_info = CheckpointInfo(checkpoint_path)
sd_model.sd_checkpoint_info = checkpoint_info
sd_model.sd_model_hash = checkpoint_info.calculate_shorthash()
sd_model.safety_checker = None
sd_model.cond_stage_key = functools.partial(cond_stage_key, shared.sd_model)
sd_model.scheduler = set_scheduler(sd_model, sampler_name)
sd_model.unet = torch.compile(sd_model.unet, backend="openvino_fx")
sd_model.vae.decode = torch.compile(sd_model.vae.decode, backend="openvino_fx")
shared.sd_diffusers_model = sd_model
del sd_model
return shared.sd_diffusers_model
def init_new(self, all_prompts, all_seeds, all_subseeds):
crop_region = None
image_mask = self.image_mask
if image_mask is not None:
image_mask = image_mask.convert('L')
if self.inpainting_mask_invert:
image_mask = ImageOps.invert(image_mask)
if self.mask_blur_x > 0:
np_mask = np.array(image_mask)
kernel_size = 2 * int(4 * self.mask_blur_x + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
image_mask = Image.fromarray(np_mask)
if self.mask_blur_y > 0:
np_mask = np.array(image_mask)
kernel_size = 2 * int(4 * self.mask_blur_y + 0.5) + 1
np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
image_mask = Image.fromarray(np_mask)
if self.inpaint_full_res:
self.mask_for_overlay = image_mask
mask = image_mask.convert('L')
crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
x1, y1, x2, y2 = crop_region
mask = mask.crop(crop_region)
image_mask = images.resize_image(2, mask, self.width, self.height)
self.paste_to = (x1, y1, x2-x1, y2-y1)
else:
image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
np_mask = np.array(image_mask)
np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
self.mask_for_overlay = Image.fromarray(np_mask)
self.overlay_images = []
latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
if add_color_corrections:
self.color_corrections = []
imgs = []
for img in self.init_images:
# Save init image
if opts.save_init_img:
self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
image = images.flatten(img, opts.img2img_background_color)
if crop_region is None and self.resize_mode != 3:
image = images.resize_image(self.resize_mode, image, self.width, self.height)
if image_mask is not None:
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
self.mask = image_mask
self.overlay_images.append(image_masked.convert('RGBA'))
# crop_region is not None if we are doing inpaint full res
if crop_region is not None:
image = image.crop(crop_region)
image = images.resize_image(2, image, self.width, self.height)
self.init_images = image
if image_mask is not None:
if self.inpainting_fill != 1:
image = masking.fill(image, latent_mask)
if add_color_corrections:
self.color_corrections.append(setup_color_correction(image))
image = np.array(image).astype(np.float32) / 255.0
image = np.moveaxis(image, 2, 0)
imgs.append(image)
if len(imgs) == 1:
if self.overlay_images is not None:
self.overlay_images = self.overlay_images * self.batch_size
if self.color_corrections is not None and len(self.color_corrections) == 1:
self.color_corrections = self.color_corrections * self.batch_size
elif len(imgs) <= self.batch_size:
self.batch_size = len(imgs)
else:
raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
def process_images_openvino(p: StableDiffusionProcessing, local_config, model_config, sampler_name, enable_caching, openvino_device, mode) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
if (mode == 0 and p.enable_hr):
return process_images(p)
if type(p.prompt) == list:
assert(len(p.prompt) > 0)
else:
assert p.prompt is not None
devices.torch_gc()
seed = get_fixed_seed(p.seed)
subseed = get_fixed_seed(p.subseed)
comments = {}
custom_inputs = {}
p.setup_prompts()
if type(seed) == list:
p.all_seeds = seed
else:
p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
if type(subseed) == list:
p.all_subseeds = subseed
else:
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
def infotext(iteration=0, position_in_batch=0):
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
if p.scripts is not None:
p.scripts.process(p)
if 'ControlNet' in p.extra_generation_params:
return process_images(p)
infotexts = []
output_images = []
with torch.no_grad():
with devices.autocast():
p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
if state.job_count == -1:
state.job_count = p.n_iter
extra_network_data = None
for n in range(p.n_iter):
p.iteration = n
if state.skipped:
state.skipped = False
if state.interrupted:
break
p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
if p.scripts is not None:
p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
if len(p.prompts) == 0:
break
if (model_state.height != p.height or model_state.width != p.width or model_state.batch_size != p.batch_size
or model_state.mode != mode or model_state.model_hash != shared.sd_model.sd_model_hash):
model_state.recompile = 1
model_state.height = p.height
model_state.width = p.width
model_state.batch_size = p.batch_size
model_state.mode = mode
model_state.model_hash = shared.sd_model.sd_model_hash
shared.sd_diffusers_model = get_diffusers_sd_model(local_config, model_config, sampler_name, enable_caching, openvino_device, mode)
shared.sd_diffusers_model.scheduler = set_scheduler(shared.sd_diffusers_model, sampler_name)
extra_network_data = p.parse_extra_network_prompts()
if not p.disable_extra_networks:
with devices.autocast():
extra_networks.activate(p, p.extra_network_data)
if ('lora' in modules.extra_networks.extra_network_registry):
import lora
# TODO: multiple Loras aren't supported for Diffusers now, needs to add warning
if lora.loaded_loras:
lora_model = lora.loaded_loras[0]
shared.sd_diffusers_model.load_lora_weights(os.path.join(os.getcwd(), "models", "Lora"), weight_name=lora_model.name + ".safetensors")
custom_inputs.update(cross_attention_kwargs={"scale" : lora_model.te_multiplier})
if p.scripts is not None:
p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
# params.txt should be saved after scripts.process_batch, since the
# infotext could be modified by that callback
# Example: a wildcard processed by process_batch sets an extra model
# strength, which is saved as "Model Strength: 1.0" in the infotext
if n == 0:
with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
file.write(create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments=[], position_in_batch=0 % p.batch_size, iteration=0 // p.batch_size))
if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
generator = [torch.Generator(device="cpu").manual_seed(s) for s in p.seeds]
time_stamps = []
def callback(iter, t, latents):
time_stamps.append(time.time()) # noqa: B023
time_stamps.append(time.time())
if (mode == 0):
custom_inputs.update({
'width': p.width,
'height': p.height,
})
elif (mode == 1):
custom_inputs.update({
'image': p.init_images,
'strength':p.denoising_strength,
})
else:
custom_inputs.update({
'image': p.init_images,
'strength':p.denoising_strength,
'mask_image': p.mask,
})
output = shared.sd_diffusers_model(
prompt=p.prompts,
negative_prompt=p.negative_prompts,
num_inference_steps=p.steps,
guidance_scale=p.cfg_scale,
generator=generator,
output_type="np",
callback = callback,
callback_steps = 1,
**custom_inputs
)
model_state.recompile = 0
warmup_duration = time_stamps[1] - time_stamps[0]
generation_rate = (p.steps - 1) / (time_stamps[-1] - time_stamps[1])
x_samples_ddim = output.images
for i, x_sample in enumerate(x_samples_ddim):
p.batch_index = i
x_sample = (255. * x_sample).astype(np.uint8)
if p.restore_faces:
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
devices.torch_gc()
x_sample = modules.face_restoration.restore_faces(x_sample)
devices.torch_gc()
image = Image.fromarray(x_sample)
if p.scripts is not None:
pp = scripts.PostprocessImageArgs(image)
p.scripts.postprocess_image(p, pp)
image = pp.image
if p.color_corrections is not None and i < len(p.color_corrections):
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
image = apply_color_correction(p.color_corrections[i], image)
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
if opts.samples_save and not p.do_not_save_samples:
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p)
text = infotext(n, i)
infotexts.append(text)
if opts.enable_pnginfo:
image.info["parameters"] = text
output_images.append(image)
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
image_mask = p.mask_for_overlay.convert('RGB')
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
if opts.save_mask:
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
if opts.save_mask_composite:
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
if opts.return_mask:
output_images.append(image_mask)
if opts.return_mask_composite:
output_images.append(image_mask_composite)
del x_samples_ddim
devices.torch_gc()
state.nextjob()
p.color_corrections = None
index_of_first_image = 0
unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
grid = images.image_grid(output_images, p.batch_size)
if opts.return_grid:
text = infotext()
infotexts.insert(0, text)
if opts.enable_pnginfo:
grid.info["parameters"] = text
output_images.insert(0, grid)
index_of_first_image = 1
if opts.grid_save:
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
if not p.disable_extra_networks and extra_network_data:
extra_networks.deactivate(p, p.extra_network_data)
devices.torch_gc()
res = Processed(
p,
images_list=output_images,
seed=p.all_seeds[0],
info=infotext(),
comments="".join(f"{comment}\n" for comment in comments),
subseed=p.all_subseeds[0],
index_of_first_image=index_of_first_image,
infotexts=infotexts,
)
res.info = res.info + ", Warm up time: " + str(round(warmup_duration, 2)) + " secs "
if (generation_rate >= 1.0):
res.info = res.info + ", Performance: " + str(round(generation_rate, 2)) + " it/s "
else:
res.info = res.info + ", Performance: " + str(round(1/generation_rate, 2)) + " s/it "
if p.scripts is not None:
p.scripts.postprocess(p, res)
return res
class Script(scripts.Script):
def title(self):
return "Accelerate with OpenVINO"
def show(self, is_img2img):
return True
def ui(self, is_img2img):
core = Core()
config_dir_list = os.listdir(os.path.join(os.getcwd(), 'configs'))
config_list = []
for file in config_dir_list:
if file.endswith('.yaml'):
config_list.append(file)
local_config = gr.Checkbox(label="Use a local inference config file", value=False)
model_config = gr.Dropdown(label="Select a config for the model (Below config files are listed from the configs directory of the WebUI root)", choices=config_list, value="v1-inference.yaml", visible=False)
openvino_device = gr.Dropdown(label="Select a device", choices=list(core.available_devices), value=model_state.device)
override_sampler = gr.Checkbox(label="Override the sampling selection from the main UI (Recommended as only below sampling methods have been validated for OpenVINO)", value=True)
sampler_name = gr.Radio(label="Select a sampling method", choices=["Euler a", "Euler", "LMS", "Heun", "DPM++ 2M", "LMS Karras", "DPM++ 2M Karras", "DDIM", "PLMS"], value="Euler a")
enable_caching = gr.Checkbox(label="Cache the compiled models on disk for faster model load in subsequent launches (Recommended)", value=True, elem_id=self.elem_id("enable_caching"))
warmup_status = gr.Textbox(label="Device", interactive=False, visible=False)
gr.Markdown(
"""
###
### Note:
- First inference involves compilation of the model for best performance.
Since compilation happens only on the first run, the first inference (or warm up inference) will be slower than subsequent inferences.
- For accurate performance measurements, it is recommended to exclude this slower first inference, as it doesn't reflect normal running time.
- Model is recompiled when resolution, batchsize, device, or samplers like DPM++ or Karras are changed.
After recompiling, later inferences will reuse the newly compiled model and achieve faster running times.
So it's normal for the first inference after a settings change to be slower, while subsequent inferences use the optimized compiled model and run faster.
""")
def local_config_change(choice):
if choice:
return gr.update(visible=True)
else:
return gr.update(visible=False)
local_config.change(local_config_change, local_config, model_config)
def device_change(choice):
if (model_state.device == choice):
return gr.update(value="Device selected is " + choice, visible=True)
else:
model_state.device = choice
model_state.recompile = 1
return gr.update(value="Device changed to " + choice + ". Model will be re-compiled", visible=True)
openvino_device.change(device_change, openvino_device, warmup_status)
return [local_config, model_config, openvino_device, override_sampler, sampler_name, enable_caching]
def run(self, p, local_config, model_config, openvino_device, override_sampler, sampler_name, enable_caching):
model_state.partition_id = 0
os.environ["OPENVINO_TORCH_BACKEND_DEVICE"] = str(openvino_device)
if enable_caching:
os.environ["OPENVINO_TORCH_MODEL_CACHING"] = "1"
if override_sampler:
p.sampler_name = sampler_name
else:
supported_samplers = ["Euler a", "Euler", "LMS", "Heun", "DPM++ 2M", "LMS Karras", "DPM++ 2M Karras", "DDIM", "PLMS"]
if (p.sampler_name not in supported_samplers):
p.sampler_name = "Euler a"
# mode can be 0, 1, 2 corresponding to txt2img, img2img, inpaint respectively
mode = 0
if self.is_txt2img:
mode = 0
processed = process_images_openvino(p, local_config, model_config, p.sampler_name, enable_caching, openvino_device, mode)
else:
if p.image_mask is None:
mode = 1
else:
mode = 2
p.init = functools.partial(init_new, p)
processed = process_images_openvino(p, local_config, model_config, p.sampler_name, enable_caching, openvino_device, mode)
return processed