Added caching optimizations

This commit is contained in:
ynimmaga 2023-08-04 12:08:40 -07:00
parent ac9c9e19ae
commit b154c7e32b

View File

@ -28,6 +28,7 @@ from PIL import Image, ImageOps
from pathlib import Path from pathlib import Path
import openvino.frontend.pytorch.torchdynamo.backend import openvino.frontend.pytorch.torchdynamo.backend
import openvino.frontend.pytorch.torchdynamo.compile
from openvino.frontend.pytorch.torchdynamo.execute import partitioned_modules, compiled_cache from openvino.frontend.pytorch.torchdynamo.execute import partitioned_modules, compiled_cache
from openvino.runtime import Core from openvino.runtime import Core
@ -63,6 +64,118 @@ class ModelState:
model_state = ModelState() model_state = ModelState()
from torch.fx import GraphModule
from openvino.frontend.pytorch.fx_decoder import TorchFXPythonDecoder
from openvino.runtime import Core, Type, PartialShape, serialize
from typing import Callable, Optional
from hashlib import sha256
from torch._dynamo.backends.common import fake_tensor_unsupported
from torch._dynamo.backends.registry import register_backend
from torch._inductor.compile_fx import compile_fx
from torch.fx.experimental.proxy_tensor import make_fx
from openvino.frontend import FrontEndManager
from openvino.frontend.pytorch.torchdynamo.partition import Partitioner
from openvino.frontend.pytorch.torchdynamo.execute import execute
import time
partition_id = 0
@register_backend
@fake_tensor_unsupported
def openvino_fx(subgraph, example_inputs):
global partition_id
try:
executor_parameters = None
core = Core()
if os.getenv("OPENVINO_TORCH_MODEL_CACHING") is not None:
model_hash_str = sha256(subgraph.code.encode('utf-8')).hexdigest()
model_hash_str_file = model_hash_str + str(partition_id)
partition_id = partition_id + 1
executor_parameters = {"model_hash_str": model_hash_str}
example_inputs.reverse()
cache_root = "./cache/"
if os.getenv("OPENVINO_TORCH_CACHE_DIR") is not None:
cache_root = os.getenv("OPENVINO_TORCH_CACHE_DIR")
device = "CPU"
if os.getenv("OPENVINO_TORCH_BACKEND_DEVICE") is not None:
device = os.getenv("OPENVINO_TORCH_BACKEND_DEVICE")
assert device in core.available_devices, "Specified device " + device + " is not in the list of OpenVINO Available Devices"
file_name = get_cached_file_name(*example_inputs, model_hash_str=model_hash_str_file, device=device, cache_root=cache_root)
if file_name is not None and os.path.isfile(file_name + ".xml") and os.path.isfile(file_name + ".bin"):
start_time = time.time()
om = core.read_model(file_name + ".xml")
dtype_mapping = {
torch.float32: Type.f32,
torch.float64: Type.f64,
torch.float16: Type.f16,
torch.int64: Type.i64,
torch.int32: Type.i32,
torch.uint8: Type.u8,
torch.int8: Type.i8,
torch.bool: Type.boolean
}
for idx, input_data in enumerate(example_inputs):
om.inputs[idx].get_node().set_element_type(dtype_mapping[input_data.dtype])
om.inputs[idx].get_node().set_partial_shape(PartialShape(list(input_data.shape)))
om.validate_nodes_and_infer_types()
if model_hash_str is not None:
core.set_property({'CACHE_DIR': cache_root + '/blob'})
start_time = time.time()
compiled_model = core.compile_model(om, device)
def _call(*args):
ov_inputs = [a.detach().cpu().numpy() for a in args]
ov_inputs.reverse()
res = compiled_model(ov_inputs)
result = [torch.from_numpy(res[out]) for out in compiled_model.outputs]
return result
return _call
else:
example_inputs.reverse()
model = make_fx(subgraph)(*example_inputs)
with torch.no_grad():
model.eval()
partitioner = Partitioner()
compiled_model = partitioner.make_partitions(model)
def _call(*args):
res = execute(compiled_model, *args, executor="openvino",
executor_parameters=executor_parameters)
return res
return _call
except Exception as e:
log.debug(f"Failed in OpenVINO execution: {e}")
return compile_fx(subgraph, example_inputs)
def get_cached_file_name(*args, model_hash_str, device, cache_root):
file_name = None
if model_hash_str is not None:
model_cache_dir = cache_root + "/model/"
try:
os.makedirs(model_cache_dir, exist_ok=True)
file_name = model_cache_dir + model_hash_str + "_" + device
for idx, input_data in enumerate(args):
if file_name is not None:
file_name += "_" + str(input_data.type()) + str(input_data.size())[11:-1].replace(" ", "")
except OSError as error:
print("Cache directory ", cache_root, " cannot be created. Model caching is disabled. Error: ", error)
file_name = None
model_hash_str = None
return file_name
def from_single_file(self, pretrained_model_link_or_path, **kwargs): def from_single_file(self, pretrained_model_link_or_path, **kwargs):
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
@ -233,8 +346,8 @@ def get_diffusers_sd_model(sampler_name, enable_caching, openvino_device, mode):
sd_model.safety_checker = None sd_model.safety_checker = None
sd_model.cond_stage_key = functools.partial(cond_stage_key, shared.sd_model) sd_model.cond_stage_key = functools.partial(cond_stage_key, shared.sd_model)
sd_model.scheduler = set_scheduler(sd_model, sampler_name) sd_model.scheduler = set_scheduler(sd_model, sampler_name)
sd_model.unet = torch.compile(sd_model.unet, backend="openvino") sd_model.unet = torch.compile(sd_model.unet, backend="openvino_fx")
sd_model.vae.decode = torch.compile(sd_model.vae.decode, backend="openvino") sd_model.vae.decode = torch.compile(sd_model.vae.decode, backend="openvino_fx")
shared.sd_diffusers_model = sd_model shared.sd_diffusers_model = sd_model
del sd_model del sd_model
return shared.sd_diffusers_model return shared.sd_diffusers_model
@ -644,6 +757,8 @@ class Script(scripts.Script):
return [openvino_device, override_sampler, sampler_name, enable_caching] return [openvino_device, override_sampler, sampler_name, enable_caching]
def run(self, p, openvino_device, override_sampler, sampler_name, enable_caching): def run(self, p, openvino_device, override_sampler, sampler_name, enable_caching):
global partition_id
partition_id = 0
os.environ["OPENVINO_TORCH_BACKEND_DEVICE"] = str(openvino_device) os.environ["OPENVINO_TORCH_BACKEND_DEVICE"] = str(openvino_device)
if enable_caching: if enable_caching: