Gradient accumulation, autocast fix, new latent sampling method, etc

This commit is contained in:
flamelaw 2022-11-20 12:35:26 +09:00
parent 47a44c7e42
commit bd68e35de3
7 changed files with 408 additions and 273 deletions

View File

@ -367,13 +367,13 @@ def report_statistics(loss_info:dict):
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
save_hypernetwork_every = save_hypernetwork_every or 0
create_image_every = create_image_every or 0
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
@ -403,29 +403,25 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
hypernetwork = shared.loaded_hypernetwork
checkpoint = sd_models.select_checkpoint()
ititial_step = hypernetwork.step or 0
if ititial_step >= steps:
initial_step = hypernetwork.step or 0
if initial_step >= steps:
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
return hypernetwork, filename
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
# dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
pin_memory = shared.opts.pin_memory
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, batch_size=ds.batch_size, pin_memory=pin_memory)
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
size = len(ds.indexes)
loss_dict = defaultdict(lambda : deque(maxlen = 1024))
losses = torch.zeros((size,))
previous_mean_losses = [0]
previous_mean_loss = 0
print("Mean loss of {} elements".format(size))
weights = hypernetwork.weights()
for weight in weights:
weight.requires_grad = True
@ -446,62 +442,81 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
print("Cannot resume from saved optimizer!")
print(e)
scaler = torch.cuda.amp.GradScaler()
batch_size = ds.batch_size
gradient_step = ds.gradient_step
# n steps = batch_size * gradient_step * n image processed
steps_per_epoch = len(ds) // batch_size // gradient_step
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
loss_step = 0
_loss_step = 0 #internal
# size = len(ds.indexes)
# loss_dict = defaultdict(lambda : deque(maxlen = 1024))
# losses = torch.zeros((size,))
# previous_mean_losses = [0]
# previous_mean_loss = 0
# print("Mean loss of {} elements".format(size))
steps_without_grad = 0
last_saved_file = "<none>"
last_saved_image = "<none>"
forced_filename = "<none>"
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar:
hypernetwork.step = i + ititial_step
if len(loss_dict) > 0:
previous_mean_losses = [i[-1] for i in loss_dict.values()]
previous_mean_loss = mean(previous_mean_losses)
pbar = tqdm.tqdm(total=steps - initial_step)
try:
for i in range((steps-initial_step) * gradient_step):
if scheduler.finished:
break
if shared.state.interrupted:
break
for j, batch in enumerate(dl):
# works as a drop_last=True for gradient accumulation
if j == max_steps_per_epoch:
break
scheduler.apply(optimizer, hypernetwork.step)
if scheduler.finished:
break
if shared.state.interrupted:
break
with torch.autocast("cuda"):
c = stack_conds([entry.cond for entry in entries]).to(devices.device)
# c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if tag_drop_out != 0 or shuffle_tags:
shared.sd_model.cond_stage_model.to(devices.device)
c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
shared.sd_model.cond_stage_model.to(devices.cpu)
else:
c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
loss = shared.sd_model(x, c)[0] / gradient_step
del x
del c
losses[hypernetwork.step % losses.shape[0]] = loss.item()
for entry in entries:
loss_dict[entry.filename].append(loss.item())
optimizer.zero_grad()
weights[0].grad = None
loss.backward()
if weights[0].grad is None:
steps_without_grad += 1
else:
steps_without_grad = 0
assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
optimizer.step()
_loss_step += loss.item()
scaler.scale(loss).backward()
# go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.7f}")
# scaler.unscale_(optimizer)
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
# torch.nn.utils.clip_grad_norm_(weights, max_norm=1.0)
# print(f"grad:{weights[0].grad.detach().cpu().abs().mean().item():.15f}")
scaler.step(optimizer)
scaler.update()
hypernetwork.step += 1
pbar.update()
optimizer.zero_grad(set_to_none=True)
loss_step = _loss_step
_loss_step = 0
steps_done = hypernetwork.step + 1
if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
raise RuntimeError("Loss diverged.")
if len(previous_mean_losses) > 1:
std = stdev(previous_mean_losses)
else:
std = 0
dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
pbar.set_description(dataset_loss_info)
epoch_num = hypernetwork.step // steps_per_epoch
epoch_step = hypernetwork.step % steps_per_epoch
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}")
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
# Before saving, change name to match current checkpoint.
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
@ -512,8 +527,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
"loss": f"{previous_mean_loss:.7f}",
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
"loss": f"{loss_step:.7f}",
"learn_rate": scheduler.learn_rate
})
@ -521,7 +536,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
forced_filename = f'{hypernetwork_name}-{steps_done}'
last_saved_image = os.path.join(images_dir, forced_filename)
optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
@ -541,13 +555,15 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
p.width = preview_width
p.height = preview_height
else:
p.prompt = entries[0].cond_text
p.prompt = batch.cond_text[0]
p.steps = 20
p.width = training_width
p.height = training_height
preview_text = p.prompt
processed = processing.process_images(p)
image = processed.images[0] if len(processed.images)>0 else None
image = processed.images[0] if len(processed.images) > 0 else None
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
@ -562,15 +578,19 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.state.textinfo = f"""
<p>
Loss: {previous_mean_loss:.7f}<br/>
Loss: {loss_step:.7f}<br/>
Step: {hypernetwork.step}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/>
Last prompt: {html.escape(batch.cond_text[0])}<br/>
Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
report_statistics(loss_dict)
except Exception:
print(traceback.format_exc(), file=sys.stderr)
finally:
pbar.leave = False
pbar.close()
#report_statistics(loss_dict)
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
hypernetwork.optimizer_name = optimizer_name
@ -579,6 +599,9 @@ Last saved image: {html.escape(last_saved_image)}<br/>
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
del optimizer
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device)
return hypernetwork, filename
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):

View File

@ -8,7 +8,7 @@ from torch import einsum
from torch.nn.functional import silu
import modules.textual_inversion.textual_inversion
from modules import prompt_parser, devices, sd_hijack_optimizations, shared
from modules import prompt_parser, devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint
from modules.shared import opts, device, cmd_opts
from modules.sd_hijack_optimizations import invokeAI_mps_available
@ -59,6 +59,10 @@ def undo_optimizations():
def get_target_prompt_token_count(token_count):
return math.ceil(max(token_count, 1) / 75) * 75
def fix_checkpoint():
ldm.modules.attention.BasicTransformerBlock.forward = sd_hijack_checkpoint.BasicTransformerBlock_forward
ldm.modules.diffusionmodules.openaimodel.ResBlock.forward = sd_hijack_checkpoint.ResBlock_forward
ldm.modules.diffusionmodules.openaimodel.AttentionBlock.forward = sd_hijack_checkpoint.AttentionBlock_forward
class StableDiffusionModelHijack:
fixes = None
@ -78,6 +82,7 @@ class StableDiffusionModelHijack:
self.clip = m.cond_stage_model
apply_optimizations()
fix_checkpoint()
def flatten(el):
flattened = [flatten(children) for children in el.children()]

View File

@ -0,0 +1,10 @@
from torch.utils.checkpoint import checkpoint
def BasicTransformerBlock_forward(self, x, context=None):
return checkpoint(self._forward, x, context)
def AttentionBlock_forward(self, x):
return checkpoint(self._forward, x)
def ResBlock_forward(self, x, emb):
return checkpoint(self._forward, x, emb)

View File

@ -322,8 +322,7 @@ options_templates.update(options_section(('system', "System"), {
options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
"shuffle_tags": OptionInfo(False, "Shuffleing tags by ',' when create texts."),
"tag_drop_out": OptionInfo(0, "Dropout tags when create texts", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.1}),
"pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training can be resumed with HN itself and matching optim file."),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),

View File

@ -3,7 +3,7 @@ import numpy as np
import PIL
import torch
from PIL import Image
from torch.utils.data import Dataset
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import random
@ -11,25 +11,28 @@ import tqdm
from modules import devices, shared
import re
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
re_numbers_at_start = re.compile(r"^[-\d]+\s*")
class DatasetEntry:
def __init__(self, filename=None, latent=None, filename_text=None):
def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None):
self.filename = filename
self.latent = latent
self.filename_text = filename_text
self.cond = None
self.cond_text = None
self.latent_dist = latent_dist
self.latent_sample = latent_sample
self.cond = cond
self.cond_text = cond_text
self.pixel_values = pixel_values
class PersonalizedBase(Dataset):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1):
def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once'):
re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None
self.placeholder_token = placeholder_token
self.batch_size = batch_size
self.width = width
self.height = height
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
@ -45,11 +48,16 @@ class PersonalizedBase(Dataset):
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
cond_model = shared.sd_model.cond_stage_model
self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
self.shuffle_tags = shuffle_tags
self.tag_drop_out = tag_drop_out
print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths):
if shared.state.interrupted:
raise Exception("inturrupted")
try:
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
except Exception:
@ -71,37 +79,58 @@ class PersonalizedBase(Dataset):
npimage = np.array(image).astype(np.uint8)
npimage = (npimage / 127.5 - 1.0).astype(np.float32)
torchdata = torch.from_numpy(npimage).to(device=device, dtype=torch.float32)
torchdata = torch.moveaxis(torchdata, 2, 0)
torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
latent_sample = None
init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze()
init_latent = init_latent.to(devices.cpu)
with torch.autocast("cuda"):
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
entry = DatasetEntry(filename=path, filename_text=filename_text, latent=init_latent)
if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
latent_sampling_method = "once"
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
elif latent_sampling_method == "deterministic":
# Works only for DiagonalGaussianDistribution
latent_dist.std = 0
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
elif latent_sampling_method == "random":
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist)
if include_cond:
if not (self.tag_drop_out != 0 or self.shuffle_tags):
entry.cond_text = self.create_text(filename_text)
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
with torch.autocast("cuda"):
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
# elif not include_cond:
# _, _, _, _, hijack_fixes, token_count = cond_model.process_text([entry.cond_text])
# max_n = token_count // 75
# index_list = [ [] for _ in range(max_n + 1) ]
# for n, (z, _) in hijack_fixes[0]:
# index_list[n].append(z)
# with torch.autocast("cuda"):
# entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
# entry.emb_index = index_list
self.dataset.append(entry)
del torchdata
del latent_dist
del latent_sample
assert len(self.dataset) > 0, "No images have been found in the dataset."
self.length = len(self.dataset) * repeats // batch_size
self.dataset_length = len(self.dataset)
self.indexes = None
self.shuffle()
def shuffle(self):
self.indexes = np.random.permutation(self.dataset_length)
self.length = len(self.dataset)
assert self.length > 0, "No images have been found in the dataset."
self.batch_size = min(batch_size, self.length)
self.gradient_step = min(gradient_step, self.length // self.batch_size)
self.latent_sampling_method = latent_sampling_method
def create_text(self, filename_text):
text = random.choice(self.lines)
text = text.replace("[name]", self.placeholder_token)
tags = filename_text.split(',')
if shared.opts.tag_drop_out != 0:
tags = [t for t in tags if random.random() > shared.opts.tag_drop_out]
if shared.opts.shuffle_tags:
if self.tag_drop_out != 0:
tags = [t for t in tags if random.random() > self.tag_drop_out]
if self.shuffle_tags:
random.shuffle(tags)
text = text.replace("[filewords]", ','.join(tags))
return text
@ -110,19 +139,28 @@ class PersonalizedBase(Dataset):
return self.length
def __getitem__(self, i):
res = []
for j in range(self.batch_size):
position = i * self.batch_size + j
if position % len(self.indexes) == 0:
self.shuffle()
index = self.indexes[position % len(self.indexes)]
entry = self.dataset[index]
if entry.cond is None:
entry = self.dataset[i]
if self.tag_drop_out != 0 or self.shuffle_tags:
entry.cond_text = self.create_text(entry.filename_text)
if self.latent_sampling_method == "random":
entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist)
return entry
res.append(entry)
class PersonalizedDataLoader(DataLoader):
def __init__(self, *args, **kwargs):
super(PersonalizedDataLoader, self).__init__(shuffle=True, drop_last=True, *args, **kwargs)
self.collate_fn = collate_wrapper
return res
class BatchLoader:
def __init__(self, data):
self.cond_text = [entry.cond_text for entry in data]
self.cond = [entry.cond for entry in data]
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
def pin_memory(self):
self.latent_sample = self.latent_sample.pin_memory()
return self
def collate_wrapper(batch):
return BatchLoader(batch)

View File

@ -184,7 +184,7 @@ def write_loss(log_directory, filename, step, epoch_len, values):
if shared.opts.training_write_csv_every == 0:
return
if (step + 1) % shared.opts.training_write_csv_every != 0:
if step % shared.opts.training_write_csv_every != 0:
return
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
@ -194,21 +194,23 @@ def write_loss(log_directory, filename, step, epoch_len, values):
if write_csv_header:
csv_writer.writeheader()
epoch = step // epoch_len
epoch_step = step % epoch_len
epoch = (step - 1) // epoch_len
epoch_step = (step - 1) % epoch_len
csv_writer.writerow({
"step": step + 1,
"step": step,
"epoch": epoch,
"epoch_step": epoch_step + 1,
"epoch_step": epoch_step,
**values,
})
def validate_train_inputs(model_name, learn_rate, batch_size, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
assert model_name, f"{name} not selected"
assert learn_rate, "Learning rate is empty or 0"
assert isinstance(batch_size, int), "Batch size must be integer"
assert batch_size > 0, "Batch size must be positive"
assert isinstance(gradient_step, int), "Gradient accumulation step must be integer"
assert gradient_step > 0, "Gradient accumulation step must be positive"
assert data_root, "Dataset directory is empty"
assert os.path.isdir(data_root), "Dataset directory doesn't exist"
assert os.listdir(data_root), "Dataset directory is empty"
@ -224,10 +226,10 @@ def validate_train_inputs(model_name, learn_rate, batch_size, data_root, templat
if save_model_every or create_image_every:
assert log_directory, "Log directory is empty"
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, steps, shuffle_tags, tag_drop_out, latent_sampling_method, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
save_embedding_every = save_embedding_every or 0
create_image_every = create_image_every or 0
validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
validate_train_inputs(embedding_name, learn_rate, batch_size, gradient_step, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
shared.state.textinfo = "Initializing textual inversion training..."
shared.state.job_count = steps
@ -255,76 +257,112 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
else:
images_embeds_dir = None
cond_model = shared.sd_model.cond_stage_model
hijack = sd_hijack.model_hijack
embedding = hijack.embedding_db.word_embeddings[embedding_name]
checkpoint = sd_models.select_checkpoint()
ititial_step = embedding.step or 0
if ititial_step >= steps:
initial_step = embedding.step or 0
if initial_step >= steps:
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
return embedding, filename
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
# dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
pin_memory = shared.opts.pin_memory
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
latent_sampling_method = ds.latent_sampling_method
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, batch_size=ds.batch_size, pin_memory=False)
if unload:
shared.sd_model.first_stage_model.to(devices.cpu)
embedding.vec.requires_grad = True
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
scaler = torch.cuda.amp.GradScaler()
batch_size = ds.batch_size
gradient_step = ds.gradient_step
# n steps = batch_size * gradient_step * n image processed
steps_per_epoch = len(ds) // batch_size // gradient_step
max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
loss_step = 0
_loss_step = 0 #internal
losses = torch.zeros((32,))
last_saved_file = "<none>"
last_saved_image = "<none>"
forced_filename = "<none>"
embedding_yet_to_be_embedded = False
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
for i, entries in pbar:
embedding.step = i + ititial_step
pbar = tqdm.tqdm(total=steps - initial_step)
try:
for i in range((steps-initial_step) * gradient_step):
if scheduler.finished:
break
if shared.state.interrupted:
break
for j, batch in enumerate(dl):
# works as a drop_last=True for gradient accumulation
if j == max_steps_per_epoch:
break
scheduler.apply(optimizer, embedding.step)
if scheduler.finished:
break
if shared.state.interrupted:
break
with torch.autocast("cuda"):
c = cond_model([entry.cond_text for entry in entries])
x = torch.stack([entry.latent for entry in entries]).to(devices.device)
loss = shared.sd_model(x, c)[0]
# c = stack_conds(batch.cond).to(devices.device)
# mask = torch.tensor(batch.emb_index).to(devices.device, non_blocking=pin_memory)
# print(mask)
# c[:, 1:1+embedding.vec.shape[0]] = embedding.vec.to(devices.device, non_blocking=pin_memory)
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
c = shared.sd_model.cond_stage_model(batch.cond_text)
loss = shared.sd_model(x, c)[0] / gradient_step
del x
losses[embedding.step % losses.shape[0]] = loss.item()
_loss_step += loss.item()
scaler.scale(loss).backward()
optimizer.zero_grad()
loss.backward()
optimizer.step()
# go back until we reach gradient accumulation steps
if (j + 1) % gradient_step != 0:
continue
#print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
#scaler.unscale_(optimizer)
#print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
#torch.nn.utils.clip_grad_norm_(embedding.vec, max_norm=1.0)
#print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
scaler.step(optimizer)
scaler.update()
embedding.step += 1
pbar.update()
optimizer.zero_grad(set_to_none=True)
loss_step = _loss_step
_loss_step = 0
steps_done = embedding.step + 1
epoch_num = embedding.step // len(ds)
epoch_step = embedding.step % len(ds)
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
epoch_num = embedding.step // steps_per_epoch
epoch_step = embedding.step % steps_per_epoch
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}")
if embedding_dir is not None and steps_done % save_embedding_every == 0:
# Before saving, change name to match current checkpoint.
embedding_name_every = f'{embedding_name}-{steps_done}'
last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
#if shared.opts.save_optimizer_state:
#embedding.optimizer_state_dict = optimizer.state_dict()
save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
embedding_yet_to_be_embedded = True
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
"loss": f"{losses.mean():.7f}",
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, steps_per_epoch, {
"loss": f"{loss_step:.7f}",
"learn_rate": scheduler.learn_rate
})
@ -351,7 +389,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
p.width = preview_width
p.height = preview_height
else:
p.prompt = entries[0].cond_text
p.prompt = batch.cond_text[0]
p.steps = 20
p.width = training_width
p.height = training_height
@ -359,12 +397,15 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
preview_text = p.prompt
processed = processing.process_images(p)
image = processed.images[0]
image = processed.images[0] if len(processed.images) > 0 else None
if unload:
shared.sd_model.first_stage_model.to(devices.cpu)
if image is not None:
shared.state.current_image = image
last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
last_saved_image += f", prompt: {preview_text}"
if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
@ -399,16 +440,21 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
shared.state.textinfo = f"""
<p>
Loss: {losses.mean():.7f}<br/>
Loss: {loss_step:.7f}<br/>
Step: {embedding.step}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/>
Last prompt: {html.escape(batch.cond_text[0])}<br/>
Last saved embedding: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/>
</p>
"""
filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
except Exception:
print(traceback.format_exc(), file=sys.stderr)
pass
finally:
pbar.leave = False
pbar.close()
shared.sd_model.first_stage_model.to(devices.device)
return embedding, filename

View File

@ -1289,6 +1289,7 @@ def create_ui(wrap_gradio_gpu_call):
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001")
batch_size = gr.Number(label='Batch size', value=1, precision=0)
gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0)
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
@ -1299,6 +1300,11 @@ def create_ui(wrap_gradio_gpu_call):
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True)
preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False)
with gr.Row():
shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False)
tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0)
with gr.Row():
latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'])
with gr.Row():
interrupt_training = gr.Button(value="Interrupt")
@ -1387,11 +1393,15 @@ def create_ui(wrap_gradio_gpu_call):
train_embedding_name,
embedding_learn_rate,
batch_size,
gradient_step,
dataset_directory,
log_directory,
training_width,
training_height,
steps,
shuffle_tags,
tag_drop_out,
latent_sampling_method,
create_image_every,
save_embedding_every,
template_file,
@ -1412,11 +1422,15 @@ def create_ui(wrap_gradio_gpu_call):
train_hypernetwork_name,
hypernetwork_learn_rate,
batch_size,
gradient_step,
dataset_directory,
log_directory,
training_width,
training_height,
steps,
shuffle_tags,
tag_drop_out,
latent_sampling_method,
create_image_every,
save_embedding_every,
template_file,