mirror of
https://github.com/openvinotoolkit/stable-diffusion-webui.git
synced 2024-12-14 22:53:25 +03:00
Merge remote-tracking branch 'origin/master'
This commit is contained in:
commit
cdaab233c4
339
README.md
339
README.md
@ -3,10 +3,8 @@ A browser interface based on Gradio library for Stable Diffusion.
|
||||
|
||||
![](screenshot.png)
|
||||
|
||||
## Feature showcase
|
||||
|
||||
[Detailed feature showcase with images, art by Greg Rutkowski](https://github.com/AUTOMATIC1111/stable-diffusion-webui-feature-showcase)
|
||||
|
||||
## Features
|
||||
[Detailed feature showcase with images](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features):
|
||||
- Original txt2img and img2img modes
|
||||
- One click install and run script (but you still must install python and git)
|
||||
- Outpainting
|
||||
@ -18,10 +16,10 @@ A browser interface based on Gradio library for Stable Diffusion.
|
||||
- X/Y plot
|
||||
- Textual Inversion
|
||||
- Extras tab with:
|
||||
- GFPGAN, neural network that fixes faces
|
||||
- CodeFormer, face restoration tool as an alternative to GFPGAN
|
||||
- RealESRGAN, neural network upscaler
|
||||
- ESRGAN, neural network with a lot of third party models
|
||||
- GFPGAN, neural network that fixes faces
|
||||
- CodeFormer, face restoration tool as an alternative to GFPGAN
|
||||
- RealESRGAN, neural network upscaler
|
||||
- ESRGAN, neural network with a lot of third party models
|
||||
- Resizing aspect ratio options
|
||||
- Sampling method selection
|
||||
- Interrupt processing at any time
|
||||
@ -43,317 +41,36 @@ A browser interface based on Gradio library for Stable Diffusion.
|
||||
- Seed resizing
|
||||
- CLIP interrogator
|
||||
|
||||
## Installing and running
|
||||
## Installation and Running
|
||||
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
||||
|
||||
You need [python](https://www.python.org/downloads/windows/) and [git](https://git-scm.com/download/win)
|
||||
installed to run this, and an NVidia video card.
|
||||
Alternatively, use [Google Colab](https://colab.research.google.com/drive/1Iy-xW9t1-OQWhb0hNxueGij8phCyluOh).
|
||||
|
||||
You need `model.ckpt`, Stable Diffusion model checkpoint, a big file containing the neural network weights. You
|
||||
can obtain it from the following places:
|
||||
- [official download](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original)
|
||||
- [file storage](https://drive.yerf.org/wl/?id=EBfTrmcCCUAGaQBXVIj5lJmEhjoP1tgl)
|
||||
- magnet:?xt=urn:btih:3a4a612d75ed088ea542acac52f9f45987488d1c&dn=sd-v1-4.ckpt&tr=udp%3a%2f%2ftracker.openbittorrent.com%3a6969%2fannounce&tr=udp%3a%2f%2ftracker.opentrackr.org%3a1337
|
||||
### Automatic Installation on Windows
|
||||
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
|
||||
2. Install [git](https://git-scm.com/download/win).
|
||||
3. Download the stable-diffusion-webui repository, for example by running `git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git`.
|
||||
4. Place `model.ckpt` in the base directory, alongside `webui.py`.
|
||||
5. _*(Optional)*_ Place `GFPGANv1.3.pth` in the base directory, alongside `webui.py`.
|
||||
6. Run `webui-user.bat` from Windows Explorer as normal, non-administrate, user.
|
||||
|
||||
You can optionally use GFPGAN to improve faces, to do so you'll need to download the model from [here](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth) and place it in the same directory as `webui.bat`.
|
||||
|
||||
To use ESRGAN models, put them into ESRGAN directory in the same location as webui.py. A file will be loaded
|
||||
as a model if it has .pth extension, and it will show up with its name in the UI. Grab models from the [Model Database](https://upscale.wiki/wiki/Model_Database).
|
||||
|
||||
> Note: RealESRGAN models are not ESRGAN models, they are not compatible. Do not download RealESRGAN models. Do not place
|
||||
RealESRGAN into the directory with ESRGAN models. Thank you.
|
||||
|
||||
### Automatic installation/launch
|
||||
|
||||
- install [Python 3.10.6](https://www.python.org/downloads/windows/) and check "Add Python to PATH" during installation. You must install this exact version.
|
||||
- install [git](https://git-scm.com/download/win)
|
||||
- place `model.ckpt` into webui directory, next to `webui.bat`.
|
||||
- _*(optional)*_ place `GFPGANv1.3.pth` into webui directory, next to `webui.bat`.
|
||||
- run `webui-user.bat` from Windows Explorer. Run it as a normal user, ***not*** as administrator.
|
||||
|
||||
### Running on AMD GPUs
|
||||
See the [wiki article](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Running-using-AMD-GPUs) by [cryzed](https://github.com/cryzed).
|
||||
|
||||
### Linux Automatic installation/launch
|
||||
|
||||
Prequisites:
|
||||
- For Debian-based:
|
||||
```commandline
|
||||
### Automatic Installation on Linux
|
||||
1. Install the dependencies:
|
||||
```bash
|
||||
# Debian-based:
|
||||
sudo apt install wget git python3 python3-venv
|
||||
```
|
||||
- For Red Hat-based:
|
||||
```commandline
|
||||
# Red Hat-based:
|
||||
sudo dnf install wget git python3
|
||||
# Arch-based:
|
||||
sudo pacman -S wget git python3
|
||||
```
|
||||
|
||||
|
||||
- If you want to install to default directory `/home/$(whoami)/stable-diffusion-webui/`, you can launch directly:
|
||||
```commandline
|
||||
2. To install in `/home/$(whoami)/stable-diffusion-webui/`, run:
|
||||
```bash
|
||||
bash <(wget -qO- https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui/master/webui.sh)
|
||||
```
|
||||
|
||||
|
||||
- If you want to customize the installation just `git clone` the repo where you want it,
|
||||
change the variables in `webui-user.sh` and launch in console `bash webui.sh`.
|
||||
|
||||
|
||||
|
||||
- place `model.ckpt` into webui directory, next to `webui.py`.
|
||||
- _*(optional)*_ place `GFPGANv1.3.pth` into webui directory, next to `webui.py`.
|
||||
- run `bash webui.sh`. Run it as a normal user, ***not*** as root.
|
||||
|
||||
|
||||
|
||||
#### Troubleshooting
|
||||
|
||||
- if your version of Python is not in PATH (or if another version is), edit `webui-user.bat`, and modify the
|
||||
line `set PYTHON=python` to say the full path to your python executable, for example: `set PYTHON=B:\soft\Python310\python.exe`.
|
||||
You can do this for python, but not for git.
|
||||
- if you get out of memory errors and your video-card has a low amount of VRAM (4GB), use custom parameter `set COMMANDLINE_ARGS` (see section below)
|
||||
to enable appropriate optimization according to low VRAM guide below (for example, `set COMMANDLINE_ARGS=--medvram --opt-split-attention`).
|
||||
- to prevent the creation of virtual environment and use your system python, use custom parameter replacing `set VENV_DIR=-` (see below).
|
||||
- webui.bat installs requirements from files `requirements_versions.txt`, which lists versions for modules specifically compatible with
|
||||
Python 3.10.6. If you choose to install for a different version of python, using custom parameter `set REQS_FILE=requirements.txt`
|
||||
may help (but I still recommend you to just use the recommended version of python).
|
||||
- if you feel you broke something and want to reinstall from scratch, delete directories: `venv`, `repositories`.
|
||||
- if you get a green or black screen instead of generated pictures, you have a card that doesn't support half precision
|
||||
floating point numbers (Known issue with 16xx cards). You must use `--precision full --no-half` in addition to command line
|
||||
arguments (set them using `set COMMANDLINE_ARGS`, see below), and the model will take much more space in VRAM (you will likely
|
||||
have to also use at least `--medvram`).
|
||||
- the installer creates a python virtual environment, so none of the installed modules will affect your system installation of python if
|
||||
you had one prior to installing this.
|
||||
- About _"You must install this exact version"_ from the instructions above: you can use any version of python you like,
|
||||
and it will likely work, but if you want to seek help about things not working, I will not offer help unless you use this
|
||||
exact version for my sanity.
|
||||
|
||||
#### How to run with custom parameters
|
||||
|
||||
It's possible to edit `set COMMANDLINE_ARGS=` line in `webui.bat` to run the program with different command line arguments, but that may lead
|
||||
to inconveniences when the file is updated in the repository.
|
||||
|
||||
The recommended way is to use another .bat file named anything you like, set the parameters you want in it, and run webui.bat from it.
|
||||
A `webui-user.bat` file included into the repository does exactly this.
|
||||
|
||||
Here is an example that runs the program with `--opt-split-attention` argument:
|
||||
|
||||
```commandline
|
||||
@echo off
|
||||
|
||||
set COMMANDLINE_ARGS=--opt-split-attention
|
||||
|
||||
call webui.bat
|
||||
```
|
||||
|
||||
Another example, this file will run the program with a custom python path, a different model named `a.ckpt` and without a virtual environment:
|
||||
|
||||
```commandline
|
||||
@echo off
|
||||
|
||||
set PYTHON=b:/soft/Python310/Python.exe
|
||||
set VENV_DIR=-
|
||||
set COMMANDLINE_ARGS=--ckpt a.ckpt
|
||||
|
||||
call webui.bat
|
||||
```
|
||||
|
||||
### How to create large images?
|
||||
Use `--opt-split-attention` parameter. It slows down sampling a tiny bit, but allows you to make gigantic images.
|
||||
|
||||
### What options to use for low VRAM video-cards?
|
||||
You can, through command line arguments, enable the various optimizations which sacrifice some/a lot of speed in favor of
|
||||
using less VRAM. Those arguments are added to the `COMMANDLINE_ARGS` parameter, see section above.
|
||||
|
||||
Here's a list of optimization arguments:
|
||||
- If you have 4GB VRAM and want to make 512x512 (or maybe up to 640x640) images, use `--medvram`.
|
||||
- If you have 4GB VRAM and want to make 512x512 images, but you get an out of memory error with `--medvram`, use `--medvram --opt-split-attention` instead.
|
||||
- If you have 4GB VRAM and want to make 512x512 images, and you still get an out of memory error, use `--lowvram --always-batch-cond-uncond --opt-split-attention` instead.
|
||||
- If you have 4GB VRAM and want to make images larger than you can with `--medvram`, use `--lowvram --opt-split-attention`.
|
||||
- If you have more VRAM and want to make larger images than you can usually make (for example 1024x1024 instead of 512x512), use `--medvram --opt-split-attention`. You can use `--lowvram`
|
||||
also but the effect will likely be barely noticeable.
|
||||
- Otherwise, do not use any of those.
|
||||
|
||||
### Running online
|
||||
|
||||
Use the `--share` option to run online. You will get a xxx.app.gradio link. This is the intended way to use the
|
||||
program in Colab. You may set up authentication for said gradio shared instance with the flag `--gradio-auth username:password`, optionally providing multiple sets of usernames and passwords separated by commas.
|
||||
|
||||
Use `--listen` to make the server listen to network connections. This will allow computers on the local network
|
||||
to access the UI, and if you configure port forwarding, also computers on the internet.
|
||||
|
||||
Use `--port xxxx` to make the server listen on a specific port, xxxx being the wanted port. Remember that
|
||||
all ports below 1024 need root/admin rights, for this reason it is advised to use a port above 1024.
|
||||
Defaults to port 7860 if available.
|
||||
|
||||
### Google Colab
|
||||
|
||||
If you don't want or can't run locally, here is a Google Colab that allows you to run the webui:
|
||||
|
||||
https://colab.research.google.com/drive/1Iy-xW9t1-OQWhb0hNxueGij8phCyluOh
|
||||
|
||||
### Textual Inversion
|
||||
To make use of pretrained embeddings, create an `embeddings` directory (in the same place as `webui.py`)
|
||||
and put your embeddings into it. They must be either .pt or .bin files, each with only one trained embedding,
|
||||
and the filename (without .pt/.bin) will be the term you'll use in the prompt to get that embedding.
|
||||
|
||||
As an example, I trained one for about 5000 steps: https://files.catbox.moe/e2ui6r.pt; it does not produce
|
||||
very good results, but it does work. To try it out download the file, rename it to `Usada Pekora.pt`, put it into the `embeddings` dir
|
||||
and use `Usada Pekora` in the prompt.
|
||||
|
||||
You may also try some from the growing library of embeddings at https://huggingface.co/sd-concepts-library, downloading one of the `learned_embeds.bin` files, renaming it to the term you want to use for it in the prompt (be sure to keep the .bin extension) and putting it in your `embeddings` directory.
|
||||
|
||||
### How to change UI defaults?
|
||||
|
||||
After running once, a `ui-config.json` file appears in webui directory:
|
||||
|
||||
```json
|
||||
{
|
||||
"txt2img/Sampling Steps/value": 20,
|
||||
"txt2img/Sampling Steps/minimum": 1,
|
||||
"txt2img/Sampling Steps/maximum": 150,
|
||||
"txt2img/Sampling Steps/step": 1,
|
||||
"txt2img/Batch count/value": 1,
|
||||
"txt2img/Batch count/minimum": 1,
|
||||
"txt2img/Batch count/maximum": 32,
|
||||
"txt2img/Batch count/step": 1,
|
||||
"txt2img/Batch size/value": 1,
|
||||
"txt2img/Batch size/minimum": 1,
|
||||
```
|
||||
|
||||
Edit values to your liking and the next time you launch the program they will be applied.
|
||||
|
||||
### Almost automatic installation and launch
|
||||
|
||||
Install python and git, place `model.ckpt` and `GFPGANv1.3.pth` into webui directory, run:
|
||||
|
||||
```
|
||||
python launch.py
|
||||
```
|
||||
|
||||
This installs packages via pip. If you need to use a virtual environment, you must set it up yourself. I will not
|
||||
provide support for using the web ui this way unless you are using the recommended version of python below.
|
||||
|
||||
If you'd like to use command line parameters, use them right there:
|
||||
|
||||
```
|
||||
python launch.py --opt-split-attention --ckpt ../secret/anime9999.ckpt
|
||||
```
|
||||
|
||||
### Manual installation
|
||||
Alternatively, if you don't want to run the installer, here are instructions for installing
|
||||
everything by hand. This can run on both Windows and Linux (if you're on linux, use `ls`
|
||||
instead of `dir`).
|
||||
|
||||
```bash
|
||||
# install torch with CUDA support. See https://pytorch.org/get-started/locally/ for more instructions if this fails.
|
||||
pip install torch --extra-index-url https://download.pytorch.org/whl/cu113
|
||||
|
||||
# check if torch supports GPU; this must output "True". You need CUDA 11. installed for this. You might be able to use
|
||||
# a different version, but this is what I tested.
|
||||
python -c "import torch; print(torch.cuda.is_available())"
|
||||
|
||||
# clone web ui and go into its directory
|
||||
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
|
||||
cd stable-diffusion-webui
|
||||
|
||||
# clone repositories for Stable Diffusion and (optionally) CodeFormer
|
||||
mkdir repositories
|
||||
git clone https://github.com/CompVis/stable-diffusion.git repositories/stable-diffusion
|
||||
git clone https://github.com/CompVis/taming-transformers.git repositories/taming-transformers
|
||||
git clone https://github.com/sczhou/CodeFormer.git repositories/CodeFormer
|
||||
git clone https://github.com/salesforce/BLIP.git repositories/BLIP
|
||||
|
||||
# install requirements of Stable Diffusion
|
||||
pip install transformers==4.19.2 diffusers invisible-watermark --prefer-binary
|
||||
|
||||
# install k-diffusion
|
||||
pip install git+https://github.com/crowsonkb/k-diffusion.git --prefer-binary
|
||||
|
||||
# (optional) install GFPGAN (face restoration)
|
||||
pip install git+https://github.com/TencentARC/GFPGAN.git --prefer-binary
|
||||
|
||||
# (optional) install requirements for CodeFormer (face restoration)
|
||||
pip install -r repositories/CodeFormer/requirements.txt --prefer-binary
|
||||
|
||||
# install requirements of web ui
|
||||
pip install -r requirements.txt --prefer-binary
|
||||
|
||||
# update numpy to latest version
|
||||
pip install -U numpy --prefer-binary
|
||||
|
||||
# (outside of command line) put stable diffusion model into web ui directory
|
||||
# the command below must output something like: 1 File(s) 4,265,380,512 bytes
|
||||
dir model.ckpt
|
||||
|
||||
# (outside of command line) put the GFPGAN model into web ui directory
|
||||
# the command below must output something like: 1 File(s) 348,632,874 bytes
|
||||
dir GFPGANv1.3.pth
|
||||
```
|
||||
|
||||
> Note: the directory structure for manual instruction has been changed on 2022-09-09 to match automatic installation: previously
|
||||
> webui was in a subdirectory of stable diffusion, now it's the reverse. If you followed manual installation before the
|
||||
> change, you can still use the program with your existing directory structure.
|
||||
|
||||
After that the installation is finished.
|
||||
|
||||
Run the command to start web ui:
|
||||
|
||||
```
|
||||
python webui.py
|
||||
```
|
||||
|
||||
If you have a 4GB video card, run the command with either `--lowvram` or `--medvram` argument:
|
||||
|
||||
```
|
||||
python webui.py --medvram
|
||||
```
|
||||
|
||||
After a while, you will get a message like this:
|
||||
|
||||
```
|
||||
Running on local URL: http://127.0.0.1:7860/
|
||||
```
|
||||
|
||||
Open the URL in a browser, and you are good to go.
|
||||
|
||||
|
||||
### Windows 11 WSL2 instructions
|
||||
Alternatively, here are instructions for installing under Windows 11 WSL2 Linux distro, everything by hand:
|
||||
|
||||
```bash
|
||||
# install conda (if not already done)
|
||||
wget https://repo.anaconda.com/archive/Anaconda3-2022.05-Linux-x86_64.sh
|
||||
chmod +x Anaconda3-2022.05-Linux-x86_64.sh
|
||||
./Anaconda3-2022.05-Linux-x86_64.sh
|
||||
|
||||
# Clone webui repo
|
||||
git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
|
||||
cd stable-diffusion-webui
|
||||
|
||||
# Create and activate conda env
|
||||
conda env create -f environment-wsl2.yaml
|
||||
conda activate automatic
|
||||
|
||||
# (optional) install requirements for GFPGAN (upscaling)
|
||||
wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth
|
||||
```
|
||||
|
||||
After that follow the instructions in the `Manual instructions` section starting at step `:: clone repositories for Stable Diffusion and (optionally) CodeFormer`.
|
||||
|
||||
### Custom scripts from users
|
||||
|
||||
[A list of custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-scripts-from-users), along with installation instructions.
|
||||
|
||||
|
||||
|
||||
### img2img alternative test
|
||||
- see [this post](https://www.reddit.com/r/StableDiffusion/comments/xboy90/a_better_way_of_doing_img2img_by_finding_the/) on ebaumsworld.com for context.
|
||||
- find it in scripts section
|
||||
- put description of input image into the Original prompt field
|
||||
- use Euler only
|
||||
- recommended: 50 steps, low cfg scale between 1 and 2
|
||||
- denoising and seed don't matter
|
||||
- decode cfg scale between 0 and 1
|
||||
- decode steps 50
|
||||
- original blue haired woman close nearly reproduces with cfg scale=1.8
|
||||
## Documentation
|
||||
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
|
||||
|
||||
## Credits
|
||||
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
|
||||
@ -365,4 +82,4 @@ After that follow the instructions in the `Manual instructions` section starting
|
||||
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
|
||||
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
|
||||
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
||||
- (You)
|
||||
- (You)
|
||||
|
@ -357,6 +357,9 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
||||
else:
|
||||
image.save(fullfn, quality=opts.jpeg_quality, pnginfo=pnginfo)
|
||||
|
||||
if extension.lower() == "webp":
|
||||
piexif.insert(exif_bytes, fullfn)
|
||||
|
||||
target_side_length = 4000
|
||||
oversize = image.width > target_side_length or image.height > target_side_length
|
||||
if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > 4 * 1024 * 1024):
|
||||
|
@ -57,7 +57,7 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
|
||||
del q_in, k_in, v_in
|
||||
|
||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
|
||||
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
|
||||
|
||||
stats = torch.cuda.memory_stats(q.device)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
|
@ -16,7 +16,7 @@ export COMMANDLINE_ARGS=()
|
||||
python_cmd="python3"
|
||||
|
||||
# git executable
|
||||
export GIT=""
|
||||
#export GIT=""
|
||||
|
||||
# python3 venv without trailing slash (defaults to ${install_dir}/${clone_dir}/venv)
|
||||
venv_dir="venv"
|
||||
@ -25,16 +25,16 @@ venv_dir="venv"
|
||||
export TORCH_COMMAND=(python3 -m pip install torch==1.12.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113)
|
||||
|
||||
# Requirements file to use for stable-diffusion-webui
|
||||
export REQS_FILE=""
|
||||
#export REQS_FILE=""
|
||||
|
||||
# Fixed git repos
|
||||
export K_DIFFUSION_PACKAGE=""
|
||||
export GFPGAN_PACKAGE=""
|
||||
#export K_DIFFUSION_PACKAGE=""
|
||||
#export GFPGAN_PACKAGE=""
|
||||
|
||||
# Fixed git commits
|
||||
export STABLE_DIFFUSION_COMMIT_HASH=""
|
||||
export TAMING_TRANSFORMERS_COMMIT_HASH=""
|
||||
export CODEFORMER_COMMIT_HASH=""
|
||||
export BLIP_COMMIT_HASH=""
|
||||
#export STABLE_DIFFUSION_COMMIT_HASH=""
|
||||
#export TAMING_TRANSFORMERS_COMMIT_HASH=""
|
||||
#export CODEFORMER_COMMIT_HASH=""
|
||||
#export BLIP_COMMIT_HASH=""
|
||||
|
||||
###########################################
|
||||
###########################################
|
||||
|
Loading…
Reference in New Issue
Block a user