Fix MHA updown err and support ex-bias for no-bias layer

This commit is contained in:
Kohaku-Blueleaf 2023-08-14 13:32:51 +08:00
parent 5881dcb887
commit d9cc27cb29

View File

@ -277,7 +277,15 @@ def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Li
self.weight.copy_(weights_backup)
if bias_backup is not None:
self.bias.copy_(bias_backup)
if isinstance(self, torch.nn.MultiheadAttention):
self.out_proj.bias.copy_(bias_backup)
else:
self.bias.copy_(bias_backup)
else:
if isinstance(self, torch.nn.MultiheadAttention):
self.out_proj.bias = None
else:
self.bias = None
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
@ -305,7 +313,12 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
bias_backup = getattr(self, "network_bias_backup", None)
if bias_backup is None and getattr(self, 'bias', None) is not None:
bias_backup = self.bias.to(devices.cpu, copy=True)
if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None:
bias_backup = self.out_proj.bias.to(devices.cpu, copy=True)
elif getattr(self, 'bias', None) is not None:
bias_backup = self.bias.to(devices.cpu, copy=True)
else:
bias_backup = None
self.network_bias_backup = bias_backup
if current_names != wanted_names:
@ -322,8 +335,11 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
self.weight += updown
if ex_bias is not None and getattr(self, 'bias', None) is not None:
self.bias += ex_bias
if ex_bias is not None and hasattr(self, 'bias'):
if self.bias is None:
self.bias = torch.nn.Parameter(ex_bias)
else:
self.bias += ex_bias
continue
module_q = net.modules.get(network_layer_name + "_q_proj", None)
@ -333,14 +349,19 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
with torch.no_grad():
updown_q = module_q.calc_updown(self.in_proj_weight)
updown_k = module_k.calc_updown(self.in_proj_weight)
updown_v = module_v.calc_updown(self.in_proj_weight)
updown_q, _ = module_q.calc_updown(self.in_proj_weight)
updown_k, _ = module_k.calc_updown(self.in_proj_weight)
updown_v, _ = module_v.calc_updown(self.in_proj_weight)
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
updown_out = module_out.calc_updown(self.out_proj.weight)
updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)
self.in_proj_weight += updown_qkv
self.out_proj.weight += updown_out
if ex_bias is not None:
if self.out_proj.bias is None:
self.out_proj.bias = torch.nn.Parameter(ex_bias)
else:
self.out_proj.bias += ex_bias
continue
if module is None: