From bb57f30c2de46cfca5419ad01738a41705f96cc3 Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Fri, 14 Oct 2022 10:56:41 +0200
Subject: [PATCH 001/100] init
---
README.md | 1 +
aesthetic_embeddings/insert_embs_here.txt | 0
modules/processing.py | 17 +++-
modules/sd_hijack.py | 80 ++++++++++++++++++-
modules/shared.py | 5 ++
modules/textual_inversion/dataset.py | 2 +-
.../textual_inversion/textual_inversion.py | 35 +++++---
modules/txt2img.py | 11 ++-
modules/ui.py | 59 +++++++++-----
9 files changed, 172 insertions(+), 38 deletions(-)
create mode 100644 aesthetic_embeddings/insert_embs_here.txt
diff --git a/README.md b/README.md
index 859a91b6..7b8d018b 100644
--- a/README.md
+++ b/README.md
@@ -70,6 +70,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
+- Aesthetic, a way to generate images with a specific aesthetic by using clip images embds (implementation of https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
diff --git a/aesthetic_embeddings/insert_embs_here.txt b/aesthetic_embeddings/insert_embs_here.txt
new file mode 100644
index 00000000..e69de29b
diff --git a/modules/processing.py b/modules/processing.py
index d5172f00..9a033759 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -316,11 +316,16 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
-def process_images(p: StableDiffusionProcessing) -> Processed:
+def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0,
+ aesthetic_imgs=None,aesthetic_slerp=False) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
+ aesthetic_lr = float(aesthetic_lr)
+ aesthetic_weight = float(aesthetic_weight)
+ aesthetic_steps = int(aesthetic_steps)
+
if type(p.prompt) == list:
- assert(len(p.prompt) > 0)
+ assert (len(p.prompt) > 0)
else:
assert p.prompt is not None
@@ -394,7 +399,13 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
#uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
#c = p.sd_model.get_learned_conditioning(prompts)
with devices.autocast():
- uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt], p.steps)
+ if hasattr(shared.sd_model.cond_stage_model, "set_aesthetic_params"):
+ shared.sd_model.cond_stage_model.set_aesthetic_params(0, 0, 0)
+ uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt],
+ p.steps)
+ if hasattr(shared.sd_model.cond_stage_model, "set_aesthetic_params"):
+ shared.sd_model.cond_stage_model.set_aesthetic_params(aesthetic_lr, aesthetic_weight,
+ aesthetic_steps, aesthetic_imgs,aesthetic_slerp)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
if len(model_hijack.comments) > 0:
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index c81722a0..6d5196fe 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -9,11 +9,14 @@ from torch.nn.functional import silu
import modules.textual_inversion.textual_inversion
from modules import prompt_parser, devices, sd_hijack_optimizations, shared
-from modules.shared import opts, device, cmd_opts
+from modules.shared import opts, device, cmd_opts, aesthetic_embeddings
from modules.sd_hijack_optimizations import invokeAI_mps_available
import ldm.modules.attention
import ldm.modules.diffusionmodules.model
+from transformers import CLIPVisionModel, CLIPModel
+import torch.optim as optim
+import copy
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
@@ -109,13 +112,29 @@ class StableDiffusionModelHijack:
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
return remade_batch_tokens[0], token_count, get_target_prompt_token_count(token_count)
+def slerp(low, high, val):
+ low_norm = low/torch.norm(low, dim=1, keepdim=True)
+ high_norm = high/torch.norm(high, dim=1, keepdim=True)
+ omega = torch.acos((low_norm*high_norm).sum(1))
+ so = torch.sin(omega)
+ res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
+ return res
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
def __init__(self, wrapped, hijack):
super().__init__()
self.wrapped = wrapped
+ self.clipModel = CLIPModel.from_pretrained(
+ self.wrapped.transformer.name_or_path
+ )
+ del self.clipModel.vision_model
self.hijack: StableDiffusionModelHijack = hijack
self.tokenizer = wrapped.tokenizer
+ # self.vision = CLIPVisionModel.from_pretrained(self.wrapped.transformer.name_or_path).eval()
+ self.image_embs_name = None
+ self.image_embs = None
+ self.load_image_embs(None)
+
self.token_mults = {}
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ','][0]
@@ -136,6 +155,23 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
if mult != 1.0:
self.token_mults[ident] = mult
+ def set_aesthetic_params(self, aesthetic_lr, aesthetic_weight, aesthetic_steps, image_embs_name=None,
+ aesthetic_slerp=True):
+ self.slerp = aesthetic_slerp
+ self.aesthetic_lr = aesthetic_lr
+ self.aesthetic_weight = aesthetic_weight
+ self.aesthetic_steps = aesthetic_steps
+ self.load_image_embs(image_embs_name)
+
+ def load_image_embs(self, image_embs_name):
+ if image_embs_name is None or len(image_embs_name) == 0:
+ image_embs_name = None
+ if image_embs_name is not None and self.image_embs_name != image_embs_name:
+ self.image_embs_name = image_embs_name
+ self.image_embs = torch.load(aesthetic_embeddings[self.image_embs_name], map_location=device)
+ self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True)
+ self.image_embs.requires_grad_(False)
+
def tokenize_line(self, line, used_custom_terms, hijack_comments):
id_end = self.wrapped.tokenizer.eos_token_id
@@ -333,7 +369,47 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
z1 = self.process_tokens(tokens, multipliers)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
-
+
+ if len(text[
+ 0]) != 0 and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name != None:
+ if not opts.use_old_emphasis_implementation:
+ remade_batch_tokens = [
+ [self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in
+ remade_batch_tokens]
+
+ tokens = torch.asarray(remade_batch_tokens).to(device)
+ with torch.enable_grad():
+ model = copy.deepcopy(self.clipModel).to(device)
+ model.requires_grad_(True)
+
+ # We optimize the model to maximize the similarity
+ optimizer = optim.Adam(
+ model.text_model.parameters(), lr=self.aesthetic_lr
+ )
+
+ for i in range(self.aesthetic_steps):
+ text_embs = model.get_text_features(input_ids=tokens)
+ text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
+ sim = text_embs @ self.image_embs.T
+ loss = -sim
+ optimizer.zero_grad()
+ loss.mean().backward()
+ optimizer.step()
+
+ zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
+ if opts.CLIP_stop_at_last_layers > 1:
+ zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers]
+ zn = model.text_model.final_layer_norm(zn)
+ else:
+ zn = zn.last_hidden_state
+ model.cpu()
+ del model
+
+ if self.slerp:
+ z = slerp(z, zn, self.aesthetic_weight)
+ else:
+ z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight
+
remade_batch_tokens = rem_tokens
batch_multipliers = rem_multipliers
i += 1
diff --git a/modules/shared.py b/modules/shared.py
index 5901e605..cf13a10d 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -30,6 +30,8 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
+parser.add_argument("--aesthetic_embeddings-dir", type=str, default=os.path.join(script_path, 'aesthetic_embeddings'),
+ help="aesthetic_embeddings directory(default: aesthetic_embeddings)")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage")
@@ -90,6 +92,9 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None
+aesthetic_embeddings = {f.replace(".pt",""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
+ os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
+
def reload_hypernetworks():
global hypernetworks
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index 67e90afe..59b2b021 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -48,7 +48,7 @@ class PersonalizedBase(Dataset):
print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths):
try:
- image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
+ image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.Resampling.BICUBIC)
except Exception:
continue
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index fa0e33a2..b12a8e6d 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -172,7 +172,15 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
return fn
-def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_image_prompt):
+def batched(dataset, total, n=1):
+ for ndx in range(0, total, n):
+ yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))]
+
+
+def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps,
+ create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding,
+ preview_image_prompt, batch_size=1,
+ gradient_accumulation=1):
assert embedding_name, 'embedding not selected'
shared.state.textinfo = "Initializing textual inversion training..."
@@ -204,7 +212,11 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file)
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width,
+ height=training_height,
+ repeats=shared.opts.training_image_repeats_per_epoch,
+ placeholder_token=embedding_name, model=shared.sd_model,
+ device=devices.device, template_file=template_file)
hijack = sd_hijack.model_hijack
@@ -223,7 +235,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
- pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
+ pbar = tqdm.tqdm(enumerate(batched(ds, steps - ititial_step, batch_size)), total=steps - ititial_step)
for i, entry in pbar:
embedding.step = i + ititial_step
@@ -235,17 +247,20 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
break
with torch.autocast("cuda"):
- c = cond_model([entry.cond_text])
+ c = cond_model([e.cond_text for e in entry])
+
+ x = torch.stack([e.latent for e in entry]).to(devices.device)
+ loss = shared.sd_model(x, c)[0]
- x = entry.latent.to(devices.device)
- loss = shared.sd_model(x.unsqueeze(0), c)[0]
del x
losses[embedding.step % losses.shape[0]] = loss.item()
- optimizer.zero_grad()
loss.backward()
- optimizer.step()
+ if ((i + 1) % gradient_accumulation == 0) or (i + 1 == steps - ititial_step):
+ optimizer.step()
+ optimizer.zero_grad()
+
epoch_num = embedding.step // len(ds)
epoch_step = embedding.step - (epoch_num * len(ds)) + 1
@@ -259,7 +274,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png')
- preview_text = entry.cond_text if preview_image_prompt == "" else preview_image_prompt
+ preview_text = entry[0].cond_text if preview_image_prompt == "" else preview_image_prompt
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
@@ -305,7 +320,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini
Loss: {losses.mean():.7f}
Step: {embedding.step}
-Last prompt: {html.escape(entry.cond_text)}
+Last prompt: {html.escape(entry[-1].cond_text)}
Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
diff --git a/modules/txt2img.py b/modules/txt2img.py
index e985242b..78342024 100644
--- a/modules/txt2img.py
+++ b/modules/txt2img.py
@@ -6,7 +6,14 @@ import modules.processing as processing
from modules.ui import plaintext_to_html
-def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, scale_latent: bool, denoising_strength: float, *args):
+def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int,
+ restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int,
+ subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool,
+ height: int, width: int, enable_hr: bool, scale_latent: bool, denoising_strength: float,
+ aesthetic_lr=0,
+ aesthetic_weight=0, aesthetic_steps=0,
+ aesthetic_imgs=None,
+ aesthetic_slerp=False, *args):
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@@ -40,7 +47,7 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
processed = modules.scripts.scripts_txt2img.run(p, *args)
if processed is None:
- processed = process_images(p)
+ processed = process_images(p, aesthetic_lr, aesthetic_weight, aesthetic_steps, aesthetic_imgs, aesthetic_slerp)
shared.total_tqdm.clear()
diff --git a/modules/ui.py b/modules/ui.py
index 220fb80b..d961d126 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -24,7 +24,8 @@ import gradio.routes
from modules import sd_hijack
from modules.paths import script_path
-from modules.shared import opts, cmd_opts
+from modules.shared import opts, cmd_opts,aesthetic_embeddings
+
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
import modules.shared as shared
@@ -534,6 +535,14 @@ def create_ui(wrap_gradio_gpu_call):
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
+ with gr.Group():
+ aesthetic_lr = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
+ aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.7)
+ aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=50)
+
+ aesthetic_imgs = gr.Dropdown(sorted(aesthetic_embeddings.keys()), label="Imgs embedding", value=sorted(aesthetic_embeddings.keys())[0] if len(aesthetic_embeddings) > 0 else None)
+ aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
+
with gr.Row():
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
tiling = gr.Checkbox(label='Tiling', value=False)
@@ -586,25 +595,30 @@ def create_ui(wrap_gradio_gpu_call):
fn=wrap_gradio_gpu_call(modules.txt2img.txt2img),
_js="submit",
inputs=[
- txt2img_prompt,
- txt2img_negative_prompt,
- txt2img_prompt_style,
- txt2img_prompt_style2,
- steps,
- sampler_index,
- restore_faces,
- tiling,
- batch_count,
- batch_size,
- cfg_scale,
- seed,
- subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox,
- height,
- width,
- enable_hr,
- scale_latent,
- denoising_strength,
- ] + custom_inputs,
+ txt2img_prompt,
+ txt2img_negative_prompt,
+ txt2img_prompt_style,
+ txt2img_prompt_style2,
+ steps,
+ sampler_index,
+ restore_faces,
+ tiling,
+ batch_count,
+ batch_size,
+ cfg_scale,
+ seed,
+ subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox,
+ height,
+ width,
+ enable_hr,
+ scale_latent,
+ denoising_strength,
+ aesthetic_lr,
+ aesthetic_weight,
+ aesthetic_steps,
+ aesthetic_imgs,
+ aesthetic_slerp
+ ] + custom_inputs,
outputs=[
txt2img_gallery,
generation_info,
@@ -1097,6 +1111,9 @@ def create_ui(wrap_gradio_gpu_call):
template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt"))
training_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
training_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
+ batch_size = gr.Slider(minimum=1, maximum=64, step=1, label="Batch Size", value=4)
+ gradient_accumulation = gr.Slider(minimum=1, maximum=256, step=1, label="Gradient accumulation",
+ value=1)
steps = gr.Number(label='Max steps', value=100000, precision=0)
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0)
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0)
@@ -1180,6 +1197,8 @@ def create_ui(wrap_gradio_gpu_call):
template_file,
save_image_with_stored_embedding,
preview_image_prompt,
+ batch_size,
+ gradient_accumulation
],
outputs=[
ti_output,
From 37d7ffb415cd8c69b3c0bb5f61844dde0b169f78 Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Sat, 15 Oct 2022 15:59:37 +0200
Subject: [PATCH 002/100] fix to tokens lenght, addend embs generator, add new
features to edit the embedding before the generation using text
---
modules/aesthetic_clip.py | 78 ++++++++++++++++++++
modules/processing.py | 148 +++++++++++++++++++++++++-------------
modules/sd_hijack.py | 111 ++++++++++++++++++----------
modules/shared.py | 4 ++
modules/txt2img.py | 10 ++-
modules/ui.py | 47 ++++++++++--
6 files changed, 302 insertions(+), 96 deletions(-)
create mode 100644 modules/aesthetic_clip.py
diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py
new file mode 100644
index 00000000..f15cfd47
--- /dev/null
+++ b/modules/aesthetic_clip.py
@@ -0,0 +1,78 @@
+import itertools
+import os
+from pathlib import Path
+import html
+import gc
+
+import gradio as gr
+import torch
+from PIL import Image
+from modules import shared
+from modules.shared import device, aesthetic_embeddings
+from transformers import CLIPModel, CLIPProcessor
+
+from tqdm.auto import tqdm
+
+
+def get_all_images_in_folder(folder):
+ return [os.path.join(folder, f) for f in os.listdir(folder) if
+ os.path.isfile(os.path.join(folder, f)) and check_is_valid_image_file(f)]
+
+
+def check_is_valid_image_file(filename):
+ return filename.lower().endswith(('.png', '.jpg', '.jpeg'))
+
+
+def batched(dataset, total, n=1):
+ for ndx in range(0, total, n):
+ yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))]
+
+
+def iter_to_batched(iterable, n=1):
+ it = iter(iterable)
+ while True:
+ chunk = tuple(itertools.islice(it, n))
+ if not chunk:
+ return
+ yield chunk
+
+
+def generate_imgs_embd(name, folder, batch_size):
+ # clipModel = CLIPModel.from_pretrained(
+ # shared.sd_model.cond_stage_model.clipModel.name_or_path
+ # )
+ model = CLIPModel.from_pretrained(shared.sd_model.cond_stage_model.clipModel.name_or_path).to(device)
+ processor = CLIPProcessor.from_pretrained(shared.sd_model.cond_stage_model.clipModel.name_or_path)
+
+ with torch.no_grad():
+ embs = []
+ for paths in tqdm(iter_to_batched(get_all_images_in_folder(folder), batch_size),
+ desc=f"Generating embeddings for {name}"):
+ if shared.state.interrupted:
+ break
+ inputs = processor(images=[Image.open(path) for path in paths], return_tensors="pt").to(device)
+ outputs = model.get_image_features(**inputs).cpu()
+ embs.append(torch.clone(outputs))
+ inputs.to("cpu")
+ del inputs, outputs
+
+ embs = torch.cat(embs, dim=0).mean(dim=0, keepdim=True)
+
+ # The generated embedding will be located here
+ path = str(Path(shared.cmd_opts.aesthetic_embeddings_dir) / f"{name}.pt")
+ torch.save(embs, path)
+
+ model = model.cpu()
+ del model
+ del processor
+ del embs
+ gc.collect()
+ torch.cuda.empty_cache()
+ res = f"""
+ Done generating embedding for {name}!
+ Hypernetwork saved to {html.escape(path)}
+ """
+ shared.update_aesthetic_embeddings()
+ return gr.Dropdown(sorted(aesthetic_embeddings.keys()), label="Imgs embedding",
+ value=sorted(aesthetic_embeddings.keys())[0] if len(
+ aesthetic_embeddings) > 0 else None), res, ""
diff --git a/modules/processing.py b/modules/processing.py
index 9a033759..ab68d63a 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -20,7 +20,6 @@ import modules.images as images
import modules.styles
import logging
-
# some of those options should not be changed at all because they would break the model, so I removed them from options.
opt_C = 4
opt_f = 8
@@ -52,8 +51,13 @@ def get_correct_sampler(p):
elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
return sd_samplers.samplers_for_img2img
+
class StableDiffusionProcessing:
- def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None):
+ def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1,
+ subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True,
+ sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512,
+ restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False,
+ extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None):
self.sd_model = sd_model
self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids
@@ -104,7 +108,8 @@ class StableDiffusionProcessing:
class Processed:
- def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
+ def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None,
+ all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None):
self.images = images_list
self.prompt = p.prompt
self.negative_prompt = p.negative_prompt
@@ -141,7 +146,8 @@ class Processed:
self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
self.seed = int(self.seed if type(self.seed) != list else self.seed[0])
- self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
+ self.subseed = int(
+ self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
self.all_prompts = all_prompts or [self.prompt]
self.all_seeds = all_seeds or [self.seed]
@@ -181,39 +187,43 @@ class Processed:
return json.dumps(obj)
- def infotext(self, p: StableDiffusionProcessing, index):
- return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
+ def infotext(self, p: StableDiffusionProcessing, index):
+ return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[],
+ position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
def slerp(val, low, high):
- low_norm = low/torch.norm(low, dim=1, keepdim=True)
- high_norm = high/torch.norm(high, dim=1, keepdim=True)
- dot = (low_norm*high_norm).sum(1)
+ low_norm = low / torch.norm(low, dim=1, keepdim=True)
+ high_norm = high / torch.norm(high, dim=1, keepdim=True)
+ dot = (low_norm * high_norm).sum(1)
if dot.mean() > 0.9995:
return low * val + high * (1 - val)
omega = torch.acos(dot)
so = torch.sin(omega)
- res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
+ res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
return res
-def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
+def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0,
+ p=None):
xs = []
# if we have multiple seeds, this means we are working with batch size>1; this then
# enables the generation of additional tensors with noise that the sampler will use during its processing.
# Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
# produce the same images as with two batches [100], [101].
- if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or opts.eta_noise_seed_delta > 0):
+ if p is not None and p.sampler is not None and (
+ len(seeds) > 1 and opts.enable_batch_seeds or opts.eta_noise_seed_delta > 0):
sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
else:
sampler_noises = None
for i, seed in enumerate(seeds):
- noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
+ noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (
+ shape[0], seed_resize_from_h // 8, seed_resize_from_w // 8)
subnoise = None
if subseeds is not None:
@@ -241,7 +251,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
dx = max(-dx, 0)
dy = max(-dy, 0)
- x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
+ x[:, ty:ty + h, tx:tx + w] = noise[:, dy:dy + h, dx:dx + w]
noise = x
if sampler_noises is not None:
@@ -293,14 +303,20 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
"Seed": all_seeds[index],
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
"Size": f"{p.width}x{p.height}",
- "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
- "Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
- "Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name.replace(',', '').replace(':', '')),
+ "Model hash": getattr(p, 'sd_model_hash',
+ None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
+ "Model": (
+ None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(
+ ',', '').replace(':', '')),
+ "Hypernet": (
+ None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name.replace(',', '').replace(
+ ':', '')),
"Batch size": (None if p.batch_size < 2 else p.batch_size),
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
- "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
+ "Seed resize from": (
+ None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None),
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
"Clip skip": None if clip_skip <= 1 else clip_skip,
@@ -309,7 +325,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
generation_params.update(p.extra_generation_params)
- generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
+ generation_params_text = ", ".join(
+ [k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
@@ -317,7 +334,9 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0,
- aesthetic_imgs=None,aesthetic_slerp=False) -> Processed:
+ aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="",
+ aesthetic_slerp_angle=0.15,
+ aesthetic_text_negative=False) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
aesthetic_lr = float(aesthetic_lr)
@@ -385,7 +404,7 @@ def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weigh
for n in range(p.n_iter):
if state.skipped:
state.skipped = False
-
+
if state.interrupted:
break
@@ -396,16 +415,19 @@ def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weigh
if (len(prompts) == 0):
break
- #uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
- #c = p.sd_model.get_learned_conditioning(prompts)
+ # uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
+ # c = p.sd_model.get_learned_conditioning(prompts)
with devices.autocast():
if hasattr(shared.sd_model.cond_stage_model, "set_aesthetic_params"):
- shared.sd_model.cond_stage_model.set_aesthetic_params(0, 0, 0)
+ shared.sd_model.cond_stage_model.set_aesthetic_params()
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt],
p.steps)
if hasattr(shared.sd_model.cond_stage_model, "set_aesthetic_params"):
shared.sd_model.cond_stage_model.set_aesthetic_params(aesthetic_lr, aesthetic_weight,
- aesthetic_steps, aesthetic_imgs,aesthetic_slerp)
+ aesthetic_steps, aesthetic_imgs,
+ aesthetic_slerp, aesthetic_imgs_text,
+ aesthetic_slerp_angle,
+ aesthetic_text_negative)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
if len(model_hijack.comments) > 0:
@@ -413,13 +435,13 @@ def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weigh
comments[comment] = 1
if p.n_iter > 1:
- shared.state.job = f"Batch {n+1} out of {p.n_iter}"
+ shared.state.job = f"Batch {n + 1} out of {p.n_iter}"
with devices.autocast():
- samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
+ samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds,
+ subseed_strength=p.subseed_strength)
if state.interrupted or state.skipped:
-
# if we are interrupted, sample returns just noise
# use the image collected previously in sampler loop
samples_ddim = shared.state.current_latent
@@ -445,7 +467,9 @@ def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weigh
if p.restore_faces:
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
- images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
+ images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", seeds[i], prompts[i],
+ opts.samples_format, info=infotext(n, i), p=p,
+ suffix="-before-face-restoration")
devices.torch_gc()
@@ -456,7 +480,8 @@ def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weigh
if p.color_corrections is not None and i < len(p.color_corrections):
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
- images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
+ images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format,
+ info=infotext(n, i), p=p, suffix="-before-color-correction")
image = apply_color_correction(p.color_corrections[i], image)
if p.overlay_images is not None and i < len(p.overlay_images):
@@ -474,7 +499,8 @@ def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weigh
image = image.convert('RGB')
if opts.samples_save and not p.do_not_save_samples:
- images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format, info=infotext(n, i), p=p)
+ images.save_image(image, p.outpath_samples, "", seeds[i], prompts[i], opts.samples_format,
+ info=infotext(n, i), p=p)
text = infotext(n, i)
infotexts.append(text)
@@ -482,7 +508,7 @@ def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weigh
image.info["parameters"] = text
output_images.append(image)
- del x_samples_ddim
+ del x_samples_ddim
devices.torch_gc()
@@ -504,10 +530,13 @@ def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weigh
index_of_first_image = 1
if opts.grid_save:
- images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
+ images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format,
+ info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
devices.torch_gc()
- return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
+ return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]),
+ subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds,
+ index_of_first_image=index_of_first_image, infotexts=infotexts)
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
@@ -543,25 +572,34 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
if not self.enable_hr:
- x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds,
+ subseeds=subseeds, subseed_strength=self.subseed_strength,
+ seed_resize_from_h=self.seed_resize_from_h,
+ seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
return samples
- x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds,
+ subseeds=subseeds, subseed_strength=self.subseed_strength,
+ seed_resize_from_h=self.seed_resize_from_h,
+ seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
truncate_x = (self.firstphase_width - self.firstphase_width_truncated) // opt_f
truncate_y = (self.firstphase_height - self.firstphase_height_truncated) // opt_f
- samples = samples[:, :, truncate_y//2:samples.shape[2]-truncate_y//2, truncate_x//2:samples.shape[3]-truncate_x//2]
+ samples = samples[:, :, truncate_y // 2:samples.shape[2] - truncate_y // 2,
+ truncate_x // 2:samples.shape[3] - truncate_x // 2]
if self.scale_latent:
- samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
+ samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f),
+ mode="bilinear")
else:
decoded_samples = decode_first_stage(self.sd_model, samples)
if opts.upscaler_for_img2img is None or opts.upscaler_for_img2img == "None":
- decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear")
+ decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width),
+ mode="bilinear")
else:
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
@@ -585,13 +623,16 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
- noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds,
+ subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h,
+ seed_resize_from_w=self.seed_resize_from_w, p=self)
# GC now before running the next img2img to prevent running out of memory
x = None
devices.torch_gc()
- samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
+ samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning,
+ steps=self.steps)
return samples
@@ -599,7 +640,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None
- def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4, inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0, **kwargs):
+ def __init__(self, init_images=None, resize_mode=0, denoising_strength=0.75, mask=None, mask_blur=4,
+ inpainting_fill=0, inpaint_full_res=True, inpaint_full_res_padding=0, inpainting_mask_invert=0,
+ **kwargs):
super().__init__(**kwargs)
self.init_images = init_images
@@ -607,7 +650,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.denoising_strength: float = denoising_strength
self.init_latent = None
self.image_mask = mask
- #self.image_unblurred_mask = None
+ # self.image_unblurred_mask = None
self.latent_mask = None
self.mask_for_overlay = None
self.mask_blur = mask_blur
@@ -619,7 +662,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.nmask = None
def init(self, all_prompts, all_seeds, all_subseeds):
- self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
+ self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index,
+ self.sd_model)
crop_region = None
if self.image_mask is not None:
@@ -628,7 +672,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
if self.inpainting_mask_invert:
self.image_mask = ImageOps.invert(self.image_mask)
- #self.image_unblurred_mask = self.image_mask
+ # self.image_unblurred_mask = self.image_mask
if self.mask_blur > 0:
self.image_mask = self.image_mask.filter(ImageFilter.GaussianBlur(self.mask_blur))
@@ -642,7 +686,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
mask = mask.crop(crop_region)
self.image_mask = images.resize_image(2, mask, self.width, self.height)
- self.paste_to = (x1, y1, x2-x1, y2-y1)
+ self.paste_to = (x1, y1, x2 - x1, y2 - y1)
else:
self.image_mask = images.resize_image(self.resize_mode, self.image_mask, self.width, self.height)
np_mask = np.array(self.image_mask)
@@ -665,7 +709,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
if self.image_mask is not None:
image_masked = Image.new('RGBa', (image.width, image.height))
- image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
+ image_masked.paste(image.convert("RGBA").convert("RGBa"),
+ mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
self.overlay_images.append(image_masked.convert('RGBA'))
@@ -714,12 +759,17 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
# this needs to be fixed to be done in sample() using actual seeds for batches
if self.inpainting_fill == 2:
- self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
+ self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:],
+ all_seeds[
+ 0:self.init_latent.shape[
+ 0]]) * self.nmask
elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
- x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds,
+ subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h,
+ seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 6d5196fe..192883b2 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -14,7 +14,8 @@ from modules.sd_hijack_optimizations import invokeAI_mps_available
import ldm.modules.attention
import ldm.modules.diffusionmodules.model
-from transformers import CLIPVisionModel, CLIPModel
+from tqdm import trange
+from transformers import CLIPVisionModel, CLIPModel, CLIPTokenizer
import torch.optim as optim
import copy
@@ -22,21 +23,25 @@ attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
+
def apply_optimizations():
undo_optimizations()
ldm.modules.diffusionmodules.model.nonlinearity = silu
- if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (8, 6)):
+ if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (
+ 6, 0) <= torch.cuda.get_device_capability(shared.device) <= (8, 6)):
print("Applying xformers cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
elif cmd_opts.opt_split_attention_v1:
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
- elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
+ elif not cmd_opts.disable_opt_split_attention and (
+ cmd_opts.opt_split_attention_invokeai or not torch.cuda.is_available()):
if not invokeAI_mps_available and shared.device.type == 'mps':
- print("The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
+ print(
+ "The InvokeAI cross attention optimization for MPS requires the psutil package which is not installed.")
print("Applying v1 cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1
else:
@@ -112,14 +117,16 @@ class StableDiffusionModelHijack:
_, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text])
return remade_batch_tokens[0], token_count, get_target_prompt_token_count(token_count)
+
def slerp(low, high, val):
- low_norm = low/torch.norm(low, dim=1, keepdim=True)
- high_norm = high/torch.norm(high, dim=1, keepdim=True)
- omega = torch.acos((low_norm*high_norm).sum(1))
+ low_norm = low / torch.norm(low, dim=1, keepdim=True)
+ high_norm = high / torch.norm(high, dim=1, keepdim=True)
+ omega = torch.acos((low_norm * high_norm).sum(1))
so = torch.sin(omega)
- res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
+ res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
return res
+
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
def __init__(self, wrapped, hijack):
super().__init__()
@@ -128,6 +135,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
self.wrapped.transformer.name_or_path
)
del self.clipModel.vision_model
+ self.tokenizer = CLIPTokenizer.from_pretrained(self.wrapped.transformer.name_or_path)
self.hijack: StableDiffusionModelHijack = hijack
self.tokenizer = wrapped.tokenizer
# self.vision = CLIPVisionModel.from_pretrained(self.wrapped.transformer.name_or_path).eval()
@@ -139,7 +147,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ','][0]
- tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k]
+ tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if
+ '(' in k or ')' in k or '[' in k or ']' in k]
for text, ident in tokens_with_parens:
mult = 1.0
for c in text:
@@ -155,8 +164,13 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
if mult != 1.0:
self.token_mults[ident] = mult
- def set_aesthetic_params(self, aesthetic_lr, aesthetic_weight, aesthetic_steps, image_embs_name=None,
- aesthetic_slerp=True):
+ def set_aesthetic_params(self, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None,
+ aesthetic_slerp=True, aesthetic_imgs_text="",
+ aesthetic_slerp_angle=0.15,
+ aesthetic_text_negative=False):
+ self.aesthetic_imgs_text = aesthetic_imgs_text
+ self.aesthetic_slerp_angle = aesthetic_slerp_angle
+ self.aesthetic_text_negative = aesthetic_text_negative
self.slerp = aesthetic_slerp
self.aesthetic_lr = aesthetic_lr
self.aesthetic_weight = aesthetic_weight
@@ -180,7 +194,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
else:
parsed = [[line, 1.0]]
- tokenized = self.wrapped.tokenizer([text for text, _ in parsed], truncation=False, add_special_tokens=False)["input_ids"]
+ tokenized = self.wrapped.tokenizer([text for text, _ in parsed], truncation=False, add_special_tokens=False)[
+ "input_ids"]
fixes = []
remade_tokens = []
@@ -196,18 +211,20 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
if token == self.comma_token:
last_comma = len(remade_tokens)
- elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens), 1) % 75 == 0 and last_comma != -1 and len(remade_tokens) - last_comma <= opts.comma_padding_backtrack:
+ elif opts.comma_padding_backtrack != 0 and max(len(remade_tokens),
+ 1) % 75 == 0 and last_comma != -1 and len(
+ remade_tokens) - last_comma <= opts.comma_padding_backtrack:
last_comma += 1
reloc_tokens = remade_tokens[last_comma:]
reloc_mults = multipliers[last_comma:]
remade_tokens = remade_tokens[:last_comma]
length = len(remade_tokens)
-
+
rem = int(math.ceil(length / 75)) * 75 - length
remade_tokens += [id_end] * rem + reloc_tokens
multipliers = multipliers[:last_comma] + [1.0] * rem + reloc_mults
-
+
if embedding is None:
remade_tokens.append(token)
multipliers.append(weight)
@@ -248,7 +265,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
if line in cache:
remade_tokens, fixes, multipliers = cache[line]
else:
- remade_tokens, fixes, multipliers, current_token_count = self.tokenize_line(line, used_custom_terms, hijack_comments)
+ remade_tokens, fixes, multipliers, current_token_count = self.tokenize_line(line, used_custom_terms,
+ hijack_comments)
token_count = max(current_token_count, token_count)
cache[line] = (remade_tokens, fixes, multipliers)
@@ -259,7 +277,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
-
def process_text_old(self, text):
id_start = self.wrapped.tokenizer.bos_token_id
id_end = self.wrapped.tokenizer.eos_token_id
@@ -289,7 +306,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
while i < len(tokens):
token = tokens[i]
- embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i)
+ embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens,
+ i)
mult_change = self.token_mults.get(token) if opts.enable_emphasis else None
if mult_change is not None:
@@ -312,11 +330,12 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
ovf = remade_tokens[maxlen - 2:]
overflowing_words = [vocab.get(int(x), "") for x in ovf]
overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words))
- hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
+ hijack_comments.append(
+ f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n")
token_count = len(remade_tokens)
remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens))
- remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end]
+ remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end]
cache[tuple_tokens] = (remade_tokens, fixes, multipliers)
multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers))
@@ -326,23 +345,26 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
hijack_fixes.append(fixes)
batch_multipliers.append(multipliers)
return batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count
-
+
def forward(self, text):
use_old = opts.use_old_emphasis_implementation
if use_old:
- batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(text)
+ batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text_old(
+ text)
else:
- batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text)
+ batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(
+ text)
self.hijack.comments += hijack_comments
if len(used_custom_terms) > 0:
- self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
-
+ self.hijack.comments.append(
+ "Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms]))
+
if use_old:
self.hijack.fixes = hijack_fixes
return self.process_tokens(remade_batch_tokens, batch_multipliers)
-
+
z = None
i = 0
while max(map(len, remade_batch_tokens)) != 0:
@@ -356,7 +378,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
if fix[0] == i:
fixes.append(fix[1])
self.hijack.fixes.append(fixes)
-
+
tokens = []
multipliers = []
for j in range(len(remade_batch_tokens)):
@@ -378,19 +400,30 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
remade_batch_tokens]
tokens = torch.asarray(remade_batch_tokens).to(device)
+
+ model = copy.deepcopy(self.clipModel).to(device)
+ model.requires_grad_(True)
+ if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0:
+ text_embs_2 = model.get_text_features(
+ **self.tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device))
+ if self.aesthetic_text_negative:
+ text_embs_2 = self.image_embs - text_embs_2
+ text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True)
+ img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle)
+ else:
+ img_embs = self.image_embs
+
with torch.enable_grad():
- model = copy.deepcopy(self.clipModel).to(device)
- model.requires_grad_(True)
# We optimize the model to maximize the similarity
optimizer = optim.Adam(
model.text_model.parameters(), lr=self.aesthetic_lr
)
- for i in range(self.aesthetic_steps):
+ for i in trange(self.aesthetic_steps, desc="Aesthetic optimization"):
text_embs = model.get_text_features(input_ids=tokens)
text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
- sim = text_embs @ self.image_embs.T
+ sim = text_embs @ img_embs.T
loss = -sim
optimizer.zero_grad()
loss.mean().backward()
@@ -405,6 +438,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
model.cpu()
del model
+ zn = torch.concat([zn for i in range(z.shape[1] // 77)], 1)
if self.slerp:
z = slerp(z, zn, self.aesthetic_weight)
else:
@@ -413,15 +447,16 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
remade_batch_tokens = rem_tokens
batch_multipliers = rem_multipliers
i += 1
-
+
return z
-
-
+
def process_tokens(self, remade_batch_tokens, batch_multipliers):
if not opts.use_old_emphasis_implementation:
- remade_batch_tokens = [[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in remade_batch_tokens]
+ remade_batch_tokens = [
+ [self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in
+ remade_batch_tokens]
batch_multipliers = [[1.0] + x[:75] + [1.0] for x in batch_multipliers]
-
+
tokens = torch.asarray(remade_batch_tokens).to(device)
outputs = self.wrapped.transformer(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
@@ -461,8 +496,8 @@ class EmbeddingsWithFixes(torch.nn.Module):
for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes:
emb = embedding.vec
- emb_len = min(tensor.shape[0]-offset-1, emb.shape[0])
- tensor = torch.cat([tensor[0:offset+1], emb[0:emb_len], tensor[offset+1+emb_len:]])
+ emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
+ tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])
vecs.append(tensor)
diff --git a/modules/shared.py b/modules/shared.py
index cf13a10d..7cd608ca 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -95,6 +95,10 @@ loaded_hypernetwork = None
aesthetic_embeddings = {f.replace(".pt",""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
+def update_aesthetic_embeddings():
+ global aesthetic_embeddings
+ aesthetic_embeddings = {f.replace(".pt",""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
+ os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
def reload_hypernetworks():
global hypernetworks
diff --git a/modules/txt2img.py b/modules/txt2img.py
index 78342024..eedcdfe0 100644
--- a/modules/txt2img.py
+++ b/modules/txt2img.py
@@ -13,7 +13,11 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
aesthetic_lr=0,
aesthetic_weight=0, aesthetic_steps=0,
aesthetic_imgs=None,
- aesthetic_slerp=False, *args):
+ aesthetic_slerp=False,
+ aesthetic_imgs_text="",
+ aesthetic_slerp_angle=0.15,
+ aesthetic_text_negative=False,
+ *args):
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@@ -47,7 +51,9 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
processed = modules.scripts.scripts_txt2img.run(p, *args)
if processed is None:
- processed = process_images(p, aesthetic_lr, aesthetic_weight, aesthetic_steps, aesthetic_imgs, aesthetic_slerp)
+ processed = process_images(p, aesthetic_lr, aesthetic_weight, aesthetic_steps, aesthetic_imgs, aesthetic_slerp,aesthetic_imgs_text,
+ aesthetic_slerp_angle,
+ aesthetic_text_negative)
shared.total_tqdm.clear()
diff --git a/modules/ui.py b/modules/ui.py
index d961d126..e98e2113 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -41,6 +41,7 @@ from modules import prompt_parser
from modules.images import save_image
import modules.textual_inversion.ui
import modules.hypernetworks.ui
+import modules.aesthetic_clip
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
mimetypes.init()
@@ -449,7 +450,7 @@ def create_toprow(is_img2img):
with gr.Row():
negative_prompt = gr.Textbox(label="Negative prompt", elem_id="negative_prompt", show_label=False, placeholder="Negative prompt", lines=2)
with gr.Column(scale=1, elem_id="roll_col"):
- sh = gr.Button(elem_id="sh", visible=True)
+ sh = gr.Button(elem_id="sh", visible=True)
with gr.Column(scale=1, elem_id="style_neg_col"):
prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1)
@@ -536,9 +537,13 @@ def create_ui(wrap_gradio_gpu_call):
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
with gr.Group():
- aesthetic_lr = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
- aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.7)
- aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=50)
+ aesthetic_lr = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.0001")
+ aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.9)
+ aesthetic_steps = gr.Slider(minimum=0, maximum=256, step=1, label="Aesthetic steps", value=5)
+ with gr.Row():
+ aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs', placeholder="This text is used to rotate the feature space of the imgs embs", value="")
+ aesthetic_slerp_angle = gr.Slider(label='Slerp angle',minimum=0, maximum=1, step=0.01, value=0.1)
+ aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False)
aesthetic_imgs = gr.Dropdown(sorted(aesthetic_embeddings.keys()), label="Imgs embedding", value=sorted(aesthetic_embeddings.keys())[0] if len(aesthetic_embeddings) > 0 else None)
aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
@@ -617,7 +622,10 @@ def create_ui(wrap_gradio_gpu_call):
aesthetic_weight,
aesthetic_steps,
aesthetic_imgs,
- aesthetic_slerp
+ aesthetic_slerp,
+ aesthetic_imgs_text,
+ aesthetic_slerp_angle,
+ aesthetic_text_negative
] + custom_inputs,
outputs=[
txt2img_gallery,
@@ -721,7 +729,7 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Row():
inpaint_full_res = gr.Checkbox(label='Inpaint at full resolution', value=False)
- inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels', minimum=0, maximum=256, step=4, value=32)
+ inpaint_full_res_padding = gr.Slider(label='Inpaint at full resolution padding, pixels', minimum=0, maximum=1024, step=4, value=32)
with gr.TabItem('Batch img2img', id='batch'):
hidden = '
Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else ''
@@ -1071,6 +1079,17 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary')
+ with gr.Tab(label="Create images embedding"):
+ new_embedding_name_ae = gr.Textbox(label="Name")
+ process_src_ae = gr.Textbox(label='Source directory')
+ batch_ae = gr.Slider(minimum=1, maximum=1024, step=1, label="Batch size", value=256)
+ with gr.Row():
+ with gr.Column(scale=3):
+ gr.HTML(value="")
+
+ with gr.Column():
+ create_embedding_ae = gr.Button(value="Create images embedding", variant='primary')
+
with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
@@ -1139,7 +1158,7 @@ def create_ui(wrap_gradio_gpu_call):
fn=modules.textual_inversion.ui.create_embedding,
inputs=[
new_embedding_name,
- initialization_text,
+ process_src,
nvpt,
],
outputs=[
@@ -1149,6 +1168,20 @@ def create_ui(wrap_gradio_gpu_call):
]
)
+ create_embedding_ae.click(
+ fn=modules.aesthetic_clip.generate_imgs_embd,
+ inputs=[
+ new_embedding_name_ae,
+ process_src_ae,
+ batch_ae
+ ],
+ outputs=[
+ aesthetic_imgs,
+ ti_output,
+ ti_outcome,
+ ]
+ )
+
create_hypernetwork.click(
fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[
From 6e4f5566b58e36aede83427df6c69eba8517af28 Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Sat, 15 Oct 2022 23:53:49 +0800
Subject: [PATCH 003/100] sorting files
---
javascript/images_history.js | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/javascript/images_history.js b/javascript/images_history.js
index f7d052c3..7f0d8f42 100644
--- a/javascript/images_history.js
+++ b/javascript/images_history.js
@@ -96,7 +96,7 @@ function images_history_get_current_img(tabname, image_path, files){
];
}
-function images_history_delete(del_num, tabname, img_path, img_file_name, page_index, filenames, image_index){
+function images_history_delete(del_num, tabname, img_file_name, page_index, filenames, image_index){
image_index = parseInt(image_index);
var tab = gradioApp().getElementById(tabname + '_images_history');
var set_btn = tab.querySelector(".images_history_set_index");
@@ -132,12 +132,12 @@ function images_history_delete(del_num, tabname, img_path, img_file_name, page_i
return [del_num, tabname, img_path, img_file_name, page_index, filenames, image_index];
}
-function images_history_turnpage(img_path, page_index, image_index, tabname){
+function images_history_turnpage(img_path, page_index, image_index, tabname, date_from, date_to){
var buttons = gradioApp().getElementById(tabname + '_images_history').querySelectorAll(".gallery-item");
buttons.forEach(function(elem) {
elem.style.display = 'block';
})
- return [img_path, page_index, image_index, tabname];
+ return [img_path, page_index, image_index, tabname, date_from, date_to];
}
function images_history_enable_del_buttons(){
From 4387e4fe6479c08f7bc7e42924c3a1093e3a1872 Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Sat, 15 Oct 2022 18:39:29 +0200
Subject: [PATCH 004/100] Update modules/ui.py
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Co-authored-by: VÃctor Gallego
---
modules/ui.py | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
diff --git a/modules/ui.py b/modules/ui.py
index d0696101..5bb961b2 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -599,7 +599,8 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Group():
aesthetic_lr = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.0001")
aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.9)
- aesthetic_steps = gr.Slider(minimum=0, maximum=256, step=1, label="Aesthetic steps", value=5)
+ aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5)
+
with gr.Row():
aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs', placeholder="This text is used to rotate the feature space of the imgs embs", value="")
aesthetic_slerp_angle = gr.Slider(label='Slerp angle',minimum=0, maximum=1, step=0.01, value=0.1)
From f7df06a98180a2a8769b3ceebf7b6a35eca8ffc5 Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Sat, 15 Oct 2022 18:40:06 +0200
Subject: [PATCH 005/100] Update README.md
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Co-authored-by: VÃctor Gallego
---
README.md | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
diff --git a/README.md b/README.md
index 7b8d018b..40104833 100644
--- a/README.md
+++ b/README.md
@@ -70,7 +70,8 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
-- Aesthetic, a way to generate images with a specific aesthetic by using clip images embds (implementation of https://github.com/vicgalle/stable-diffusion-aesthetic-gradients)
+- Aesthetic Gradients, a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
+
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
From 9b7705e0573bddde26df4575c71f994d73a4d519 Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Sat, 15 Oct 2022 18:40:34 +0200
Subject: [PATCH 006/100] Update modules/aesthetic_clip.py
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Co-authored-by: VÃctor Gallego
---
modules/aesthetic_clip.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py
index f15cfd47..bcf2b073 100644
--- a/modules/aesthetic_clip.py
+++ b/modules/aesthetic_clip.py
@@ -70,7 +70,7 @@ def generate_imgs_embd(name, folder, batch_size):
torch.cuda.empty_cache()
res = f"""
Done generating embedding for {name}!
- Hypernetwork saved to {html.escape(path)}
+ Aesthetic embedding saved to {html.escape(path)}
"""
shared.update_aesthetic_embeddings()
return gr.Dropdown(sorted(aesthetic_embeddings.keys()), label="Imgs embedding",
From 0d4f5db235357aeb4c7a8738179ba33aaf5a6b75 Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Sat, 15 Oct 2022 18:40:58 +0200
Subject: [PATCH 007/100] Update modules/ui.py
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Co-authored-by: VÃctor Gallego
---
modules/ui.py | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
diff --git a/modules/ui.py b/modules/ui.py
index 5bb961b2..25eba548 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -597,7 +597,8 @@ def create_ui(wrap_gradio_gpu_call):
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
with gr.Group():
- aesthetic_lr = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.0001")
+ aesthetic_lr = gr.Textbox(label='Aesthetic learning rate', placeholder="Aesthetic learning rate", value="0.0001")
+
aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.9)
aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5)
From ad9bc604a8fadcfebe72be37f66cec51e7e87fb5 Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Sat, 15 Oct 2022 18:41:18 +0200
Subject: [PATCH 008/100] Update modules/ui.py
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Co-authored-by: VÃctor Gallego
---
modules/ui.py | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
diff --git a/modules/ui.py b/modules/ui.py
index 25eba548..3b28b69c 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -607,7 +607,8 @@ def create_ui(wrap_gradio_gpu_call):
aesthetic_slerp_angle = gr.Slider(label='Slerp angle',minimum=0, maximum=1, step=0.01, value=0.1)
aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False)
- aesthetic_imgs = gr.Dropdown(sorted(aesthetic_embeddings.keys()), label="Imgs embedding", value=sorted(aesthetic_embeddings.keys())[0] if len(aesthetic_embeddings) > 0 else None)
+ aesthetic_imgs = gr.Dropdown(sorted(aesthetic_embeddings.keys()), label="Aesthetic imgs embedding", value=sorted(aesthetic_embeddings.keys())[0] if len(aesthetic_embeddings) > 0 else None)
+
aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
with gr.Row():
From 3f5c3b981e46c16bb10948d012575b25170efb3b Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Sat, 15 Oct 2022 18:41:46 +0200
Subject: [PATCH 009/100] Update modules/ui.py
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Co-authored-by: VÃctor Gallego
---
modules/ui.py | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
diff --git a/modules/ui.py b/modules/ui.py
index 3b28b69c..1f6fcdc9 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1190,7 +1190,8 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary')
- with gr.Tab(label="Create images embedding"):
+ with gr.Tab(label="Create aesthetic images embedding"):
+
new_embedding_name_ae = gr.Textbox(label="Name")
process_src_ae = gr.Textbox(label='Source directory')
batch_ae = gr.Slider(minimum=1, maximum=1024, step=1, label="Batch size", value=256)
From 3d21684ee30ca5734126b8d08c05b3a0f513fe75 Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Sun, 16 Oct 2022 00:01:00 +0200
Subject: [PATCH 010/100] Add support to other img format, fixed dropbox update
---
modules/aesthetic_clip.py | 10 +++++-----
1 file changed, 5 insertions(+), 5 deletions(-)
diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py
index bcf2b073..68264284 100644
--- a/modules/aesthetic_clip.py
+++ b/modules/aesthetic_clip.py
@@ -8,7 +8,7 @@ import gradio as gr
import torch
from PIL import Image
from modules import shared
-from modules.shared import device, aesthetic_embeddings
+from modules.shared import device
from transformers import CLIPModel, CLIPProcessor
from tqdm.auto import tqdm
@@ -20,7 +20,7 @@ def get_all_images_in_folder(folder):
def check_is_valid_image_file(filename):
- return filename.lower().endswith(('.png', '.jpg', '.jpeg'))
+ return filename.lower().endswith(('.png', '.jpg', '.jpeg', ".gif", ".tiff", ".webp"))
def batched(dataset, total, n=1):
@@ -73,6 +73,6 @@ def generate_imgs_embd(name, folder, batch_size):
Aesthetic embedding saved to {html.escape(path)}
"""
shared.update_aesthetic_embeddings()
- return gr.Dropdown(sorted(aesthetic_embeddings.keys()), label="Imgs embedding",
- value=sorted(aesthetic_embeddings.keys())[0] if len(
- aesthetic_embeddings) > 0 else None), res, ""
+ return gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), label="Imgs embedding",
+ value=sorted(shared.aesthetic_embeddings.keys())[0] if len(
+ shared.aesthetic_embeddings) > 0 else None), res, ""
From 9325c85f780c569d1823e422eaf51b2e497e0d3e Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Sun, 16 Oct 2022 00:23:47 +0200
Subject: [PATCH 011/100] fixed dropbox update
---
modules/sd_hijack.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 192883b2..491312b4 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -9,7 +9,7 @@ from torch.nn.functional import silu
import modules.textual_inversion.textual_inversion
from modules import prompt_parser, devices, sd_hijack_optimizations, shared
-from modules.shared import opts, device, cmd_opts, aesthetic_embeddings
+from modules.shared import opts, device, cmd_opts
from modules.sd_hijack_optimizations import invokeAI_mps_available
import ldm.modules.attention
@@ -182,7 +182,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
image_embs_name = None
if image_embs_name is not None and self.image_embs_name != image_embs_name:
self.image_embs_name = image_embs_name
- self.image_embs = torch.load(aesthetic_embeddings[self.image_embs_name], map_location=device)
+ self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device)
self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True)
self.image_embs.requires_grad_(False)
From 763b893f319cee280b86e63025eb55e7c16b02e7 Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Sun, 16 Oct 2022 10:03:09 +0800
Subject: [PATCH 012/100] images history sorting files by date
---
javascript/images_history.js | 12 +-
modules/images_history.py | 261 ++++++++++++++++++++++++++---------
2 files changed, 202 insertions(+), 71 deletions(-)
diff --git a/javascript/images_history.js b/javascript/images_history.js
index 7f0d8f42..ac5834c7 100644
--- a/javascript/images_history.js
+++ b/javascript/images_history.js
@@ -88,10 +88,10 @@ function images_history_set_image_info(button){
}
-function images_history_get_current_img(tabname, image_path, files){
+function images_history_get_current_img(tabname, img_index, files){
return [
- gradioApp().getElementById(tabname + '_images_history_set_index').getAttribute("img_index"),
- image_path,
+ tabname,
+ gradioApp().getElementById(tabname + '_images_history_set_index').getAttribute("img_index"),
files
];
}
@@ -129,7 +129,7 @@ function images_history_delete(del_num, tabname, img_file_name, page_index, file
setTimeout(function(btn){btn.click()}, 30, btn);
}
images_history_disabled_del();
- return [del_num, tabname, img_path, img_file_name, page_index, filenames, image_index];
+ return [del_num, tabname, img_file_name, page_index, filenames, image_index];
}
function images_history_turnpage(img_path, page_index, image_index, tabname, date_from, date_to){
@@ -170,8 +170,8 @@ function images_history_init(){
}
tabs_box.classList.add(images_history_tab_list[0]);
- // same as above, at page load
- //load_txt2img_button.click();
+ // same as above, at page load-- load very fast now
+ load_txt2img_button.click();
} else {
setTimeout(images_history_init, 500);
}
diff --git a/modules/images_history.py b/modules/images_history.py
index f5ef44fe..533cf51b 100644
--- a/modules/images_history.py
+++ b/modules/images_history.py
@@ -1,33 +1,74 @@
import os
import shutil
+import time
+import hashlib
+import gradio
+show_max_dates_num = 3
+system_bak_path = "webui_log_and_bak"
+def is_valid_date(date):
+ try:
+ time.strptime(date, "%Y%m%d")
+ return True
+ except:
+ return False
+def reduplicative_file_move(src, dst):
+ def same_name_file(basename, path):
+ name, ext = os.path.splitext(basename)
+ f_list = os.listdir(path)
+ max_num = 0
+ for f in f_list:
+ if len(f) <= len(basename):
+ continue
+ f_ext = f[-len(ext):] if len(ext) > 0 else ""
+ if f[:len(name)] == name and f_ext == ext:
+ if f[len(name)] == "(" and f[-len(ext)-1] == ")":
+ number = f[len(name)+1:-len(ext)-1]
+ if number.isdigit():
+ if int(number) > max_num:
+ max_num = int(number)
+ return f"{name}({max_num + 1}){ext}"
+ name = os.path.basename(src)
+ save_name = os.path.join(dst, name)
+ if not os.path.exists(save_name):
+ shutil.move(src, dst)
+ else:
+ name = same_name_file(name, dst)
+ shutil.move(src, os.path.join(dst, name))
-def traverse_all_files(output_dir, image_list, curr_dir=None):
- curr_path = output_dir if curr_dir is None else os.path.join(output_dir, curr_dir)
+def traverse_all_files(curr_path, image_list, all_type=False):
try:
f_list = os.listdir(curr_path)
except:
- if curr_dir[-10:].rfind(".") > 0 and curr_dir[-4:] != ".txt":
- image_list.append(curr_dir)
+ if all_type or curr_path[-10:].rfind(".") > 0 and curr_path[-4:] != ".txt":
+ image_list.append(curr_path)
return image_list
for file in f_list:
- file = file if curr_dir is None else os.path.join(curr_dir, file)
- file_path = os.path.join(curr_path, file)
- if file[-4:] == ".txt":
+ file = os.path.join(curr_path, file)
+ if (not all_type) and file[-4:] == ".txt":
pass
- elif os.path.isfile(file_path) and file[-10:].rfind(".") > 0:
+ elif os.path.isfile(file) and file[-10:].rfind(".") > 0:
image_list.append(file)
else:
- image_list = traverse_all_files(output_dir, image_list, file)
+ image_list = traverse_all_files(file, image_list)
return image_list
-
-def get_recent_images(dir_name, page_index, step, image_index, tabname):
- page_index = int(page_index)
- f_list = os.listdir(dir_name)
+def get_recent_images(dir_name, page_index, step, image_index, tabname, date_from, date_to):
+ #print(f"turn_page {page_index}",date_from)
+ if date_from is None or date_from == "":
+ return None, 1, None, ""
image_list = []
- image_list = traverse_all_files(dir_name, image_list)
- image_list = sorted(image_list, key=lambda file: -os.path.getctime(os.path.join(dir_name, file)))
+ date_list = auto_sorting(dir_name)
+ page_index = int(page_index)
+ today = time.strftime("%Y%m%d",time.localtime(time.time()))
+ for date in date_list:
+ if date >= date_from and date <= date_to:
+ path = os.path.join(dir_name, date)
+ if date == today and not os.path.exists(path):
+ continue
+ image_list = traverse_all_files(path, image_list)
+
+ image_list = sorted(image_list, key=lambda file: -os.path.getctime(file))
num = 48 if tabname != "extras" else 12
max_page_index = len(image_list) // num + 1
page_index = max_page_index if page_index == -1 else page_index + step
@@ -38,40 +79,101 @@ def get_recent_images(dir_name, page_index, step, image_index, tabname):
image_index = int(image_index)
if image_index < 0 or image_index > len(image_list) - 1:
current_file = None
- hidden = None
else:
- current_file = image_list[int(image_index)]
- hidden = os.path.join(dir_name, current_file)
- return [os.path.join(dir_name, file) for file in image_list], page_index, image_list, current_file, hidden, ""
+ current_file = image_list[image_index]
+ return image_list, page_index, image_list, ""
+
+def auto_sorting(dir_name):
+ #print(f"auto sorting")
+ bak_path = os.path.join(dir_name, system_bak_path)
+ if not os.path.exists(bak_path):
+ os.mkdir(bak_path)
+ log_file = None
+ files_list = []
+ f_list = os.listdir(dir_name)
+ for file in f_list:
+ if file == system_bak_path:
+ continue
+ file_path = os.path.join(dir_name, file)
+ if not is_valid_date(file):
+ if file[-10:].rfind(".") > 0:
+ files_list.append(file_path)
+ else:
+ files_list = traverse_all_files(file_path, files_list, all_type=True)
+
+ for file in files_list:
+ date_str = time.strftime("%Y%m%d",time.localtime(os.path.getctime(file)))
+ file_path = os.path.dirname(file)
+ hash_path = hashlib.md5(file_path.encode()).hexdigest()
+ path = os.path.join(dir_name, date_str, hash_path)
+ if not os.path.exists(path):
+ os.makedirs(path)
+ if log_file is None:
+ log_file = open(os.path.join(bak_path,"path_mapping.csv"),"a")
+ log_file.write(f"{hash_path},{file_path}\n")
+ reduplicative_file_move(file, path)
+
+ date_list = []
+ f_list = os.listdir(dir_name)
+ for f in f_list:
+ if is_valid_date(f):
+ date_list.append(f)
+ elif f == system_bak_path:
+ continue
+ else:
+ reduplicative_file_move(os.path.join(dir_name, f), bak_path)
+
+ today = time.strftime("%Y%m%d",time.localtime(time.time()))
+ if today not in date_list:
+ date_list.append(today)
+ return sorted(date_list)
-def first_page_click(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, 1, 0, image_index, tabname)
+
+def archive_images(dir_name):
+ date_list = auto_sorting(dir_name)
+ date_from = date_list[-show_max_dates_num] if len(date_list) > show_max_dates_num else date_list[0]
+ return (
+ gradio.update(visible=False),
+ gradio.update(visible=True),
+ gradio.Dropdown.update(choices=date_list, value=date_list[-1]),
+ gradio.Dropdown.update(choices=date_list, value=date_from)
+ )
+
+def date_to_change(dir_name, page_index, image_index, tabname, date_from, date_to):
+ #print("date_to", date_to)
+ date_list = auto_sorting(dir_name)
+ date_from_list = [date for date in date_list if date <= date_to]
+ date_from = date_from_list[0] if len(date_from_list) < show_max_dates_num else date_from_list[-show_max_dates_num]
+ image_list, page_index, image_list, _ =get_recent_images(dir_name, 1, 0, image_index, tabname, date_from, date_to)
+ return image_list, page_index, image_list, _, gradio.Dropdown.update(choices=date_from_list, value=date_from)
+
+def first_page_click(dir_name, page_index, image_index, tabname, date_from, date_to):
+ return get_recent_images(dir_name, 1, 0, image_index, tabname, date_from, date_to)
-def end_page_click(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, -1, 0, image_index, tabname)
+def end_page_click(dir_name, page_index, image_index, tabname, date_from, date_to):
+ return get_recent_images(dir_name, -1, 0, image_index, tabname, date_from, date_to)
-def prev_page_click(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, page_index, -1, image_index, tabname)
+def prev_page_click(dir_name, page_index, image_index, tabname, date_from, date_to):
+ return get_recent_images(dir_name, page_index, -1, image_index, tabname, date_from, date_to)
-def next_page_click(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, page_index, 1, image_index, tabname)
+def next_page_click(dir_name, page_index, image_index, tabname, date_from, date_to):
+ return get_recent_images(dir_name, page_index, 1, image_index, tabname, date_from, date_to)
-def page_index_change(dir_name, page_index, image_index, tabname):
- return get_recent_images(dir_name, page_index, 0, image_index, tabname)
+def page_index_change(dir_name, page_index, image_index, tabname, date_from, date_to):
+ return get_recent_images(dir_name, page_index, 0, image_index, tabname, date_from, date_to)
-def show_image_info(num, image_path, filenames):
- # print(f"select image {num}")
+def show_image_info(tabname_box, num, filenames):
+ # #print(f"select image {num}")
file = filenames[int(num)]
- return file, num, os.path.join(image_path, file)
+ return file, num, file
-
-def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, image_index):
+def delete_image(delete_num, tabname, name, page_index, filenames, image_index):
if name == "":
return filenames, delete_num
else:
@@ -81,21 +183,19 @@ def delete_image(delete_num, tabname, dir_name, name, page_index, filenames, ima
new_file_list = []
for name in filenames:
if i >= index and i < index + delete_num:
- path = os.path.join(dir_name, name)
- if os.path.exists(path):
- print(f"Delete file {path}")
- os.remove(path)
- txt_file = os.path.splitext(path)[0] + ".txt"
+ if os.path.exists(name):
+ #print(f"Delete file {name}")
+ os.remove(name)
+ txt_file = os.path.splitext(name)[0] + ".txt"
if os.path.exists(txt_file):
os.remove(txt_file)
else:
- print(f"Not exists file {path}")
+ #print(f"Not exists file {name}")
else:
new_file_list.append(name)
i += 1
return new_file_list, 1
-
def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
if tabname == "txt2img":
dir_name = opts.outdir_txt2img_samples
@@ -107,16 +207,32 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
dir_name = d[0]
for p in d[1:]:
dir_name = os.path.join(dir_name, p)
- with gr.Row():
- renew_page = gr.Button('Renew Page', elem_id=tabname + "_images_history_renew_page")
- first_page = gr.Button('First Page')
- prev_page = gr.Button('Prev Page')
- page_index = gr.Number(value=1, label="Page Index")
- next_page = gr.Button('Next Page')
- end_page = gr.Button('End Page')
- with gr.Row(elem_id=tabname + "_images_history"):
+
+ f_list = os.listdir(dir_name)
+ sorted_flag = os.path.exists(os.path.join(dir_name, system_bak_path)) or len(f_list) == 0
+ date_list, date_from, date_to = None, None, None
+ if sorted_flag:
+ #print(sorted_flag)
+ date_list = auto_sorting(dir_name)
+ date_to = date_list[-1]
+ date_from = date_list[-show_max_dates_num] if len(date_list) > show_max_dates_num else date_list[0]
+
+ with gr.Column(visible=sorted_flag) as page_panel:
with gr.Row():
+ renew_page = gr.Button('Refresh', elem_id=tabname + "_images_history_renew_page", interactive=sorted_flag)
+ first_page = gr.Button('First Page')
+ prev_page = gr.Button('Prev Page')
+ page_index = gr.Number(value=1, label="Page Index")
+ next_page = gr.Button('Next Page')
+ end_page = gr.Button('End Page')
+
+ with gr.Row(elem_id=tabname + "_images_history"):
with gr.Column(scale=2):
+ with gr.Row():
+ newest = gr.Button('Newest')
+ date_to = gr.Dropdown(choices=date_list, value=date_to, label="Date to")
+ date_from = gr.Dropdown(choices=date_list, value=date_from, label="Date from")
+
history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6)
with gr.Row():
delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next")
@@ -128,22 +244,31 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
with gr.Row():
with gr.Column():
img_file_info = gr.Textbox(label="Generate Info", interactive=False)
- img_file_name = gr.Textbox(label="File Name", interactive=False)
- with gr.Row():
+ img_file_name = gr.Textbox(value="", label="File Name", interactive=False)
# hiden items
+ with gr.Row(visible=False):
+ img_path = gr.Textbox(dir_name)
+ tabname_box = gr.Textbox(tabname)
+ image_index = gr.Textbox(value=-1)
+ set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index")
+ filenames = gr.State()
+ hidden = gr.Image(type="pil")
+ info1 = gr.Textbox()
+ info2 = gr.Textbox()
+ with gr.Column(visible=not sorted_flag) as init_warning:
+ with gr.Row():
+ gr.Textbox("The system needs to archive the files according to the date. This requires changing the directory structure of the files",
+ label="Waring",
+ css="")
+ with gr.Row():
+ sorted_button = gr.Button('Confirme')
- img_path = gr.Textbox(dir_name.rstrip("/"), visible=False)
- tabname_box = gr.Textbox(tabname, visible=False)
- image_index = gr.Textbox(value=-1, visible=False)
- set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index", visible=False)
- filenames = gr.State()
- hidden = gr.Image(type="pil", visible=False)
- info1 = gr.Textbox(visible=False)
- info2 = gr.Textbox(visible=False)
-
+
+
+
# turn pages
- gallery_inputs = [img_path, page_index, image_index, tabname_box]
- gallery_outputs = [history_gallery, page_index, filenames, img_file_name, hidden, img_file_name]
+ gallery_inputs = [img_path, page_index, image_index, tabname_box, date_from, date_to]
+ gallery_outputs = [history_gallery, page_index, filenames, img_file_name]
first_page.click(first_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
next_page.click(next_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
@@ -154,15 +279,21 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
# page_index.change(page_index_change, inputs=[tabname_box, img_path, page_index], outputs=[history_gallery, page_index])
# other funcitons
- set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, img_path, filenames], outputs=[img_file_name, image_index, hidden])
+ set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, filenames], outputs=[img_file_name, image_index, hidden])
img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None)
- delete.click(delete_image, _js="images_history_delete", inputs=[delete_num, tabname_box, img_path, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num])
+ delete.click(delete_image, _js="images_history_delete", inputs=[delete_num, tabname_box, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num])
hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
-
+ date_to.change(date_to_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs + [date_from])
# pnginfo.click(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img')
switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img')
+ sorted_button.click(archive_images, inputs=[img_path], outputs=[init_warning, page_panel, date_to, date_from])
+ newest.click(archive_images, inputs=[img_path], outputs=[init_warning, page_panel, date_to, date_from])
+
+
+
+
def create_history_tabs(gr, opts, run_pnginfo, switch_dict):
with gr.Blocks(analytics_enabled=False) as images_history:
From 523140d7805c644700009b8a2483ff4eb4a22304 Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Sun, 16 Oct 2022 10:23:30 +0200
Subject: [PATCH 013/100] ui fix
---
modules/aesthetic_clip.py | 3 +--
modules/sd_hijack.py | 3 +--
modules/shared.py | 2 ++
modules/ui.py | 24 ++++++++++++++----------
4 files changed, 18 insertions(+), 14 deletions(-)
diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py
index 68264284..ccb35c73 100644
--- a/modules/aesthetic_clip.py
+++ b/modules/aesthetic_clip.py
@@ -74,5 +74,4 @@ def generate_imgs_embd(name, folder, batch_size):
"""
shared.update_aesthetic_embeddings()
return gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), label="Imgs embedding",
- value=sorted(shared.aesthetic_embeddings.keys())[0] if len(
- shared.aesthetic_embeddings) > 0 else None), res, ""
+ value="None"), res, ""
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 01fcb78f..2de2eed5 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -392,8 +392,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
z1 = self.process_tokens(tokens, multipliers)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
- if len(text[
- 0]) != 0 and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name != None:
+ if self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name != None:
if not opts.use_old_emphasis_implementation:
remade_batch_tokens = [
[self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in
diff --git a/modules/shared.py b/modules/shared.py
index 3c5ffef1..e2c98b2d 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -96,11 +96,13 @@ loaded_hypernetwork = None
aesthetic_embeddings = {f.replace(".pt",""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
+aesthetic_embeddings = aesthetic_embeddings | {"None": None}
def update_aesthetic_embeddings():
global aesthetic_embeddings
aesthetic_embeddings = {f.replace(".pt",""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
+ aesthetic_embeddings = aesthetic_embeddings | {"None": None}
def reload_hypernetworks():
global hypernetworks
diff --git a/modules/ui.py b/modules/ui.py
index 13ba3142..4069f0d2 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -594,19 +594,23 @@ def create_ui(wrap_gradio_gpu_call):
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
with gr.Group():
- aesthetic_lr = gr.Textbox(label='Aesthetic learning rate', placeholder="Aesthetic learning rate", value="0.0001")
+ with gr.Accordion("Open for Clip Aesthetic!",open=False):
+ with gr.Row():
+ aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.9)
+ aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5)
- aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.9)
- aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5)
+ with gr.Row():
+ aesthetic_lr = gr.Textbox(label='Aesthetic learning rate', placeholder="Aesthetic learning rate", value="0.0001")
+ aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
+ aesthetic_imgs = gr.Dropdown(sorted(aesthetic_embeddings.keys()),
+ label="Aesthetic imgs embedding",
+ value="None")
- with gr.Row():
- aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs', placeholder="This text is used to rotate the feature space of the imgs embs", value="")
- aesthetic_slerp_angle = gr.Slider(label='Slerp angle',minimum=0, maximum=1, step=0.01, value=0.1)
- aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False)
+ with gr.Row():
+ aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs', placeholder="This text is used to rotate the feature space of the imgs embs", value="")
+ aesthetic_slerp_angle = gr.Slider(label='Slerp angle',minimum=0, maximum=1, step=0.01, value=0.1)
+ aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False)
- aesthetic_imgs = gr.Dropdown(sorted(aesthetic_embeddings.keys()), label="Aesthetic imgs embedding", value=sorted(aesthetic_embeddings.keys())[0] if len(aesthetic_embeddings) > 0 else None)
-
- aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
with gr.Row():
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
From e4f8b5f00dd33b7547cc6b76fbed26bb83b37a64 Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Sun, 16 Oct 2022 10:28:21 +0200
Subject: [PATCH 014/100] ui fix
---
modules/sd_hijack.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 2de2eed5..5d0590af 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -178,7 +178,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
self.load_image_embs(image_embs_name)
def load_image_embs(self, image_embs_name):
- if image_embs_name is None or len(image_embs_name) == 0:
+ if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None":
image_embs_name = None
if image_embs_name is not None and self.image_embs_name != image_embs_name:
self.image_embs_name = image_embs_name
From f62905fdf928b54aa76765e5cbde8d538d494e49 Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Sun, 16 Oct 2022 21:22:38 +0800
Subject: [PATCH 015/100] images history speed up
---
javascript/images_history.js | 39 +++---
modules/images_history.py | 248 ++++++++++++++++++-----------------
2 files changed, 146 insertions(+), 141 deletions(-)
diff --git a/javascript/images_history.js b/javascript/images_history.js
index ac5834c7..fb1356d9 100644
--- a/javascript/images_history.js
+++ b/javascript/images_history.js
@@ -20,7 +20,7 @@ var images_history_click_image = function(){
var images_history_click_tab = function(){
var tabs_box = gradioApp().getElementById("images_history_tab");
if (!tabs_box.classList.contains(this.getAttribute("tabname"))) {
- gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_renew_page").click();
+ gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_start").click();
tabs_box.classList.add(this.getAttribute("tabname"))
}
}
@@ -96,7 +96,7 @@ function images_history_get_current_img(tabname, img_index, files){
];
}
-function images_history_delete(del_num, tabname, img_file_name, page_index, filenames, image_index){
+function images_history_delete(del_num, tabname, image_index){
image_index = parseInt(image_index);
var tab = gradioApp().getElementById(tabname + '_images_history');
var set_btn = tab.querySelector(".images_history_set_index");
@@ -107,6 +107,7 @@ function images_history_delete(del_num, tabname, img_file_name, page_index, file
}
});
var img_num = buttons.length / 2;
+ del_num = Math.min(img_num - image_index, del_num)
if (img_num <= del_num){
setTimeout(function(tabname){
gradioApp().getElementById(tabname + '_images_history_renew_page').click();
@@ -114,30 +115,29 @@ function images_history_delete(del_num, tabname, img_file_name, page_index, file
} else {
var next_img
for (var i = 0; i < del_num; i++){
- if (image_index + i < image_index + img_num){
- buttons[image_index + i].style.display = 'none';
- buttons[image_index + img_num + 1].style.display = 'none';
- next_img = image_index + i + 1
- }
+ buttons[image_index + i].style.display = 'none';
+ buttons[image_index + i + img_num].style.display = 'none';
+ next_img = image_index + i + 1
}
var bnt;
if (next_img >= img_num){
- btn = buttons[image_index - del_num];
+ btn = buttons[image_index - 1];
} else {
btn = buttons[next_img];
}
setTimeout(function(btn){btn.click()}, 30, btn);
}
images_history_disabled_del();
- return [del_num, tabname, img_file_name, page_index, filenames, image_index];
+
}
-function images_history_turnpage(img_path, page_index, image_index, tabname, date_from, date_to){
+function images_history_turnpage(tabname){
+ console.log("del_button")
+ gradioApp().getElementById(tabname + '_images_history_del_button').setAttribute('disabled','disabled');
var buttons = gradioApp().getElementById(tabname + '_images_history').querySelectorAll(".gallery-item");
buttons.forEach(function(elem) {
elem.style.display = 'block';
- })
- return [img_path, page_index, image_index, tabname, date_from, date_to];
+ })
}
function images_history_enable_del_buttons(){
@@ -147,7 +147,7 @@ function images_history_enable_del_buttons(){
}
function images_history_init(){
- var load_txt2img_button = gradioApp().getElementById('txt2img_images_history_renew_page')
+ var load_txt2img_button = gradioApp().getElementById('saved_images_history_start')
if (load_txt2img_button){
for (var i in images_history_tab_list ){
tab = images_history_tab_list[i];
@@ -166,7 +166,8 @@ function images_history_init(){
// this refreshes history upon tab switch
// until the history is known to work well, which is not the case now, we do not do this at startup
- //tab_btns[i].addEventListener('click', images_history_click_tab);
+ // -- load page very fast now, so better user experience by automatically activating pages
+ tab_btns[i].addEventListener('click', images_history_click_tab);
}
tabs_box.classList.add(images_history_tab_list[0]);
@@ -177,7 +178,7 @@ function images_history_init(){
}
}
-var images_history_tab_list = ["txt2img", "img2img", "extras"];
+var images_history_tab_list = ["saved", "txt2img", "img2img", "extras"];
setTimeout(images_history_init, 500);
document.addEventListener("DOMContentLoaded", function() {
var mutationObserver = new MutationObserver(function(m){
@@ -188,18 +189,16 @@ document.addEventListener("DOMContentLoaded", function() {
bnt.addEventListener('click', images_history_click_image, true);
});
- // same as load_txt2img_button.click() above
- /*
var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg");
if (cls_btn){
cls_btn.addEventListener('click', function(){
- gradioApp().getElementById(tabname + '_images_history_renew_page').click();
+ gradioApp().getElementById(tabname + '_images_history_del_button').setAttribute('disabled','disabled');
}, false);
- }*/
+ }
}
});
- mutationObserver.observe( gradioApp(), { childList:true, subtree:true });
+ mutationObserver.observe(gradioApp(), { childList:true, subtree:true });
});
diff --git a/modules/images_history.py b/modules/images_history.py
index 7fd75005..ae0b4e40 100644
--- a/modules/images_history.py
+++ b/modules/images_history.py
@@ -3,8 +3,10 @@ import shutil
import time
import hashlib
import gradio
-show_max_dates_num = 3
+
system_bak_path = "webui_log_and_bak"
+loads_files_num = 216
+num_of_imgs_per_page = 36
def is_valid_date(date):
try:
time.strptime(date, "%Y%m%d")
@@ -53,38 +55,7 @@ def traverse_all_files(curr_path, image_list, all_type=False):
image_list = traverse_all_files(file, image_list)
return image_list
-def get_recent_images(dir_name, page_index, step, image_index, tabname, date_from, date_to):
- #print(f"turn_page {page_index}",date_from)
- if date_from is None or date_from == "":
- return None, 1, None, ""
- image_list = []
- date_list = auto_sorting(dir_name)
- page_index = int(page_index)
- today = time.strftime("%Y%m%d",time.localtime(time.time()))
- for date in date_list:
- if date >= date_from and date <= date_to:
- path = os.path.join(dir_name, date)
- if date == today and not os.path.exists(path):
- continue
- image_list = traverse_all_files(path, image_list)
-
- image_list = sorted(image_list, key=lambda file: -os.path.getctime(file))
- num = 48 if tabname != "extras" else 12
- max_page_index = len(image_list) // num + 1
- page_index = max_page_index if page_index == -1 else page_index + step
- page_index = 1 if page_index < 1 else page_index
- page_index = max_page_index if page_index > max_page_index else page_index
- idx_frm = (page_index - 1) * num
- image_list = image_list[idx_frm:idx_frm + num]
- image_index = int(image_index)
- if image_index < 0 or image_index > len(image_list) - 1:
- current_file = None
- else:
- current_file = image_list[image_index]
- return image_list, page_index, image_list, ""
-
-def auto_sorting(dir_name):
- #print(f"auto sorting")
+def auto_sorting(dir_name):
bak_path = os.path.join(dir_name, system_bak_path)
if not os.path.exists(bak_path):
os.mkdir(bak_path)
@@ -126,102 +97,131 @@ def auto_sorting(dir_name):
today = time.strftime("%Y%m%d",time.localtime(time.time()))
if today not in date_list:
date_list.append(today)
- return sorted(date_list)
+ return sorted(date_list, reverse=True)
-def archive_images(dir_name):
+def archive_images(dir_name, date_to):
date_list = auto_sorting(dir_name)
- date_from = date_list[-show_max_dates_num] if len(date_list) > show_max_dates_num else date_list[0]
+ today = time.strftime("%Y%m%d",time.localtime(time.time()))
+ date_to = today if date_to is None or date_to == "" else date_to
+ filenames = []
+ for date in date_list:
+ if date <= date_to:
+ path = os.path.join(dir_name, date)
+ if date == today and not os.path.exists(path):
+ continue
+ filenames = traverse_all_files(path, filenames)
+ if len(filenames) > loads_files_num:
+ break
+ filenames = sorted(filenames, key=lambda file: -os.path.getctime(file))
+ _, image_list, _, visible_num = get_recent_images(1, 0, filenames)
return (
gradio.update(visible=False),
gradio.update(visible=True),
- gradio.Dropdown.update(choices=date_list, value=date_list[-1]),
- gradio.Dropdown.update(choices=date_list, value=date_from)
+ gradio.Dropdown.update(choices=date_list, value=date_to),
+ date,
+ filenames,
+ 1,
+ image_list,
+ "",
+ visible_num
)
+def system_init(dir_name):
+ ret = [x for x in archive_images(dir_name, None)]
+ ret += [gradio.update(visible=False)]
+ return ret
-def date_to_change(dir_name, page_index, image_index, tabname, date_from, date_to):
- #print("date_to", date_to)
- date_list = auto_sorting(dir_name)
- date_from_list = [date for date in date_list if date <= date_to]
- date_from = date_from_list[0] if len(date_from_list) < show_max_dates_num else date_from_list[-show_max_dates_num]
- image_list, page_index, image_list, _ =get_recent_images(dir_name, 1, 0, image_index, tabname, date_from, date_to)
- return image_list, page_index, image_list, _, gradio.Dropdown.update(choices=date_from_list, value=date_from)
+def newest_click(dir_name, date_to):
+ if date_to == "start":
+ return True, False, "start", None, None, 1, None, ""
+ else:
+ return archive_images(dir_name, time.strftime("%Y%m%d",time.localtime(time.time())))
-def first_page_click(dir_name, page_index, image_index, tabname, date_from, date_to):
- return get_recent_images(dir_name, 1, 0, image_index, tabname, date_from, date_to)
-
-
-def end_page_click(dir_name, page_index, image_index, tabname, date_from, date_to):
- return get_recent_images(dir_name, -1, 0, image_index, tabname, date_from, date_to)
-
-
-def prev_page_click(dir_name, page_index, image_index, tabname, date_from, date_to):
- return get_recent_images(dir_name, page_index, -1, image_index, tabname, date_from, date_to)
-
-
-def next_page_click(dir_name, page_index, image_index, tabname, date_from, date_to):
- return get_recent_images(dir_name, page_index, 1, image_index, tabname, date_from, date_to)
-
-
-def page_index_change(dir_name, page_index, image_index, tabname, date_from, date_to):
- return get_recent_images(dir_name, page_index, 0, image_index, tabname, date_from, date_to)
-
-
-def show_image_info(tabname_box, num, filenames):
- # #print(f"select image {num}")
- file = filenames[int(num)]
- return file, num, file
-
-def delete_image(delete_num, tabname, name, page_index, filenames, image_index):
+def delete_image(delete_num, name, filenames, image_index, visible_num):
if name == "":
return filenames, delete_num
else:
delete_num = int(delete_num)
+ visible_num = int(visible_num)
+ image_index = int(image_index)
index = list(filenames).index(name)
i = 0
new_file_list = []
for name in filenames:
if i >= index and i < index + delete_num:
if os.path.exists(name):
- #print(f"Delete file {name}")
+ if visible_num == image_index:
+ new_file_list.append(name)
+ continue
+ print(f"Delete file {name}")
os.remove(name)
+ visible_num -= 1
txt_file = os.path.splitext(name)[0] + ".txt"
if os.path.exists(txt_file):
os.remove(txt_file)
else:
- #print(f"Not exists file {name}")
+ print(f"Not exists file {name}")
else:
new_file_list.append(name)
i += 1
- return new_file_list, 1
+ return new_file_list, 1, visible_num
+
+def get_recent_images(page_index, step, filenames):
+ page_index = int(page_index)
+ max_page_index = len(filenames) // num_of_imgs_per_page + 1
+ page_index = max_page_index if page_index == -1 else page_index + step
+ page_index = 1 if page_index < 1 else page_index
+ page_index = max_page_index if page_index > max_page_index else page_index
+ idx_frm = (page_index - 1) * num_of_imgs_per_page
+ image_list = filenames[idx_frm:idx_frm + num_of_imgs_per_page]
+ length = len(filenames)
+ visible_num = num_of_imgs_per_page if idx_frm + num_of_imgs_per_page <= length else length % num_of_imgs_per_page
+ visible_num = num_of_imgs_per_page if visible_num == 0 else visible_num
+ return page_index, image_list, "", visible_num
+
+def first_page_click(page_index, filenames):
+ return get_recent_images(1, 0, filenames)
+
+def end_page_click(page_index, filenames):
+ return get_recent_images(-1, 0, filenames)
+
+def prev_page_click(page_index, filenames):
+ return get_recent_images(page_index, -1, filenames)
+
+def next_page_click(page_index, filenames):
+ return get_recent_images(page_index, 1, filenames)
+
+def page_index_change(page_index, filenames):
+ return get_recent_images(page_index, 0, filenames)
+
+def show_image_info(tabname_box, num, page_index, filenames):
+ file = filenames[int(num) + int((page_index - 1) * num_of_imgs_per_page)]
+ return file, num, file
def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
- if opts.outdir_samples != "":
- dir_name = opts.outdir_samples
- elif tabname == "txt2img":
+ if tabname == "txt2img":
dir_name = opts.outdir_txt2img_samples
elif tabname == "img2img":
dir_name = opts.outdir_img2img_samples
elif tabname == "extras":
dir_name = opts.outdir_extras_samples
+ elif tabname == "saved":
+ dir_name = opts.outdir_save
+ if not os.path.exists(dir_name):
+ os.makedirs(dir_name)
d = dir_name.split("/")
- dir_name = "/" if dir_name.startswith("/") else d[0]
+ dir_name = d[0]
for p in d[1:]:
dir_name = os.path.join(dir_name, p)
f_list = os.listdir(dir_name)
sorted_flag = os.path.exists(os.path.join(dir_name, system_bak_path)) or len(f_list) == 0
date_list, date_from, date_to = None, None, None
- if sorted_flag:
- #print(sorted_flag)
- date_list = auto_sorting(dir_name)
- date_to = date_list[-1]
- date_from = date_list[-show_max_dates_num] if len(date_list) > show_max_dates_num else date_list[0]
with gr.Column(visible=sorted_flag) as page_panel:
with gr.Row():
- renew_page = gr.Button('Refresh', elem_id=tabname + "_images_history_renew_page", interactive=sorted_flag)
+ #renew_page = gr.Button('Refresh')
first_page = gr.Button('First Page')
prev_page = gr.Button('Prev Page')
page_index = gr.Number(value=1, label="Page Index")
@@ -231,9 +231,9 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
with gr.Row(elem_id=tabname + "_images_history"):
with gr.Column(scale=2):
with gr.Row():
- newest = gr.Button('Newest')
- date_to = gr.Dropdown(choices=date_list, value=date_to, label="Date to")
- date_from = gr.Dropdown(choices=date_list, value=date_from, label="Date from")
+ newest = gr.Button('Refresh', elem_id=tabname + "_images_history_start")
+ date_from = gr.Textbox(label="Date from", interactive=False)
+ date_to = gr.Dropdown(value="start" if not sorted_flag else None, label="Date to")
history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6)
with gr.Row():
@@ -247,66 +247,72 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
with gr.Column():
img_file_info = gr.Textbox(label="Generate Info", interactive=False)
img_file_name = gr.Textbox(value="", label="File Name", interactive=False)
+
# hiden items
- with gr.Row(visible=False):
+ with gr.Row(visible=False):
+ visible_img_num = gr.Number()
img_path = gr.Textbox(dir_name)
tabname_box = gr.Textbox(tabname)
image_index = gr.Textbox(value=-1)
set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index")
filenames = gr.State()
+ all_images_list = gr.State()
hidden = gr.Image(type="pil")
info1 = gr.Textbox()
info2 = gr.Textbox()
+
with gr.Column(visible=not sorted_flag) as init_warning:
with gr.Row():
- gr.Textbox("The system needs to archive the files according to the date. This requires changing the directory structure of the files",
- label="Waring",
- css="")
+ warning = gr.Textbox(
+ label="Waring",
+ value=f"The system needs to archive the files according to the date. This requires changing the directory structure of the files.If you have doubts about this operation, you can first back up the files in the '{dir_name}' directory"
+ )
+ warning.style(height=100, width=50)
with gr.Row():
sorted_button = gr.Button('Confirme')
-
-
+ change_date_output = [init_warning, page_panel, date_to, date_from, filenames, page_index, history_gallery, img_file_name, visible_img_num]
+ sorted_button.click(system_init, inputs=[img_path], outputs=change_date_output + [sorted_button])
+ newest.click(newest_click, inputs=[img_path, date_to], outputs=change_date_output)
+ date_to.change(archive_images, inputs=[img_path, date_to], outputs=change_date_output)
+ date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+ newest.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+
+ delete.click(delete_image, inputs=[delete_num, img_file_name, filenames, image_index, visible_img_num], outputs=[filenames, delete_num, visible_img_num])
+ delete.click(fn=None, _js="images_history_delete", inputs=[delete_num, tabname_box, image_index], outputs=None)
+
# turn pages
- gallery_inputs = [img_path, page_index, image_index, tabname_box, date_from, date_to]
- gallery_outputs = [history_gallery, page_index, filenames, img_file_name]
+ gallery_inputs = [page_index, filenames]
+ gallery_outputs = [page_index, history_gallery, img_file_name, visible_img_num]
- first_page.click(first_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- next_page.click(next_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- prev_page.click(prev_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- end_page.click(end_page_click, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- page_index.submit(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- renew_page.click(page_index_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs)
- # page_index.change(page_index_change, inputs=[tabname_box, img_path, page_index], outputs=[history_gallery, page_index])
+ first_page.click(first_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
+ next_page.click(next_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
+ prev_page.click(prev_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
+ end_page.click(end_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
+ page_index.submit(page_index_change, inputs=gallery_inputs, outputs=gallery_outputs)
+
+ first_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+ next_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+ prev_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+ end_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+ page_index.submit(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
# other funcitons
- set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, filenames], outputs=[img_file_name, image_index, hidden])
- img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None)
- delete.click(delete_image, _js="images_history_delete", inputs=[delete_num, tabname_box, img_file_name, page_index, filenames, image_index], outputs=[filenames, delete_num])
+ set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, page_index, filenames], outputs=[img_file_name, image_index, hidden])
+ img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None)
hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
- date_to.change(date_to_change, _js="images_history_turnpage", inputs=gallery_inputs, outputs=gallery_outputs + [date_from])
- # pnginfo.click(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
+
switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img')
switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img')
- sorted_button.click(archive_images, inputs=[img_path], outputs=[init_warning, page_panel, date_to, date_from])
- newest.click(archive_images, inputs=[img_path], outputs=[init_warning, page_panel, date_to, date_from])
-
-
-
def create_history_tabs(gr, opts, run_pnginfo, switch_dict):
with gr.Blocks(analytics_enabled=False) as images_history:
with gr.Tabs() as tabs:
- with gr.Tab("txt2img history"):
- with gr.Blocks(analytics_enabled=False) as images_history_txt2img:
- show_images_history(gr, opts, "txt2img", run_pnginfo, switch_dict)
- with gr.Tab("img2img history"):
- with gr.Blocks(analytics_enabled=False) as images_history_img2img:
- show_images_history(gr, opts, "img2img", run_pnginfo, switch_dict)
- with gr.Tab("extras history"):
- with gr.Blocks(analytics_enabled=False) as images_history_img2img:
- show_images_history(gr, opts, "extras", run_pnginfo, switch_dict)
+ for tab in ["saved", "txt2img", "img2img", "extras"]:
+ with gr.Tab(tab):
+ with gr.Blocks(analytics_enabled=False) as images_history_img2img:
+ show_images_history(gr, opts, tab, run_pnginfo, switch_dict)
return images_history
From a4de699e3c235d83b5a957d08779cb41cb0781bc Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Sun, 16 Oct 2022 22:37:12 +0800
Subject: [PATCH 016/100] Images history speed up
---
javascript/images_history.js | 1 +
modules/images_history.py | 7 +++++--
2 files changed, 6 insertions(+), 2 deletions(-)
diff --git a/javascript/images_history.js b/javascript/images_history.js
index fb1356d9..9d9d04fb 100644
--- a/javascript/images_history.js
+++ b/javascript/images_history.js
@@ -108,6 +108,7 @@ function images_history_delete(del_num, tabname, image_index){
});
var img_num = buttons.length / 2;
del_num = Math.min(img_num - image_index, del_num)
+ console.log(del_num, img_num)
if (img_num <= del_num){
setTimeout(function(tabname){
gradioApp().getElementById(tabname + '_images_history_renew_page').click();
diff --git a/modules/images_history.py b/modules/images_history.py
index ae0b4e40..94bd16a8 100644
--- a/modules/images_history.py
+++ b/modules/images_history.py
@@ -153,6 +153,7 @@ def delete_image(delete_num, name, filenames, image_index, visible_num):
if os.path.exists(name):
if visible_num == image_index:
new_file_list.append(name)
+ i += 1
continue
print(f"Delete file {name}")
os.remove(name)
@@ -221,7 +222,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
with gr.Column(visible=sorted_flag) as page_panel:
with gr.Row():
- #renew_page = gr.Button('Refresh')
+ renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page")
first_page = gr.Button('First Page')
prev_page = gr.Button('Prev Page')
page_index = gr.Number(value=1, label="Page Index")
@@ -231,7 +232,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
with gr.Row(elem_id=tabname + "_images_history"):
with gr.Column(scale=2):
with gr.Row():
- newest = gr.Button('Refresh', elem_id=tabname + "_images_history_start")
+ newest = gr.Button('Reload', elem_id=tabname + "_images_history_start")
date_from = gr.Textbox(label="Date from", interactive=False)
date_to = gr.Dropdown(value="start" if not sorted_flag else None, label="Date to")
@@ -291,12 +292,14 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
prev_page.click(prev_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
end_page.click(end_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
page_index.submit(page_index_change, inputs=gallery_inputs, outputs=gallery_outputs)
+ renew_page.click(page_index_change, inputs=gallery_inputs, outputs=gallery_outputs)
first_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
next_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
prev_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
end_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
page_index.submit(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+ renew_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
# other funcitons
set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, page_index, filenames], outputs=[img_file_name, image_index, hidden])
From 9324cdaa3199d65c182858785dd1eca42b192b8e Mon Sep 17 00:00:00 2001
From: MalumaDev
Date: Sun, 16 Oct 2022 17:53:56 +0200
Subject: [PATCH 017/100] ui fix, re organization of the code
---
modules/aesthetic_clip.py | 154 +++++++++++++++++++++++++--
modules/img2img.py | 14 ++-
modules/processing.py | 29 ++---
modules/sd_hijack.py | 102 +-----------------
modules/sd_models.py | 5 +-
modules/shared.py | 14 ++-
modules/textual_inversion/dataset.py | 2 +-
modules/txt2img.py | 18 ++--
modules/ui.py | 50 +++++----
9 files changed, 232 insertions(+), 156 deletions(-)
diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py
index ccb35c73..34efa931 100644
--- a/modules/aesthetic_clip.py
+++ b/modules/aesthetic_clip.py
@@ -1,3 +1,4 @@
+import copy
import itertools
import os
from pathlib import Path
@@ -7,11 +8,12 @@ import gc
import gradio as gr
import torch
from PIL import Image
-from modules import shared
-from modules.shared import device
-from transformers import CLIPModel, CLIPProcessor
+from torch import optim
-from tqdm.auto import tqdm
+from modules import shared
+from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer
+from tqdm.auto import tqdm, trange
+from modules.shared import opts, device
def get_all_images_in_folder(folder):
@@ -37,12 +39,39 @@ def iter_to_batched(iterable, n=1):
yield chunk
+def create_ui():
+ with gr.Group():
+ with gr.Accordion("Open for Clip Aesthetic!", open=False):
+ with gr.Row():
+ aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight",
+ value=0.9)
+ aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5)
+
+ with gr.Row():
+ aesthetic_lr = gr.Textbox(label='Aesthetic learning rate',
+ placeholder="Aesthetic learning rate", value="0.0001")
+ aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
+ aesthetic_imgs = gr.Dropdown(sorted(shared.aesthetic_embeddings.keys()),
+ label="Aesthetic imgs embedding",
+ value="None")
+
+ with gr.Row():
+ aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs',
+ placeholder="This text is used to rotate the feature space of the imgs embs",
+ value="")
+ aesthetic_slerp_angle = gr.Slider(label='Slerp angle', minimum=0, maximum=1, step=0.01,
+ value=0.1)
+ aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False)
+
+ return aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative
+
+
def generate_imgs_embd(name, folder, batch_size):
# clipModel = CLIPModel.from_pretrained(
# shared.sd_model.cond_stage_model.clipModel.name_or_path
# )
- model = CLIPModel.from_pretrained(shared.sd_model.cond_stage_model.clipModel.name_or_path).to(device)
- processor = CLIPProcessor.from_pretrained(shared.sd_model.cond_stage_model.clipModel.name_or_path)
+ model = shared.clip_model.to(device)
+ processor = CLIPProcessor.from_pretrained(model.name_or_path)
with torch.no_grad():
embs = []
@@ -63,7 +92,6 @@ def generate_imgs_embd(name, folder, batch_size):
torch.save(embs, path)
model = model.cpu()
- del model
del processor
del embs
gc.collect()
@@ -74,4 +102,114 @@ def generate_imgs_embd(name, folder, batch_size):
"""
shared.update_aesthetic_embeddings()
return gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), label="Imgs embedding",
- value="None"), res, ""
+ value="None"), \
+ gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()),
+ label="Imgs embedding",
+ value="None"), res, ""
+
+
+def slerp(low, high, val):
+ low_norm = low / torch.norm(low, dim=1, keepdim=True)
+ high_norm = high / torch.norm(high, dim=1, keepdim=True)
+ omega = torch.acos((low_norm * high_norm).sum(1))
+ so = torch.sin(omega)
+ res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
+ return res
+
+
+class AestheticCLIP:
+ def __init__(self):
+ self.skip = False
+ self.aesthetic_steps = 0
+ self.aesthetic_weight = 0
+ self.aesthetic_lr = 0
+ self.slerp = False
+ self.aesthetic_text_negative = ""
+ self.aesthetic_slerp_angle = 0
+ self.aesthetic_imgs_text = ""
+
+ self.image_embs_name = None
+ self.image_embs = None
+ self.load_image_embs(None)
+
+ def set_aesthetic_params(self, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None,
+ aesthetic_slerp=True, aesthetic_imgs_text="",
+ aesthetic_slerp_angle=0.15,
+ aesthetic_text_negative=False):
+ self.aesthetic_imgs_text = aesthetic_imgs_text
+ self.aesthetic_slerp_angle = aesthetic_slerp_angle
+ self.aesthetic_text_negative = aesthetic_text_negative
+ self.slerp = aesthetic_slerp
+ self.aesthetic_lr = aesthetic_lr
+ self.aesthetic_weight = aesthetic_weight
+ self.aesthetic_steps = aesthetic_steps
+ self.load_image_embs(image_embs_name)
+
+ def set_skip(self, skip):
+ self.skip = skip
+
+ def load_image_embs(self, image_embs_name):
+ if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None":
+ image_embs_name = None
+ self.image_embs_name = None
+ if image_embs_name is not None and self.image_embs_name != image_embs_name:
+ self.image_embs_name = image_embs_name
+ self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device)
+ self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True)
+ self.image_embs.requires_grad_(False)
+
+ def __call__(self, z, remade_batch_tokens):
+ if not self.skip and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name is not None:
+ tokenizer = shared.sd_model.cond_stage_model.tokenizer
+ if not opts.use_old_emphasis_implementation:
+ remade_batch_tokens = [
+ [tokenizer.bos_token_id] + x[:75] + [tokenizer.eos_token_id] for x in
+ remade_batch_tokens]
+
+ tokens = torch.asarray(remade_batch_tokens).to(device)
+
+ model = copy.deepcopy(shared.clip_model).to(device)
+ model.requires_grad_(True)
+ if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0:
+ text_embs_2 = model.get_text_features(
+ **tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device))
+ if self.aesthetic_text_negative:
+ text_embs_2 = self.image_embs - text_embs_2
+ text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True)
+ img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle)
+ else:
+ img_embs = self.image_embs
+
+ with torch.enable_grad():
+
+ # We optimize the model to maximize the similarity
+ optimizer = optim.Adam(
+ model.text_model.parameters(), lr=self.aesthetic_lr
+ )
+
+ for _ in trange(self.aesthetic_steps, desc="Aesthetic optimization"):
+ text_embs = model.get_text_features(input_ids=tokens)
+ text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
+ sim = text_embs @ img_embs.T
+ loss = -sim
+ optimizer.zero_grad()
+ loss.mean().backward()
+ optimizer.step()
+
+ zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
+ if opts.CLIP_stop_at_last_layers > 1:
+ zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers]
+ zn = model.text_model.final_layer_norm(zn)
+ else:
+ zn = zn.last_hidden_state
+ model.cpu()
+ del model
+ gc.collect()
+ torch.cuda.empty_cache()
+ zn = torch.concat([zn[77 * i:77 * (i + 1)] for i in range(max(z.shape[1] // 77, 1))], 1)
+ if self.slerp:
+ z = slerp(z, zn, self.aesthetic_weight)
+ else:
+ z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight
+
+ return z
diff --git a/modules/img2img.py b/modules/img2img.py
index 24126774..4ed80c4b 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -56,7 +56,14 @@ def process_batch(p, input_dir, output_dir, args):
processed_image.save(os.path.join(output_dir, filename))
-def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
+def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str,
+ aesthetic_lr=0,
+ aesthetic_weight=0, aesthetic_steps=0,
+ aesthetic_imgs=None,
+ aesthetic_slerp=False,
+ aesthetic_imgs_text="",
+ aesthetic_slerp_angle=0.15,
+ aesthetic_text_negative=False, *args):
is_inpaint = mode == 1
is_batch = mode == 2
@@ -109,6 +116,11 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
inpainting_mask_invert=inpainting_mask_invert,
)
+ shared.aesthetic_clip.set_aesthetic_params(float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps),
+ aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text,
+ aesthetic_slerp_angle,
+ aesthetic_text_negative)
+
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
diff --git a/modules/processing.py b/modules/processing.py
index 1db26c3e..685f9fcd 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -146,7 +146,8 @@ class Processed:
self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
- self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
+ self.subseed = int(
+ self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
self.all_prompts = all_prompts or [self.prompt]
self.all_seeds = all_seeds or [self.seed]
@@ -332,16 +333,9 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
-def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0,
- aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="",
- aesthetic_slerp_angle=0.15,
- aesthetic_text_negative=False) -> Processed:
+def process_images(p: StableDiffusionProcessing) -> Processed:
"""this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
- aesthetic_lr = float(aesthetic_lr)
- aesthetic_weight = float(aesthetic_weight)
- aesthetic_steps = int(aesthetic_steps)
-
if type(p.prompt) == list:
assert (len(p.prompt) > 0)
else:
@@ -417,16 +411,10 @@ def process_images(p: StableDiffusionProcessing, aesthetic_lr=0, aesthetic_weigh
# uc = p.sd_model.get_learned_conditioning(len(prompts) * [p.negative_prompt])
# c = p.sd_model.get_learned_conditioning(prompts)
with devices.autocast():
- if hasattr(shared.sd_model.cond_stage_model, "set_aesthetic_params"):
- shared.sd_model.cond_stage_model.set_aesthetic_params()
+ shared.aesthetic_clip.set_skip(True)
uc = prompt_parser.get_learned_conditioning(shared.sd_model, len(prompts) * [p.negative_prompt],
p.steps)
- if hasattr(shared.sd_model.cond_stage_model, "set_aesthetic_params"):
- shared.sd_model.cond_stage_model.set_aesthetic_params(aesthetic_lr, aesthetic_weight,
- aesthetic_steps, aesthetic_imgs,
- aesthetic_slerp, aesthetic_imgs_text,
- aesthetic_slerp_angle,
- aesthetic_text_negative)
+ shared.aesthetic_clip.set_skip(False)
c = prompt_parser.get_multicond_learned_conditioning(shared.sd_model, prompts, p.steps)
if len(model_hijack.comments) > 0:
@@ -582,7 +570,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
-
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
@@ -600,10 +587,12 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
- samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
+ samples = samples[:, :, self.truncate_y // 2:samples.shape[2] - self.truncate_y // 2,
+ self.truncate_x // 2:samples.shape[3] - self.truncate_x // 2]
if opts.use_scale_latent_for_hires_fix:
- samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
+ samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f),
+ mode="bilinear")
else:
decoded_samples = decode_first_stage(self.sd_model, samples)
lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 5d0590af..227e7670 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -29,8 +29,8 @@ def apply_optimizations():
ldm.modules.diffusionmodules.model.nonlinearity = silu
-
- if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
+ if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (
+ 6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)):
print("Applying xformers cross attention optimization.")
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward
@@ -118,33 +118,14 @@ class StableDiffusionModelHijack:
return remade_batch_tokens[0], token_count, get_target_prompt_token_count(token_count)
-def slerp(low, high, val):
- low_norm = low / torch.norm(low, dim=1, keepdim=True)
- high_norm = high / torch.norm(high, dim=1, keepdim=True)
- omega = torch.acos((low_norm * high_norm).sum(1))
- so = torch.sin(omega)
- res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
- return res
-
-
class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
def __init__(self, wrapped, hijack):
super().__init__()
self.wrapped = wrapped
- self.clipModel = CLIPModel.from_pretrained(
- self.wrapped.transformer.name_or_path
- )
- del self.clipModel.vision_model
- self.tokenizer = CLIPTokenizer.from_pretrained(self.wrapped.transformer.name_or_path)
- self.hijack: StableDiffusionModelHijack = hijack
- self.tokenizer = wrapped.tokenizer
- # self.vision = CLIPVisionModel.from_pretrained(self.wrapped.transformer.name_or_path).eval()
- self.image_embs_name = None
- self.image_embs = None
- self.load_image_embs(None)
self.token_mults = {}
-
+ self.hijack: StableDiffusionModelHijack = hijack
+ self.tokenizer = wrapped.tokenizer
self.comma_token = [v for k, v in self.tokenizer.get_vocab().items() if k == ','][0]
tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if
@@ -164,28 +145,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
if mult != 1.0:
self.token_mults[ident] = mult
- def set_aesthetic_params(self, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None,
- aesthetic_slerp=True, aesthetic_imgs_text="",
- aesthetic_slerp_angle=0.15,
- aesthetic_text_negative=False):
- self.aesthetic_imgs_text = aesthetic_imgs_text
- self.aesthetic_slerp_angle = aesthetic_slerp_angle
- self.aesthetic_text_negative = aesthetic_text_negative
- self.slerp = aesthetic_slerp
- self.aesthetic_lr = aesthetic_lr
- self.aesthetic_weight = aesthetic_weight
- self.aesthetic_steps = aesthetic_steps
- self.load_image_embs(image_embs_name)
-
- def load_image_embs(self, image_embs_name):
- if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None":
- image_embs_name = None
- if image_embs_name is not None and self.image_embs_name != image_embs_name:
- self.image_embs_name = image_embs_name
- self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device)
- self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True)
- self.image_embs.requires_grad_(False)
-
def tokenize_line(self, line, used_custom_terms, hijack_comments):
id_end = self.wrapped.tokenizer.eos_token_id
@@ -391,58 +350,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
z1 = self.process_tokens(tokens, multipliers)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
-
- if self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name != None:
- if not opts.use_old_emphasis_implementation:
- remade_batch_tokens = [
- [self.wrapped.tokenizer.bos_token_id] + x[:75] + [self.wrapped.tokenizer.eos_token_id] for x in
- remade_batch_tokens]
-
- tokens = torch.asarray(remade_batch_tokens).to(device)
-
- model = copy.deepcopy(self.clipModel).to(device)
- model.requires_grad_(True)
- if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0:
- text_embs_2 = model.get_text_features(
- **self.tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device))
- if self.aesthetic_text_negative:
- text_embs_2 = self.image_embs - text_embs_2
- text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True)
- img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle)
- else:
- img_embs = self.image_embs
-
- with torch.enable_grad():
-
- # We optimize the model to maximize the similarity
- optimizer = optim.Adam(
- model.text_model.parameters(), lr=self.aesthetic_lr
- )
-
- for i in trange(self.aesthetic_steps, desc="Aesthetic optimization"):
- text_embs = model.get_text_features(input_ids=tokens)
- text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
- sim = text_embs @ img_embs.T
- loss = -sim
- optimizer.zero_grad()
- loss.mean().backward()
- optimizer.step()
-
- zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
- if opts.CLIP_stop_at_last_layers > 1:
- zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers]
- zn = model.text_model.final_layer_norm(zn)
- else:
- zn = zn.last_hidden_state
- model.cpu()
- del model
-
- zn = torch.concat([zn for i in range(z.shape[1] // 77)], 1)
- if self.slerp:
- z = slerp(z, zn, self.aesthetic_weight)
- else:
- z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight
-
+ z = shared.aesthetic_clip(z, remade_batch_tokens)
remade_batch_tokens = rem_tokens
batch_multipliers = rem_multipliers
i += 1
diff --git a/modules/sd_models.py b/modules/sd_models.py
index 3aa21ec1..8e4ee435 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -20,7 +20,7 @@ checkpoints_loaded = collections.OrderedDict()
try:
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
- from transformers import logging
+ from transformers import logging, CLIPModel
logging.set_verbosity_error()
except Exception:
@@ -196,6 +196,9 @@ def load_model():
sd_hijack.model_hijack.hijack(sd_model)
+ if shared.clip_model is None or shared.clip_model.transformer.name_or_path != sd_model.cond_stage_model.wrapped.transformer.name_or_path:
+ shared.clip_model = CLIPModel.from_pretrained(sd_model.cond_stage_model.wrapped.transformer.name_or_path)
+
sd_model.eval()
print(f"Model loaded.")
diff --git a/modules/shared.py b/modules/shared.py
index e2c98b2d..e19ca779 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -3,6 +3,7 @@ import datetime
import json
import os
import sys
+from collections import OrderedDict
import gradio as gr
import tqdm
@@ -94,15 +95,15 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None
-aesthetic_embeddings = {f.replace(".pt",""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
- os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
-aesthetic_embeddings = aesthetic_embeddings | {"None": None}
+aesthetic_embeddings = {}
def update_aesthetic_embeddings():
global aesthetic_embeddings
aesthetic_embeddings = {f.replace(".pt",""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
- aesthetic_embeddings = aesthetic_embeddings | {"None": None}
+ aesthetic_embeddings = OrderedDict(**{"None": None}, **aesthetic_embeddings)
+
+update_aesthetic_embeddings()
def reload_hypernetworks():
global hypernetworks
@@ -381,6 +382,11 @@ sd_upscalers = []
sd_model = None
+clip_model = None
+
+from modules.aesthetic_clip import AestheticCLIP
+aesthetic_clip = AestheticCLIP()
+
progress_print_out = sys.stdout
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index 68ceffe3..23bb4b6a 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -49,7 +49,7 @@ class PersonalizedBase(Dataset):
print("Preparing dataset...")
for path in tqdm.tqdm(self.image_paths):
try:
- image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.Resampling.BICUBIC)
+ image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
except Exception:
continue
diff --git a/modules/txt2img.py b/modules/txt2img.py
index 8f394d05..6cbc50fc 100644
--- a/modules/txt2img.py
+++ b/modules/txt2img.py
@@ -1,12 +1,17 @@
import modules.scripts
-from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
+from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
+ StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, cmd_opts
import modules.shared as shared
import modules.processing as processing
from modules.ui import plaintext_to_html
-def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int,aesthetic_lr=0,
+def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int,
+ restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int,
+ subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool,
+ height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int,
+ firstphase_height: int, aesthetic_lr=0,
aesthetic_weight=0, aesthetic_steps=0,
aesthetic_imgs=None,
aesthetic_slerp=False,
@@ -41,15 +46,17 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
firstphase_height=firstphase_height if enable_hr else None,
)
+ shared.aesthetic_clip.set_aesthetic_params(float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps),
+ aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle,
+ aesthetic_text_negative)
+
if cmd_opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
processed = modules.scripts.scripts_txt2img.run(p, *args)
if processed is None:
- processed = process_images(p, aesthetic_lr, aesthetic_weight, aesthetic_steps, aesthetic_imgs, aesthetic_slerp,aesthetic_imgs_text,
- aesthetic_slerp_angle,
- aesthetic_text_negative)
+ processed = process_images(p)
shared.total_tqdm.clear()
@@ -61,4 +68,3 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
processed.images = []
return processed.images, generation_info_js, plaintext_to_html(processed.info)
-
diff --git a/modules/ui.py b/modules/ui.py
index 4069f0d2..0e5d73f0 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -43,7 +43,7 @@ from modules.images import save_image
import modules.textual_inversion.ui
import modules.hypernetworks.ui
-import modules.aesthetic_clip
+import modules.aesthetic_clip as aesthetic_clip
import modules.images_history as img_his
@@ -593,23 +593,25 @@ def create_ui(wrap_gradio_gpu_call):
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
- with gr.Group():
- with gr.Accordion("Open for Clip Aesthetic!",open=False):
- with gr.Row():
- aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.9)
- aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5)
+ # with gr.Group():
+ # with gr.Accordion("Open for Clip Aesthetic!",open=False):
+ # with gr.Row():
+ # aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight", value=0.9)
+ # aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5)
+ #
+ # with gr.Row():
+ # aesthetic_lr = gr.Textbox(label='Aesthetic learning rate', placeholder="Aesthetic learning rate", value="0.0001")
+ # aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
+ # aesthetic_imgs = gr.Dropdown(sorted(aesthetic_embeddings.keys()),
+ # label="Aesthetic imgs embedding",
+ # value="None")
+ #
+ # with gr.Row():
+ # aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs', placeholder="This text is used to rotate the feature space of the imgs embs", value="")
+ # aesthetic_slerp_angle = gr.Slider(label='Slerp angle',minimum=0, maximum=1, step=0.01, value=0.1)
+ # aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False)
- with gr.Row():
- aesthetic_lr = gr.Textbox(label='Aesthetic learning rate', placeholder="Aesthetic learning rate", value="0.0001")
- aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
- aesthetic_imgs = gr.Dropdown(sorted(aesthetic_embeddings.keys()),
- label="Aesthetic imgs embedding",
- value="None")
-
- with gr.Row():
- aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs', placeholder="This text is used to rotate the feature space of the imgs embs", value="")
- aesthetic_slerp_angle = gr.Slider(label='Slerp angle',minimum=0, maximum=1, step=0.01, value=0.1)
- aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False)
+ aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative = aesthetic_clip.create_ui()
with gr.Row():
@@ -840,6 +842,9 @@ def create_ui(wrap_gradio_gpu_call):
width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
+ aesthetic_weight_im, aesthetic_steps_im, aesthetic_lr_im, aesthetic_slerp_im, aesthetic_imgs_im, aesthetic_imgs_text_im, aesthetic_slerp_angle_im, aesthetic_text_negative_im = aesthetic_clip.create_ui()
+
+
with gr.Row():
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
tiling = gr.Checkbox(label='Tiling', value=False)
@@ -944,6 +949,14 @@ def create_ui(wrap_gradio_gpu_call):
inpainting_mask_invert,
img2img_batch_input_dir,
img2img_batch_output_dir,
+ aesthetic_lr_im,
+ aesthetic_weight_im,
+ aesthetic_steps_im,
+ aesthetic_imgs_im,
+ aesthetic_slerp_im,
+ aesthetic_imgs_text_im,
+ aesthetic_slerp_angle_im,
+ aesthetic_text_negative_im,
] + custom_inputs,
outputs=[
img2img_gallery,
@@ -1283,7 +1296,7 @@ def create_ui(wrap_gradio_gpu_call):
)
create_embedding_ae.click(
- fn=modules.aesthetic_clip.generate_imgs_embd,
+ fn=aesthetic_clip.generate_imgs_embd,
inputs=[
new_embedding_name_ae,
process_src_ae,
@@ -1291,6 +1304,7 @@ def create_ui(wrap_gradio_gpu_call):
],
outputs=[
aesthetic_imgs,
+ aesthetic_imgs_im,
ti_output,
ti_outcome,
]
From 9d702b16f01795c3af900e0ebd70faf4b25200f6 Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Mon, 17 Oct 2022 16:11:03 +0800
Subject: [PATCH 018/100] fix two little bug
---
modules/images_history.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/modules/images_history.py b/modules/images_history.py
index 23045df1..1ae168ca 100644
--- a/modules/images_history.py
+++ b/modules/images_history.py
@@ -133,7 +133,7 @@ def archive_images(dir_name, date_to):
date = sort_array[loads_num][2]
filenames = [x[1] for x in sort_array]
else:
- date = sort_array[loads_num][2]
+ date = sort_array[-1][2]
filenames = [x[1] for x in sort_array]
filenames = [x[1] for x in sort_array if x[2]>= date]
_, image_list, _, visible_num = get_recent_images(1, 0, filenames)
@@ -334,6 +334,6 @@ def create_history_tabs(gr, sys_opts, run_pnginfo, switch_dict):
with gr.Tab(tab):
with gr.Blocks(analytics_enabled=False) as images_history_img2img:
show_images_history(gr, opts, tab, run_pnginfo, switch_dict)
- gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_reconstruct_directory") #, visible=False)
+ gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_reconstruct_directory", visible=False)
return images_history
From c408a0b41cfffde184cad35b2d97346342947d83 Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Mon, 17 Oct 2022 22:28:43 +0800
Subject: [PATCH 019/100] fix two bug
---
launch.py | 1 -
modules/images_history.py | 4 ++--
2 files changed, 2 insertions(+), 3 deletions(-)
diff --git a/launch.py b/launch.py
index 7520cfee..088eada1 100644
--- a/launch.py
+++ b/launch.py
@@ -11,7 +11,6 @@ python = sys.executable
git = os.environ.get('GIT', "git")
index_url = os.environ.get('INDEX_URL', "")
-
def extract_arg(args, name):
return [x for x in args if x != name], name in args
diff --git a/modules/images_history.py b/modules/images_history.py
index 1ae168ca..10e5b970 100644
--- a/modules/images_history.py
+++ b/modules/images_history.py
@@ -181,7 +181,8 @@ def delete_image(delete_num, name, filenames, image_index, visible_num):
return new_file_list, 1, visible_num
def save_image(file_name):
- shutil.copy2(file_name, opts.outdir_save)
+ if file_name is not None and os.path.exists(file_name):
+ shutil.copy2(file_name, opts.outdir_save)
def get_recent_images(page_index, step, filenames):
page_index = int(page_index)
@@ -327,7 +328,6 @@ def create_history_tabs(gr, sys_opts, run_pnginfo, switch_dict):
opts = sys_opts
loads_files_num = int(opts.images_history_num_per_page)
num_of_imgs_per_page = int(opts.images_history_num_per_page * opts.images_history_pages_num)
- backup_flag = opts.images_history_backup
with gr.Blocks(analytics_enabled=False) as images_history:
with gr.Tabs() as tabs:
for tab in ["txt2img", "img2img", "extras", "saved"]:
From de179cf8fd8191e1a6d288e7c29a16f53da1be88 Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Mon, 17 Oct 2022 22:38:46 +0800
Subject: [PATCH 020/100] fix two bug
---
launch.py | 1 +
1 file changed, 1 insertion(+)
diff --git a/launch.py b/launch.py
index 088eada1..7520cfee 100644
--- a/launch.py
+++ b/launch.py
@@ -11,6 +11,7 @@ python = sys.executable
git = os.environ.get('GIT', "git")
index_url = os.environ.get('INDEX_URL', "")
+
def extract_arg(args, name):
return [x for x in args if x != name], name in args
From 2272cf2f35fafd5cd486bfb4ee89df5bbc625b97 Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Mon, 17 Oct 2022 23:04:42 +0800
Subject: [PATCH 021/100] fix two bug
---
modules/images_history.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/images_history.py b/modules/images_history.py
index 10e5b970..1c1790a4 100644
--- a/modules/images_history.py
+++ b/modules/images_history.py
@@ -133,7 +133,7 @@ def archive_images(dir_name, date_to):
date = sort_array[loads_num][2]
filenames = [x[1] for x in sort_array]
else:
- date = sort_array[-1][2]
+ date = None if len(sort_array) == 0 else sort_array[-1][2]
filenames = [x[1] for x in sort_array]
filenames = [x[1] for x in sort_array if x[2]>= date]
_, image_list, _, visible_num = get_recent_images(1, 0, filenames)
From 2b5b62e768d892773a7ec1d5e8d8cea23aae1254 Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Mon, 17 Oct 2022 23:14:03 +0800
Subject: [PATCH 022/100] fix two bug
---
modules/images_history.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/modules/images_history.py b/modules/images_history.py
index 1c1790a4..20324557 100644
--- a/modules/images_history.py
+++ b/modules/images_history.py
@@ -44,7 +44,7 @@ def traverse_all_files(curr_path, image_list, all_type=False):
return image_list
for file in f_list:
file = os.path.join(curr_path, file)
- if (not all_type) and file[-4:] == ".txt":
+ if (not all_type) and (file[-4:] == ".txt" or file[-4:] == ".csv"):
pass
elif os.path.isfile(file) and file[-10:].rfind(".") > 0:
image_list.append(file)
@@ -182,7 +182,7 @@ def delete_image(delete_num, name, filenames, image_index, visible_num):
def save_image(file_name):
if file_name is not None and os.path.exists(file_name):
- shutil.copy2(file_name, opts.outdir_save)
+ shutil.copy(file_name, opts.outdir_save)
def get_recent_images(page_index, step, filenames):
page_index = int(page_index)
From ca023f8a459717be19d333513a0e388cf3944e74 Mon Sep 17 00:00:00 2001
From: ClashSAN <98228077+ClashSAN@users.noreply.github.com>
Date: Tue, 18 Oct 2022 08:57:05 +0000
Subject: [PATCH 023/100] Update README.md
---
README.md | 20 +++++++++++++-------
1 file changed, 13 insertions(+), 7 deletions(-)
diff --git a/README.md b/README.md
index 859a91b6..a89593bf 100644
--- a/README.md
+++ b/README.md
@@ -11,6 +11,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- One click install and run script (but you still must install python and git)
- Outpainting
- Inpainting
+- Color Sketch
- Prompt Matrix
- Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to
@@ -37,14 +38,14 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- Interrupt processing at any time
- 4GB video card support (also reports of 2GB working)
- Correct seeds for batches
-- Prompt length validation
- - get length of prompt in tokens as you type
- - get a warning after generation if some text was truncated
+- Live prompt token length validation
- Generation parameters
- parameters you used to generate images are saved with that image
- in PNG chunks for PNG, in EXIF for JPEG
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
- can be disabled in settings
+ - drag and drop an image/text-parameters to promptbox
+- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page
- Running arbitrary python code from UI (must run with --allow-code to enable)
- Mouseover hints for most UI elements
@@ -62,7 +63,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- Img2img Alternative
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
- Reloading checkpoints on the fly
-- Checkpoint Merger, a tab that allows you to merge two checkpoints into one
+- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
- separate prompts using uppercase `AND`
@@ -70,14 +71,19 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
+- History tab: view, direct and delete images conveniently within the UI
+- Generate forever option
+- Training Tab
+- Preprocessing Image Datasets: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
+
+
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
-Alternatively, use Google Colab:
+Alternatively, use online services(like Google Colab):
-- [Colab, maintained by Akaibu](https://colab.research.google.com/drive/1kw3egmSn-KgWsikYvOMjJkVDsPLjEMzl)
-- [Colab, original by me, outdated](https://colab.research.google.com/drive/1Iy-xW9t1-OQWhb0hNxueGij8phCyluOh).
+- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
From eb299527b1e5d1f83a14641647fca72e8fb305ac Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Tue, 18 Oct 2022 20:14:11 +0800
Subject: [PATCH 024/100] Image browser
---
javascript/images_history.js | 19 ++-
modules/images_history.py | 223 +++++++++++++++++++++++------------
modules/shared.py | 7 +-
modules/ui.py | 2 +-
uitest.bat | 2 +
uitest.py | 124 +++++++++++++++++++
6 files changed, 287 insertions(+), 90 deletions(-)
create mode 100644 uitest.bat
create mode 100644 uitest.py
diff --git a/javascript/images_history.js b/javascript/images_history.js
index 3c028bc6..182d730b 100644
--- a/javascript/images_history.js
+++ b/javascript/images_history.js
@@ -145,9 +145,10 @@ function images_history_enable_del_buttons(){
}
function images_history_init(){
- var loaded = gradioApp().getElementById("images_history_reconstruct_directory")
- if (loaded){
- var init_status = loaded.querySelector("input").checked
+ // var loaded = gradioApp().getElementById("images_history_reconstruct_directory")
+ // if (loaded){
+ // var init_status = loaded.querySelector("input").checked
+ if (gradioApp().getElementById("images_history_finish_render")){
for (var i in images_history_tab_list ){
tab = images_history_tab_list[i];
gradioApp().getElementById(tab + '_images_history').classList.add("images_history_cantainor");
@@ -163,19 +164,17 @@ function images_history_init(){
for (var i in images_history_tab_list){
var tabname = images_history_tab_list[i]
tab_btns[i].setAttribute("tabname", tabname);
- if (init_status){
- tab_btns[i].addEventListener('click', images_history_click_tab);
- }
- }
- if (init_status){
- tab_btns[0].click();
+ // if (!init_status){
+ // tab_btns[i].addEventListener('click', images_history_click_tab);
+ // }
+ tab_btns[i].addEventListener('click', images_history_click_tab);
}
} else {
setTimeout(images_history_init, 500);
}
}
-var images_history_tab_list = ["txt2img", "img2img", "extras", "saved"];
+var images_history_tab_list = ["custom", "txt2img", "img2img", "extras", "saved"];
setTimeout(images_history_init, 500);
document.addEventListener("DOMContentLoaded", function() {
var mutationObserver = new MutationObserver(function(m){
diff --git a/modules/images_history.py b/modules/images_history.py
index 20324557..d56f3a25 100644
--- a/modules/images_history.py
+++ b/modules/images_history.py
@@ -4,6 +4,7 @@ import time
import hashlib
import gradio
system_bak_path = "webui_log_and_bak"
+browser_tabname = "custom"
def is_valid_date(date):
try:
time.strptime(date, "%Y%m%d")
@@ -99,13 +100,15 @@ def auto_sorting(dir_name):
date_list.append(today)
return sorted(date_list, reverse=True)
-def archive_images(dir_name, date_to):
+def archive_images(dir_name, date_to):
+
filenames = []
loads_num =int(opts.images_history_num_per_page * opts.images_history_pages_num)
+ today = time.strftime("%Y%m%d",time.localtime(time.time()))
+ date_to = today if date_to is None or date_to == "" else date_to
+ date_to_bak = date_to
if opts.images_history_reconstruct_directory:
- date_list = auto_sorting(dir_name)
- today = time.strftime("%Y%m%d",time.localtime(time.time()))
- date_to = today if date_to is None or date_to == "" else date_to
+ date_list = auto_sorting(dir_name)
for date in date_list:
if date <= date_to:
path = os.path.join(dir_name, date)
@@ -120,7 +123,7 @@ def archive_images(dir_name, date_to):
tmparray = [(os.path.getmtime(file), file) for file in filenames ]
date_stamp = time.mktime(time.strptime(date_to, "%Y%m%d")) + 86400
filenames = []
- date_list = {}
+ date_list = {date_to:None}
date = time.strftime("%Y%m%d",time.localtime(time.time()))
for t, f in tmparray:
date = time.strftime("%Y%m%d",time.localtime(t))
@@ -133,22 +136,29 @@ def archive_images(dir_name, date_to):
date = sort_array[loads_num][2]
filenames = [x[1] for x in sort_array]
else:
- date = None if len(sort_array) == 0 else sort_array[-1][2]
+ date = date_to if len(sort_array) == 0 else sort_array[-1][2]
filenames = [x[1] for x in sort_array]
- filenames = [x[1] for x in sort_array if x[2]>= date]
- _, image_list, _, visible_num = get_recent_images(1, 0, filenames)
+ filenames = [x[1] for x in sort_array if x[2]>= date]
+ num = len(filenames)
+ last_date_from = date_to_bak if num == 0 else time.strftime("%Y%m%d", time.localtime(time.mktime(time.strptime(date, "%Y%m%d")) - 1000))
+ date = date[:4] + "-" + date[4:6] + "-" + date[6:8]
+ date_to_bak = date_to_bak[:4] + "-" + date_to_bak[4:6] + "-" + date_to_bak[6:8]
+ load_info = f"Loaded {(num + 1) // opts.images_history_pages_num} pades, {num} images, during {date} - {date_to_bak}"
+ _, image_list, _, _, visible_num = get_recent_images(1, 0, filenames)
return (
gradio.Dropdown.update(choices=date_list, value=date_to),
- date,
+ load_info,
filenames,
1,
image_list,
"",
- visible_num
+ "",
+ visible_num,
+ last_date_from
)
-def newest_click(dir_name, date_to):
- return archive_images(dir_name, time.strftime("%Y%m%d",time.localtime(time.time())))
+
+
def delete_image(delete_num, name, filenames, image_index, visible_num):
if name == "":
@@ -196,7 +206,29 @@ def get_recent_images(page_index, step, filenames):
length = len(filenames)
visible_num = num_of_imgs_per_page if idx_frm + num_of_imgs_per_page <= length else length % num_of_imgs_per_page
visible_num = num_of_imgs_per_page if visible_num == 0 else visible_num
- return page_index, image_list, "", visible_num
+ return page_index, image_list, "", "", visible_num
+
+def newest_click(date_to):
+ if date_to is None:
+ return time.strftime("%Y%m%d",time.localtime(time.time())), []
+ else:
+ return None, []
+def forward_click(last_date_from, date_to_recorder):
+ if len(date_to_recorder) == 0:
+ return None, []
+ if last_date_from == date_to_recorder[-1]:
+ date_to_recorder = date_to_recorder[:-1]
+ if len(date_to_recorder) == 0:
+ return None, []
+ return date_to_recorder[-1], date_to_recorder[:-1]
+
+def backward_click(last_date_from, date_to_recorder):
+ if last_date_from is None or last_date_from == "":
+ return time.strftime("%Y%m%d",time.localtime(time.time())), []
+ if len(date_to_recorder) == 0 or last_date_from != date_to_recorder[-1]:
+ date_to_recorder.append(last_date_from)
+ return last_date_from, date_to_recorder
+
def first_page_click(page_index, filenames):
return get_recent_images(1, 0, filenames)
@@ -214,13 +246,33 @@ def page_index_change(page_index, filenames):
return get_recent_images(page_index, 0, filenames)
def show_image_info(tabname_box, num, page_index, filenames):
- file = filenames[int(num) + int((page_index - 1) * int(opts.images_history_num_per_page))]
- return file, num, file
+ file = filenames[int(num) + int((page_index - 1) * int(opts.images_history_num_per_page))]
+ tm = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(os.path.getmtime(file)))
+ return file, tm, num, file
def enable_page_buttons():
return gradio.update(visible=True)
+def change_dir(img_dir, date_to):
+ warning = None
+ try:
+ if os.path.exists(img_dir):
+ try:
+ f = os.listdir(img_dir)
+ except:
+ warning = f"'{img_dir} is not a directory"
+ else:
+ warning = "The directory is not exist"
+ except:
+ warning = "The format of the directory is incorrect"
+ if warning is None:
+ today = time.strftime("%Y%m%d",time.localtime(time.time()))
+ return gradio.update(visible=False), gradio.update(visible=True), None, None if date_to != today else today
+ else:
+ return gradio.update(visible=True), gradio.update(visible=False), warning, date_to
+
def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
+ custom_dir = False
if tabname == "txt2img":
dir_name = opts.outdir_txt2img_samples
elif tabname == "img2img":
@@ -229,69 +281,85 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
dir_name = opts.outdir_extras_samples
elif tabname == "saved":
dir_name = opts.outdir_save
+ else:
+ custom_dir = True
+ dir_name = None
- d = dir_name.split("/")
- dir_name = d[0]
- for p in d[1:]:
- dir_name = os.path.join(dir_name, p)
- if not os.path.exists(dir_name):
- os.makedirs(dir_name)
+ if not custom_dir:
+ d = dir_name.split("/")
+ dir_name = d[0]
+ for p in d[1:]:
+ dir_name = os.path.join(dir_name, p)
+ if not os.path.exists(dir_name):
+ os.makedirs(dir_name)
- with gr.Column() as page_panel:
- with gr.Row(visible=False) as turn_page_buttons:
- renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page")
- first_page = gr.Button('First Page')
- prev_page = gr.Button('Prev Page')
- page_index = gr.Number(value=1, label="Page Index")
- next_page = gr.Button('Next Page')
- end_page = gr.Button('End Page')
+ with gr.Column() as page_panel:
+ with gr.Row():
+ img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory")
+ with gr.Row(visible=False) as warning:
+ warning_box = gr.Textbox("Message", interactive=False)
- with gr.Row(elem_id=tabname + "_images_history"):
- with gr.Column(scale=2):
- with gr.Row():
- newest = gr.Button('Reload', elem_id=tabname + "_images_history_start")
- date_from = gr.Textbox(label="Date from", interactive=False)
- date_to = gr.Dropdown(label="Date to")
-
- history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=6)
- with gr.Row():
- delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next")
- delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button")
-
- with gr.Column():
- with gr.Row():
- if tabname != "saved":
- save_btn = gr.Button('Save')
- pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
- pnginfo_send_to_img2img = gr.Button('Send to img2img')
- with gr.Row():
- with gr.Column():
- img_file_info = gr.Textbox(label="Generate Info", interactive=False)
- img_file_name = gr.Textbox(value="", label="File Name", interactive=False)
+ with gr.Row(visible=not custom_dir, elem_id=tabname + "_images_history") as main_panel:
+ with gr.Column(scale=2):
+ with gr.Row():
+ backward = gr.Button('Backward')
+ date_to = gr.Dropdown(label="Date to")
+ forward = gr.Button('Forward')
+ newest = gr.Button('Reload', elem_id=tabname + "_images_history_start")
+ with gr.Row():
+ load_info = gr.Textbox(show_label=False, interactive=False)
+ with gr.Row(visible=False) as turn_page_buttons:
+ renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page")
+ first_page = gr.Button('First Page')
+ prev_page = gr.Button('Prev Page')
+ page_index = gr.Number(value=1, label="Page Index")
+ next_page = gr.Button('Next Page')
+ end_page = gr.Button('End Page')
+ history_gallery = gr.Gallery(show_label=False, elem_id=tabname + "_images_history_gallery").style(grid=opts.images_history_grid_num)
+ with gr.Row():
+ delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next")
+ delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button")
- # hiden items
- with gr.Row(visible=False):
- visible_img_num = gr.Number()
- img_path = gr.Textbox(dir_name)
- tabname_box = gr.Textbox(tabname)
- image_index = gr.Textbox(value=-1)
- set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index")
- filenames = gr.State()
- all_images_list = gr.State()
- hidden = gr.Image(type="pil")
- info1 = gr.Textbox()
- info2 = gr.Textbox()
+ with gr.Column():
+ with gr.Row():
+ if tabname != "saved":
+ save_btn = gr.Button('Save')
+ pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
+ pnginfo_send_to_img2img = gr.Button('Send to img2img')
+ with gr.Row():
+ with gr.Column():
+ img_file_info = gr.Textbox(label="Generate Info", interactive=False)
+ img_file_name = gr.Textbox(value="", label="File Name", interactive=False)
+ img_file_time= gr.Textbox(value="", label="Create Time", interactive=False)
-
+
+ # hiden items
+ with gr.Row(): #visible=False):
+ visible_img_num = gr.Number()
+ date_to_recorder = gr.State([])
+ last_date_from = gr.Textbox()
+ tabname_box = gr.Textbox(tabname)
+ image_index = gr.Textbox(value=-1)
+ set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index")
+ filenames = gr.State()
+ all_images_list = gr.State()
+ hidden = gr.Image(type="pil")
+ info1 = gr.Textbox()
+ info2 = gr.Textbox()
+
+ img_path.submit(change_dir, inputs=[img_path, date_to], outputs=[warning, main_panel, warning_box, date_to])
#change date
- change_date_output = [date_to, date_from, filenames, page_index, history_gallery, img_file_name, visible_img_num]
- newest.click(newest_click, inputs=[img_path, date_to], outputs=change_date_output)
- date_to.change(archive_images, inputs=[img_path, date_to], outputs=change_date_output)
- newest.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
- date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
- date_to.change(enable_page_buttons, inputs=None, outputs=[turn_page_buttons])
- newest.click(enable_page_buttons, inputs=None, outputs=[turn_page_buttons])
+ change_date_output = [date_to, load_info, filenames, page_index, history_gallery, img_file_name, img_file_time, visible_img_num, last_date_from]
+
+ date_to.change(archive_images, inputs=[img_path, date_to], outputs=change_date_output)
+ date_to.change(enable_page_buttons, inputs=None, outputs=[turn_page_buttons])
+ date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+
+ newest.click(newest_click, inputs=[date_to], outputs=[date_to, date_to_recorder])
+ forward.click(forward_click, inputs=[last_date_from, date_to_recorder], outputs=[date_to, date_to_recorder])
+ backward.click(backward_click, inputs=[last_date_from, date_to_recorder], outputs=[date_to, date_to_recorder])
+
#delete
delete.click(delete_image, inputs=[delete_num, img_file_name, filenames, image_index, visible_img_num], outputs=[filenames, delete_num, visible_img_num])
@@ -301,7 +369,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
#turn page
gallery_inputs = [page_index, filenames]
- gallery_outputs = [page_index, history_gallery, img_file_name, visible_img_num]
+ gallery_outputs = [page_index, history_gallery, img_file_name, img_file_time, visible_img_num]
first_page.click(first_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
next_page.click(next_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
prev_page.click(prev_page_click, inputs=gallery_inputs, outputs=gallery_outputs)
@@ -317,12 +385,14 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
renew_page.click(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
# other funcitons
- set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, page_index, filenames], outputs=[img_file_name, image_index, hidden])
+ set_index.click(show_image_info, _js="images_history_get_current_img", inputs=[tabname_box, image_index, page_index, filenames], outputs=[img_file_name, img_file_time, image_index, hidden])
img_file_name.change(fn=None, _js="images_history_enable_del_buttons", inputs=None, outputs=None)
hidden.change(fn=run_pnginfo, inputs=[hidden], outputs=[info1, img_file_info, info2])
switch_dict["fn"](pnginfo_send_to_txt2img, switch_dict["t2i"], img_file_info, 'switch_to_txt2img')
switch_dict["fn"](pnginfo_send_to_img2img, switch_dict["i2i"], img_file_info, 'switch_to_img2img_img2img')
+
+
def create_history_tabs(gr, sys_opts, run_pnginfo, switch_dict):
global opts;
opts = sys_opts
@@ -330,10 +400,11 @@ def create_history_tabs(gr, sys_opts, run_pnginfo, switch_dict):
num_of_imgs_per_page = int(opts.images_history_num_per_page * opts.images_history_pages_num)
with gr.Blocks(analytics_enabled=False) as images_history:
with gr.Tabs() as tabs:
- for tab in ["txt2img", "img2img", "extras", "saved"]:
+ for tab in [browser_tabname, "txt2img", "img2img", "extras", "saved"]:
with gr.Tab(tab):
- with gr.Blocks(analytics_enabled=False) as images_history_img2img:
+ with gr.Blocks(analytics_enabled=False) :
show_images_history(gr, opts, tab, run_pnginfo, switch_dict)
- gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_reconstruct_directory", visible=False)
+ #gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_reconstruct_directory", visible=False)
+ gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_finish_render", visible=False)
return images_history
diff --git a/modules/shared.py b/modules/shared.py
index c2ea4186..1811018d 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -309,10 +309,11 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}),
}))
-options_templates.update(options_section(('images-history', "Images history"), {
- "images_history_reconstruct_directory": OptionInfo(False, "Reconstruct output directory structure.This can greatly improve the speed of loading , but will change the original output directory structure"),
+options_templates.update(options_section(('images-history', "Images Browser"), {
+ #"images_history_reconstruct_directory": OptionInfo(False, "Reconstruct output directory structure.This can greatly improve the speed of loading , but will change the original output directory structure"),
"images_history_num_per_page": OptionInfo(36, "Number of pictures displayed on each page"),
- "images_history_pages_num": OptionInfo(6, "Maximum number of pages per load "),
+ "images_history_pages_num": OptionInfo(6, "Minimum number of pages per load "),
+ "images_history_grid_num": OptionInfo(6, "Number of grids in each row"),
}))
diff --git a/modules/ui.py b/modules/ui.py
index 43dc88fc..85abac4d 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1548,7 +1548,7 @@ Requested path was: {f}
(img2img_interface, "img2img", "img2img"),
(extras_interface, "Extras", "extras"),
(pnginfo_interface, "PNG Info", "pnginfo"),
- (images_history, "History", "images_history"),
+ (images_history, "Image Browser", "images_history"),
(modelmerger_interface, "Checkpoint Merger", "modelmerger"),
(train_interface, "Train", "ti"),
(settings_interface, "Settings", "settings"),
diff --git a/uitest.bat b/uitest.bat
new file mode 100644
index 00000000..ae863af6
--- /dev/null
+++ b/uitest.bat
@@ -0,0 +1,2 @@
+venv\Scripts\python.exe uitest.py
+pause
diff --git a/uitest.py b/uitest.py
new file mode 100644
index 00000000..393e2d81
--- /dev/null
+++ b/uitest.py
@@ -0,0 +1,124 @@
+import os
+import threading
+import time
+import importlib
+import signal
+import threading
+
+from modules.paths import script_path
+
+from modules import devices, sd_samplers
+import modules.codeformer_model as codeformer
+import modules.extras
+import modules.face_restoration
+import modules.gfpgan_model as gfpgan
+import modules.img2img
+
+import modules.lowvram
+import modules.paths
+import modules.scripts
+import modules.sd_hijack
+import modules.sd_models
+import modules.shared as shared
+import modules.txt2img
+
+import modules.ui
+from modules import devices
+from modules import modelloader
+from modules.paths import script_path
+from modules.shared import cmd_opts
+
+modelloader.cleanup_models()
+modules.sd_models.setup_model()
+codeformer.setup_model(cmd_opts.codeformer_models_path)
+gfpgan.setup_model(cmd_opts.gfpgan_models_path)
+shared.face_restorers.append(modules.face_restoration.FaceRestoration())
+modelloader.load_upscalers()
+queue_lock = threading.Lock()
+
+
+def wrap_queued_call(func):
+ def f(*args, **kwargs):
+ with queue_lock:
+ res = func(*args, **kwargs)
+
+ return res
+
+ return f
+
+
+def wrap_gradio_gpu_call(func, extra_outputs=None):
+ def f(*args, **kwargs):
+ devices.torch_gc()
+
+ shared.state.sampling_step = 0
+ shared.state.job_count = -1
+ shared.state.job_no = 0
+ shared.state.job_timestamp = shared.state.get_job_timestamp()
+ shared.state.current_latent = None
+ shared.state.current_image = None
+ shared.state.current_image_sampling_step = 0
+ shared.state.interrupted = False
+ shared.state.textinfo = None
+
+ with queue_lock:
+ res = func(*args, **kwargs)
+
+ shared.state.job = ""
+ shared.state.job_count = 0
+
+ devices.torch_gc()
+
+ return res
+
+ return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
+
+
+modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
+
+shared.sd_model = None #modules.sd_models.load_model()
+#shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
+
+
+def webui():
+ # make the program just exit at ctrl+c without waiting for anything
+ def sigint_handler(sig, frame):
+ print(f'Interrupted with signal {sig} in {frame}')
+ os._exit(0)
+
+ signal.signal(signal.SIGINT, sigint_handler)
+
+ while 1:
+
+ demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call)
+
+ demo.launch(
+ share=cmd_opts.share,
+ server_name="0.0.0.0" if cmd_opts.listen else None,
+ server_port=cmd_opts.port,
+ debug=cmd_opts.gradio_debug,
+ auth=[tuple(cred.split(':')) for cred in cmd_opts.gradio_auth.strip('"').split(',')] if cmd_opts.gradio_auth else None,
+ inbrowser=cmd_opts.autolaunch,
+ prevent_thread_lock=True
+ )
+
+ while 1:
+ time.sleep(0.5)
+ if getattr(demo, 'do_restart', False):
+ time.sleep(0.5)
+ demo.close()
+ time.sleep(0.5)
+ break
+
+ sd_samplers.set_samplers()
+
+ print('Reloading Custom Scripts')
+ modules.scripts.reload_scripts(os.path.join(script_path, "scripts"))
+ print('Reloading modules: modules.ui')
+ importlib.reload(modules.ui)
+ print('Restarting Gradio')
+
+
+
+if __name__ == "__main__":
+ webui()
\ No newline at end of file
From c6f778d9b19d7116ffb82718f6ca0b867e2f4445 Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Tue, 18 Oct 2022 20:15:08 +0800
Subject: [PATCH 025/100] Image browser
---
uitest.bat | 2 -
uitest.py | 124 -----------------------------------------------------
2 files changed, 126 deletions(-)
delete mode 100644 uitest.bat
delete mode 100644 uitest.py
diff --git a/uitest.bat b/uitest.bat
deleted file mode 100644
index ae863af6..00000000
--- a/uitest.bat
+++ /dev/null
@@ -1,2 +0,0 @@
-venv\Scripts\python.exe uitest.py
-pause
diff --git a/uitest.py b/uitest.py
deleted file mode 100644
index 393e2d81..00000000
--- a/uitest.py
+++ /dev/null
@@ -1,124 +0,0 @@
-import os
-import threading
-import time
-import importlib
-import signal
-import threading
-
-from modules.paths import script_path
-
-from modules import devices, sd_samplers
-import modules.codeformer_model as codeformer
-import modules.extras
-import modules.face_restoration
-import modules.gfpgan_model as gfpgan
-import modules.img2img
-
-import modules.lowvram
-import modules.paths
-import modules.scripts
-import modules.sd_hijack
-import modules.sd_models
-import modules.shared as shared
-import modules.txt2img
-
-import modules.ui
-from modules import devices
-from modules import modelloader
-from modules.paths import script_path
-from modules.shared import cmd_opts
-
-modelloader.cleanup_models()
-modules.sd_models.setup_model()
-codeformer.setup_model(cmd_opts.codeformer_models_path)
-gfpgan.setup_model(cmd_opts.gfpgan_models_path)
-shared.face_restorers.append(modules.face_restoration.FaceRestoration())
-modelloader.load_upscalers()
-queue_lock = threading.Lock()
-
-
-def wrap_queued_call(func):
- def f(*args, **kwargs):
- with queue_lock:
- res = func(*args, **kwargs)
-
- return res
-
- return f
-
-
-def wrap_gradio_gpu_call(func, extra_outputs=None):
- def f(*args, **kwargs):
- devices.torch_gc()
-
- shared.state.sampling_step = 0
- shared.state.job_count = -1
- shared.state.job_no = 0
- shared.state.job_timestamp = shared.state.get_job_timestamp()
- shared.state.current_latent = None
- shared.state.current_image = None
- shared.state.current_image_sampling_step = 0
- shared.state.interrupted = False
- shared.state.textinfo = None
-
- with queue_lock:
- res = func(*args, **kwargs)
-
- shared.state.job = ""
- shared.state.job_count = 0
-
- devices.torch_gc()
-
- return res
-
- return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
-
-
-modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
-
-shared.sd_model = None #modules.sd_models.load_model()
-#shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
-
-
-def webui():
- # make the program just exit at ctrl+c without waiting for anything
- def sigint_handler(sig, frame):
- print(f'Interrupted with signal {sig} in {frame}')
- os._exit(0)
-
- signal.signal(signal.SIGINT, sigint_handler)
-
- while 1:
-
- demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call)
-
- demo.launch(
- share=cmd_opts.share,
- server_name="0.0.0.0" if cmd_opts.listen else None,
- server_port=cmd_opts.port,
- debug=cmd_opts.gradio_debug,
- auth=[tuple(cred.split(':')) for cred in cmd_opts.gradio_auth.strip('"').split(',')] if cmd_opts.gradio_auth else None,
- inbrowser=cmd_opts.autolaunch,
- prevent_thread_lock=True
- )
-
- while 1:
- time.sleep(0.5)
- if getattr(demo, 'do_restart', False):
- time.sleep(0.5)
- demo.close()
- time.sleep(0.5)
- break
-
- sd_samplers.set_samplers()
-
- print('Reloading Custom Scripts')
- modules.scripts.reload_scripts(os.path.join(script_path, "scripts"))
- print('Reloading modules: modules.ui')
- importlib.reload(modules.ui)
- print('Restarting Gradio')
-
-
-
-if __name__ == "__main__":
- webui()
\ No newline at end of file
From b7e78ef692fe912916de6e54f6e2521b000d650c Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Tue, 18 Oct 2022 22:21:54 +0800
Subject: [PATCH 026/100] Image browser improve
---
modules/images_history.py | 43 ++++++++++++++++++++-------------------
1 file changed, 22 insertions(+), 21 deletions(-)
diff --git a/modules/images_history.py b/modules/images_history.py
index d56f3a25..a40cdc0e 100644
--- a/modules/images_history.py
+++ b/modules/images_history.py
@@ -100,14 +100,15 @@ def auto_sorting(dir_name):
date_list.append(today)
return sorted(date_list, reverse=True)
-def archive_images(dir_name, date_to):
-
+def archive_images(dir_name, date_to):
filenames = []
- loads_num =int(opts.images_history_num_per_page * opts.images_history_pages_num)
+ batch_size =int(opts.images_history_num_per_page * opts.images_history_pages_num)
+ if batch_size <= 0:
+ batch_size = opts.images_history_num_per_page * 6
today = time.strftime("%Y%m%d",time.localtime(time.time()))
date_to = today if date_to is None or date_to == "" else date_to
date_to_bak = date_to
- if opts.images_history_reconstruct_directory:
+ if False: #opts.images_history_reconstruct_directory:
date_list = auto_sorting(dir_name)
for date in date_list:
if date <= date_to:
@@ -115,11 +116,13 @@ def archive_images(dir_name, date_to):
if date == today and not os.path.exists(path):
continue
filenames = traverse_all_files(path, filenames)
- if len(filenames) > loads_num:
+ if len(filenames) > batch_size:
break
filenames = sorted(filenames, key=lambda file: -os.path.getmtime(file))
else:
- filenames = traverse_all_files(dir_name, filenames)
+ filenames = traverse_all_files(dir_name, filenames)
+ total_num = len(filenames)
+ batch_count = len(filenames) + 1 // batch_size + 1
tmparray = [(os.path.getmtime(file), file) for file in filenames ]
date_stamp = time.mktime(time.strptime(date_to, "%Y%m%d")) + 86400
filenames = []
@@ -132,8 +135,8 @@ def archive_images(dir_name, date_to):
filenames.append((t, f ,date))
date_list = sorted(list(date_list.keys()), reverse=True)
sort_array = sorted(filenames, key=lambda x:-x[0])
- if len(sort_array) > loads_num:
- date = sort_array[loads_num][2]
+ if len(sort_array) > batch_size:
+ date = sort_array[batch_size][2]
filenames = [x[1] for x in sort_array]
else:
date = date_to if len(sort_array) == 0 else sort_array[-1][2]
@@ -141,9 +144,9 @@ def archive_images(dir_name, date_to):
filenames = [x[1] for x in sort_array if x[2]>= date]
num = len(filenames)
last_date_from = date_to_bak if num == 0 else time.strftime("%Y%m%d", time.localtime(time.mktime(time.strptime(date, "%Y%m%d")) - 1000))
- date = date[:4] + "-" + date[4:6] + "-" + date[6:8]
- date_to_bak = date_to_bak[:4] + "-" + date_to_bak[4:6] + "-" + date_to_bak[6:8]
- load_info = f"Loaded {(num + 1) // opts.images_history_pages_num} pades, {num} images, during {date} - {date_to_bak}"
+ date = date[:4] + "/" + date[4:6] + "/" + date[6:8]
+ date_to_bak = date_to_bak[:4] + "/" + date_to_bak[4:6] + "/" + date_to_bak[6:8]
+ load_info = f"{total_num} images in this directory. Loaded {num} images during {date} - {date_to_bak}, divided into {int((num + 1) // opts.images_history_num_per_page + 1)} pages"
_, image_list, _, _, visible_num = get_recent_images(1, 0, filenames)
return (
gradio.Dropdown.update(choices=date_list, value=date_to),
@@ -154,12 +157,10 @@ def archive_images(dir_name, date_to):
"",
"",
visible_num,
- last_date_from
+ last_date_from,
+ #gradio.update(visible=batch_count > 1)
)
-
-
-
def delete_image(delete_num, name, filenames, image_index, visible_num):
if name == "":
return filenames, delete_num
@@ -295,16 +296,16 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
with gr.Column() as page_panel:
with gr.Row():
- img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory")
+ img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory", interactive=custom_dir)
with gr.Row(visible=False) as warning:
warning_box = gr.Textbox("Message", interactive=False)
with gr.Row(visible=not custom_dir, elem_id=tabname + "_images_history") as main_panel:
with gr.Column(scale=2):
- with gr.Row():
- backward = gr.Button('Backward')
- date_to = gr.Dropdown(label="Date to")
- forward = gr.Button('Forward')
+ with gr.Row() as batch_panel:
+ forward = gr.Button('Forward')
+ date_to = gr.Dropdown(label="Date to")
+ backward = gr.Button('Backward')
newest = gr.Button('Reload', elem_id=tabname + "_images_history_start")
with gr.Row():
load_info = gr.Textbox(show_label=False, interactive=False)
@@ -335,7 +336,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
# hiden items
- with gr.Row(): #visible=False):
+ with gr.Row(visible=False):
visible_img_num = gr.Number()
date_to_recorder = gr.State([])
last_date_from = gr.Textbox()
From 538bc89c269743e56b07ef2b471d1ce0a39b6776 Mon Sep 17 00:00:00 2001
From: yfszzx
Date: Wed, 19 Oct 2022 11:27:51 +0800
Subject: [PATCH 027/100] Image browser improved
---
javascript/images_history.js | 81 +++++++++++----------
modules/images_history.py | 133 +++++++++++++++++++----------------
modules/shared.py | 5 ++
modules/ui.py | 2 +-
4 files changed, 119 insertions(+), 102 deletions(-)
diff --git a/javascript/images_history.js b/javascript/images_history.js
index 182d730b..c9aa76f8 100644
--- a/javascript/images_history.js
+++ b/javascript/images_history.js
@@ -17,14 +17,6 @@ var images_history_click_image = function(){
images_history_set_image_info(this);
}
-var images_history_click_tab = function(){
- var tabs_box = gradioApp().getElementById("images_history_tab");
- if (!tabs_box.classList.contains(this.getAttribute("tabname"))) {
- gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_start").click();
- tabs_box.classList.add(this.getAttribute("tabname"))
- }
-}
-
function images_history_disabled_del(){
gradioApp().querySelectorAll(".images_history_del_button").forEach(function(btn){
btn.setAttribute('disabled','disabled');
@@ -145,57 +137,64 @@ function images_history_enable_del_buttons(){
}
function images_history_init(){
- // var loaded = gradioApp().getElementById("images_history_reconstruct_directory")
- // if (loaded){
- // var init_status = loaded.querySelector("input").checked
- if (gradioApp().getElementById("images_history_finish_render")){
+ var tabnames = gradioApp().getElementById("images_history_tabnames_list")
+ if (tabnames){
+ images_history_tab_list = tabnames.querySelector("textarea").value.split(",")
for (var i in images_history_tab_list ){
- tab = images_history_tab_list[i];
+ var tab = images_history_tab_list[i];
gradioApp().getElementById(tab + '_images_history').classList.add("images_history_cantainor");
gradioApp().getElementById(tab + '_images_history_set_index').classList.add("images_history_set_index");
gradioApp().getElementById(tab + '_images_history_del_button').classList.add("images_history_del_button");
- gradioApp().getElementById(tab + '_images_history_gallery').classList.add("images_history_gallery");
-
+ gradioApp().getElementById(tab + '_images_history_gallery').classList.add("images_history_gallery");
+ gradioApp().getElementById(tab + "_images_history_start").setAttribute("style","padding:20px;font-size:25px");
}
- var tabs_box = gradioApp().getElementById("tab_images_history").querySelector("div").querySelector("div").querySelector("div");
- tabs_box.setAttribute("id", "images_history_tab");
- var tab_btns = tabs_box.querySelectorAll("button");
- for (var i in images_history_tab_list){
- var tabname = images_history_tab_list[i]
- tab_btns[i].setAttribute("tabname", tabname);
- // if (!init_status){
- // tab_btns[i].addEventListener('click', images_history_click_tab);
- // }
- tab_btns[i].addEventListener('click', images_history_click_tab);
- }
+ //preload
+ if (gradioApp().getElementById("images_history_preload").querySelector("input").checked ){
+ var tabs_box = gradioApp().getElementById("tab_images_history").querySelector("div").querySelector("div").querySelector("div");
+ tabs_box.setAttribute("id", "images_history_tab");
+ var tab_btns = tabs_box.querySelectorAll("button");
+ for (var i in images_history_tab_list){
+ var tabname = images_history_tab_list[i]
+ tab_btns[i].setAttribute("tabname", tabname);
+ tab_btns[i].addEventListener('click', function(){
+ var tabs_box = gradioApp().getElementById("images_history_tab");
+ if (!tabs_box.classList.contains(this.getAttribute("tabname"))) {
+ gradioApp().getElementById(this.getAttribute("tabname") + "_images_history_start").click();
+ tabs_box.classList.add(this.getAttribute("tabname"))
+ }
+ });
+ }
+ tab_btns[0].click()
+ }
} else {
setTimeout(images_history_init, 500);
}
}
-var images_history_tab_list = ["custom", "txt2img", "img2img", "extras", "saved"];
+var images_history_tab_list = "";
setTimeout(images_history_init, 500);
document.addEventListener("DOMContentLoaded", function() {
var mutationObserver = new MutationObserver(function(m){
- for (var i in images_history_tab_list ){
- let tabname = images_history_tab_list[i]
- var buttons = gradioApp().querySelectorAll('#' + tabname + '_images_history .gallery-item');
- buttons.forEach(function(bnt){
- bnt.addEventListener('click', images_history_click_image, true);
- });
+ if (images_history_tab_list != ""){
+ for (var i in images_history_tab_list ){
+ let tabname = images_history_tab_list[i]
+ var buttons = gradioApp().querySelectorAll('#' + tabname + '_images_history .gallery-item');
+ buttons.forEach(function(bnt){
+ bnt.addEventListener('click', images_history_click_image, true);
+ });
- var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg");
- if (cls_btn){
- cls_btn.addEventListener('click', function(){
- gradioApp().getElementById(tabname + '_images_history_del_button').setAttribute('disabled','disabled');
- }, false);
- }
+ var cls_btn = gradioApp().getElementById(tabname + '_images_history_gallery').querySelector("svg");
+ if (cls_btn){
+ cls_btn.addEventListener('click', function(){
+ gradioApp().getElementById(tabname + '_images_history_renew_page').click();
+ }, false);
+ }
- }
+ }
+ }
});
mutationObserver.observe(gradioApp(), { childList:true, subtree:true });
-
});
diff --git a/modules/images_history.py b/modules/images_history.py
index a40cdc0e..78fd0543 100644
--- a/modules/images_history.py
+++ b/modules/images_history.py
@@ -4,7 +4,9 @@ import time
import hashlib
import gradio
system_bak_path = "webui_log_and_bak"
-browser_tabname = "custom"
+custom_tab_name = "custom fold"
+faverate_tab_name = "favorites"
+tabs_list = ["txt2img", "img2img", "extras", faverate_tab_name]
def is_valid_date(date):
try:
time.strptime(date, "%Y%m%d")
@@ -122,7 +124,6 @@ def archive_images(dir_name, date_to):
else:
filenames = traverse_all_files(dir_name, filenames)
total_num = len(filenames)
- batch_count = len(filenames) + 1 // batch_size + 1
tmparray = [(os.path.getmtime(file), file) for file in filenames ]
date_stamp = time.mktime(time.strptime(date_to, "%Y%m%d")) + 86400
filenames = []
@@ -146,10 +147,12 @@ def archive_images(dir_name, date_to):
last_date_from = date_to_bak if num == 0 else time.strftime("%Y%m%d", time.localtime(time.mktime(time.strptime(date, "%Y%m%d")) - 1000))
date = date[:4] + "/" + date[4:6] + "/" + date[6:8]
date_to_bak = date_to_bak[:4] + "/" + date_to_bak[4:6] + "/" + date_to_bak[6:8]
- load_info = f"{total_num} images in this directory. Loaded {num} images during {date} - {date_to_bak}, divided into {int((num + 1) // opts.images_history_num_per_page + 1)} pages"
+ load_info = ""
+ load_info += f"{total_num} images in this directory. Loaded {num} images during {date} - {date_to_bak}, divided into {int((num + 1) // opts.images_history_num_per_page + 1)} pages"
+ load_info += "
"
_, image_list, _, _, visible_num = get_recent_images(1, 0, filenames)
return (
- gradio.Dropdown.update(choices=date_list, value=date_to),
+ date_to,
load_info,
filenames,
1,
@@ -158,7 +161,7 @@ def archive_images(dir_name, date_to):
"",
visible_num,
last_date_from,
- #gradio.update(visible=batch_count > 1)
+ gradio.update(visible=total_num > num)
)
def delete_image(delete_num, name, filenames, image_index, visible_num):
@@ -209,7 +212,7 @@ def get_recent_images(page_index, step, filenames):
visible_num = num_of_imgs_per_page if visible_num == 0 else visible_num
return page_index, image_list, "", "", visible_num
-def newest_click(date_to):
+def loac_batch_click(date_to):
if date_to is None:
return time.strftime("%Y%m%d",time.localtime(time.time())), []
else:
@@ -248,7 +251,7 @@ def page_index_change(page_index, filenames):
def show_image_info(tabname_box, num, page_index, filenames):
file = filenames[int(num) + int((page_index - 1) * int(opts.images_history_num_per_page))]
- tm = time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(os.path.getmtime(file)))
+ tm = "" + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(os.path.getmtime(file))) + "
"
return file, tm, num, file
def enable_page_buttons():
@@ -268,9 +271,9 @@ def change_dir(img_dir, date_to):
warning = "The format of the directory is incorrect"
if warning is None:
today = time.strftime("%Y%m%d",time.localtime(time.time()))
- return gradio.update(visible=False), gradio.update(visible=True), None, None if date_to != today else today
+ return gradio.update(visible=False), gradio.update(visible=True), None, None if date_to != today else today, gradio.update(visible=True), gradio.update(visible=True)
else:
- return gradio.update(visible=True), gradio.update(visible=False), warning, date_to
+ return gradio.update(visible=True), gradio.update(visible=False), warning, date_to, gradio.update(visible=False), gradio.update(visible=False)
def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
custom_dir = False
@@ -280,7 +283,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
dir_name = opts.outdir_img2img_samples
elif tabname == "extras":
dir_name = opts.outdir_extras_samples
- elif tabname == "saved":
+ elif tabname == faverate_tab_name:
dir_name = opts.outdir_save
else:
custom_dir = True
@@ -295,22 +298,26 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
os.makedirs(dir_name)
with gr.Column() as page_panel:
- with gr.Row():
- img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory", interactive=custom_dir)
+ with gr.Row():
+ with gr.Column(scale=1, visible=not custom_dir) as load_batch_box:
+ load_batch = gr.Button('Load', elem_id=tabname + "_images_history_start", full_width=True)
+ with gr.Column(scale=4):
+ with gr.Row():
+ img_path = gr.Textbox(dir_name, label="Images directory", placeholder="Input images directory", interactive=custom_dir)
+ with gr.Row():
+ with gr.Column(visible=False, scale=1) as batch_panel:
+ with gr.Row():
+ forward = gr.Button('Prev batch')
+ backward = gr.Button('Next batch')
+ with gr.Column(scale=3):
+ load_info = gr.HTML(visible=not custom_dir)
with gr.Row(visible=False) as warning:
warning_box = gr.Textbox("Message", interactive=False)
with gr.Row(visible=not custom_dir, elem_id=tabname + "_images_history") as main_panel:
- with gr.Column(scale=2):
- with gr.Row() as batch_panel:
- forward = gr.Button('Forward')
- date_to = gr.Dropdown(label="Date to")
- backward = gr.Button('Backward')
- newest = gr.Button('Reload', elem_id=tabname + "_images_history_start")
- with gr.Row():
- load_info = gr.Textbox(show_label=False, interactive=False)
- with gr.Row(visible=False) as turn_page_buttons:
- renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page")
+ with gr.Column(scale=2):
+ with gr.Row(visible=True) as turn_page_buttons:
+ #date_to = gr.Dropdown(label="Date to")
first_page = gr.Button('First Page')
prev_page = gr.Button('Prev Page')
page_index = gr.Number(value=1, label="Page Index")
@@ -322,50 +329,54 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
delete_num = gr.Number(value=1, interactive=True, label="number of images to delete consecutively next")
delete = gr.Button('Delete', elem_id=tabname + "_images_history_del_button")
- with gr.Column():
- with gr.Row():
- if tabname != "saved":
- save_btn = gr.Button('Save')
- pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
- pnginfo_send_to_img2img = gr.Button('Send to img2img')
+ with gr.Column():
with gr.Row():
with gr.Column():
- img_file_info = gr.Textbox(label="Generate Info", interactive=False)
+ img_file_info = gr.Textbox(label="Generate Info", interactive=False, lines=6)
+ gr.HTML("
")
img_file_name = gr.Textbox(value="", label="File Name", interactive=False)
- img_file_time= gr.Textbox(value="", label="Create Time", interactive=False)
-
+ img_file_time= gr.HTML()
+ with gr.Row():
+ if tabname != faverate_tab_name:
+ save_btn = gr.Button('Collect')
+ pnginfo_send_to_txt2img = gr.Button('Send to txt2img')
+ pnginfo_send_to_img2img = gr.Button('Send to img2img')
+
- # hiden items
- with gr.Row(visible=False):
- visible_img_num = gr.Number()
- date_to_recorder = gr.State([])
- last_date_from = gr.Textbox()
- tabname_box = gr.Textbox(tabname)
- image_index = gr.Textbox(value=-1)
- set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index")
- filenames = gr.State()
- all_images_list = gr.State()
- hidden = gr.Image(type="pil")
- info1 = gr.Textbox()
- info2 = gr.Textbox()
+ # hiden items
+ with gr.Row(visible=False):
+ renew_page = gr.Button('Refresh page', elem_id=tabname + "_images_history_renew_page")
+ batch_date_to = gr.Textbox(label="Date to")
+ visible_img_num = gr.Number()
+ date_to_recorder = gr.State([])
+ last_date_from = gr.Textbox()
+ tabname_box = gr.Textbox(tabname)
+ image_index = gr.Textbox(value=-1)
+ set_index = gr.Button('set_index', elem_id=tabname + "_images_history_set_index")
+ filenames = gr.State()
+ all_images_list = gr.State()
+ hidden = gr.Image(type="pil")
+ info1 = gr.Textbox()
+ info2 = gr.Textbox()
- img_path.submit(change_dir, inputs=[img_path, date_to], outputs=[warning, main_panel, warning_box, date_to])
- #change date
- change_date_output = [date_to, load_info, filenames, page_index, history_gallery, img_file_name, img_file_time, visible_img_num, last_date_from]
+ img_path.submit(change_dir, inputs=[img_path, batch_date_to], outputs=[warning, main_panel, warning_box, batch_date_to, load_batch_box, load_info])
+
+ #change batch
+ change_date_output = [batch_date_to, load_info, filenames, page_index, history_gallery, img_file_name, img_file_time, visible_img_num, last_date_from, batch_panel]
- date_to.change(archive_images, inputs=[img_path, date_to], outputs=change_date_output)
- date_to.change(enable_page_buttons, inputs=None, outputs=[turn_page_buttons])
- date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
+ batch_date_to.change(archive_images, inputs=[img_path, batch_date_to], outputs=change_date_output)
+ batch_date_to.change(enable_page_buttons, inputs=None, outputs=[turn_page_buttons])
+ batch_date_to.change(fn=None, inputs=[tabname_box], outputs=None, _js="images_history_turnpage")
- newest.click(newest_click, inputs=[date_to], outputs=[date_to, date_to_recorder])
- forward.click(forward_click, inputs=[last_date_from, date_to_recorder], outputs=[date_to, date_to_recorder])
- backward.click(backward_click, inputs=[last_date_from, date_to_recorder], outputs=[date_to, date_to_recorder])
+ load_batch.click(loac_batch_click, inputs=[batch_date_to], outputs=[batch_date_to, date_to_recorder])
+ forward.click(forward_click, inputs=[last_date_from, date_to_recorder], outputs=[batch_date_to, date_to_recorder])
+ backward.click(backward_click, inputs=[last_date_from, date_to_recorder], outputs=[batch_date_to, date_to_recorder])
#delete
delete.click(delete_image, inputs=[delete_num, img_file_name, filenames, image_index, visible_img_num], outputs=[filenames, delete_num, visible_img_num])
delete.click(fn=None, _js="images_history_delete", inputs=[delete_num, tabname_box, image_index], outputs=None)
- if tabname != "saved":
+ if tabname != faverate_tab_name:
save_btn.click(save_image, inputs=[img_file_name], outputs=None)
#turn page
@@ -394,18 +405,20 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
-def create_history_tabs(gr, sys_opts, run_pnginfo, switch_dict):
+def create_history_tabs(gr, sys_opts, cmp_ops, run_pnginfo, switch_dict):
global opts;
opts = sys_opts
loads_files_num = int(opts.images_history_num_per_page)
num_of_imgs_per_page = int(opts.images_history_num_per_page * opts.images_history_pages_num)
+ if cmp_ops.browse_all_images:
+ tabs_list.append(custom_tab_name)
with gr.Blocks(analytics_enabled=False) as images_history:
with gr.Tabs() as tabs:
- for tab in [browser_tabname, "txt2img", "img2img", "extras", "saved"]:
+ for tab in tabs_list:
with gr.Tab(tab):
with gr.Blocks(analytics_enabled=False) :
- show_images_history(gr, opts, tab, run_pnginfo, switch_dict)
- #gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_reconstruct_directory", visible=False)
- gradio.Checkbox(opts.images_history_reconstruct_directory, elem_id="images_history_finish_render", visible=False)
-
+ show_images_history(gr, opts, tab, run_pnginfo, switch_dict)
+ gradio.Checkbox(opts.images_history_preload, elem_id="images_history_preload", visible=False)
+ gradio.Textbox(",".join(tabs_list), elem_id="images_history_tabnames_list", visible=False)
+
return images_history
diff --git a/modules/shared.py b/modules/shared.py
index 1811018d..4d735414 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -74,6 +74,10 @@ parser.add_argument("--disable-console-progressbars", action='store_true', help=
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None)
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
+parser.add_argument("--browse-all-images", action='store_true', help="Allow browsing all images by Image Browser", default=False)
+
+
+cmd_opts = parser.parse_args()
cmd_opts = parser.parse_args()
@@ -311,6 +315,7 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
options_templates.update(options_section(('images-history', "Images Browser"), {
#"images_history_reconstruct_directory": OptionInfo(False, "Reconstruct output directory structure.This can greatly improve the speed of loading , but will change the original output directory structure"),
+ "images_history_preload": OptionInfo(False, "Preload images at startup"),
"images_history_num_per_page": OptionInfo(36, "Number of pictures displayed on each page"),
"images_history_pages_num": OptionInfo(6, "Minimum number of pages per load "),
"images_history_grid_num": OptionInfo(6, "Number of grids in each row"),
diff --git a/modules/ui.py b/modules/ui.py
index 85abac4d..88f46659 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1150,7 +1150,7 @@ def create_ui(wrap_gradio_gpu_call):
"i2i":img2img_paste_fields
}
- images_history = img_his.create_history_tabs(gr, opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict)
+ images_history = img_his.create_history_tabs(gr, opts, cmd_opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict)
with gr.Blocks() as modelmerger_interface:
with gr.Row().style(equal_height=False):
From 019a3a88f07766f2d32c32fbe8e41625f28ecb5e Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Wed, 19 Oct 2022 17:15:47 +0100
Subject: [PATCH 028/100] Update ui.py
---
modules/ui.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/ui.py b/modules/ui.py
index d2e24880..1573ef82 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1247,7 +1247,7 @@ def create_ui(wrap_gradio_gpu_call):
run_preprocess = gr.Button(value="Preprocess", variant='primary')
with gr.Tab(label="Train"):
- gr.HTML(value="Train an embedding; must specify a directory with a set of 1:1 ratio images
")
+ gr.HTML(value="Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images
Initial learning rates: 0.005 for an Embedding, 0.00001 for Hypernetwork wiki
")
with gr.Row():
train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name")
From eb7ba4b713ac2fb960ecf6365b1de0c89451e583 Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Wed, 19 Oct 2022 19:50:46 +0100
Subject: [PATCH 029/100] update training header text
---
modules/ui.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/ui.py b/modules/ui.py
index 1573ef82..93c0767c 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1247,7 +1247,7 @@ def create_ui(wrap_gradio_gpu_call):
run_preprocess = gr.Button(value="Preprocess", variant='primary')
with gr.Tab(label="Train"):
- gr.HTML(value="Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images
Initial learning rates: 0.005 for an Embedding, 0.00001 for Hypernetwork wiki
")
+ gr.HTML(value="Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images
Initial learning rates: 0.005 for an Embedding, 0.00001 for Hypernetwork [wiki]
")
with gr.Row():
train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name")
From 4d663055ded968831ec97f047dfa8e94036cf1c1 Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Wed, 19 Oct 2022 20:33:18 +0100
Subject: [PATCH 030/100] update ui with extra training options
---
modules/ui.py | 11 +++++++++--
1 file changed, 9 insertions(+), 2 deletions(-)
diff --git a/modules/ui.py b/modules/ui.py
index 93c0767c..cdb9d335 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1206,6 +1206,7 @@ def create_ui(wrap_gradio_gpu_call):
new_embedding_name = gr.Textbox(label="Name")
initialization_text = gr.Textbox(label="Initialization text", value="*")
nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1)
+ overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding")
with gr.Row():
with gr.Column(scale=3):
@@ -1219,6 +1220,7 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'")
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
+ overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork")
with gr.Row():
with gr.Column(scale=3):
@@ -1247,14 +1249,17 @@ def create_ui(wrap_gradio_gpu_call):
run_preprocess = gr.Button(value="Preprocess", variant='primary')
with gr.Tab(label="Train"):
- gr.HTML(value="Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images
Initial learning rates: 0.005 for an Embedding, 0.00001 for Hypernetwork [wiki]
")
+ gr.HTML(value="Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images [wiki]
")
with gr.Row():
train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name")
with gr.Row():
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=[x for x in shared.hypernetworks.keys()])
create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name")
- learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
+ with gr.Row():
+ embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005")
+ hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001")
+
batch_size = gr.Number(label='Batch size', value=1, precision=0)
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion")
@@ -1288,6 +1293,7 @@ def create_ui(wrap_gradio_gpu_call):
new_embedding_name,
initialization_text,
nvpt,
+ overwrite_old_embedding,
],
outputs=[
train_embedding_name,
@@ -1303,6 +1309,7 @@ def create_ui(wrap_gradio_gpu_call):
new_hypernetwork_sizes,
new_hypernetwork_layer_structure,
new_hypernetwork_add_layer_norm,
+ overwrite_old_hypernetwork,
],
outputs=[
train_hypernetwork_name,
From 8e7097d06a6a261580d34375c9d2a9e4ffc63ffa Mon Sep 17 00:00:00 2001
From: random_thoughtss
Date: Wed, 19 Oct 2022 13:47:45 -0700
Subject: [PATCH 031/100] Added support for RunwayML inpainting model
---
modules/processing.py | 34 +++++-
modules/sd_hijack_inpainting.py | 208 ++++++++++++++++++++++++++++++++
modules/sd_models.py | 16 ++-
modules/sd_samplers.py | 50 ++++++--
4 files changed, 293 insertions(+), 15 deletions(-)
create mode 100644 modules/sd_hijack_inpainting.py
diff --git a/modules/processing.py b/modules/processing.py
index bcb0c32c..a6c308f9 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -546,7 +546,16 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
if not self.enable_hr:
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
- samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
+
+ # The "masked-image" in this case will just be all zeros since the entire image is masked.
+ image_conditioning = torch.zeros(x.shape[0], 3, self.height, self.width, device=x.device)
+ image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
+
+ # Add the fake full 1s mask to the first dimension.
+ image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
+ image_conditioning = image_conditioning.to(x.dtype)
+
+ samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=image_conditioning)
return samples
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
@@ -714,10 +723,31 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
+ if self.image_mask is not None:
+ conditioning_mask = np.array(self.image_mask.convert("L"))
+ conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
+ conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
+
+ # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
+ conditioning_mask = torch.round(conditioning_mask)
+ else:
+ conditioning_mask = torch.ones(1, 1, *image.shape[-2:])
+
+ # Create another latent image, this time with a masked version of the original input.
+ conditioning_mask = conditioning_mask.to(image.device)
+ conditioning_image = image * (1.0 - conditioning_mask)
+ conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
+
+ # Create the concatenated conditioning tensor to be fed to `c_concat`
+ conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=self.init_latent.shape[-2:])
+ conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
+ self.image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
+ self.image_conditioning = self.image_conditioning.to(shared.device).type(self.sd_model.dtype)
+
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
- samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
+ samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
if self.mask is not None:
samples = samples * self.nmask + self.init_latent * self.mask
diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py
new file mode 100644
index 00000000..7e5670d6
--- /dev/null
+++ b/modules/sd_hijack_inpainting.py
@@ -0,0 +1,208 @@
+import torch
+import numpy as np
+
+from tqdm import tqdm
+from einops import rearrange, repeat
+from omegaconf import ListConfig
+
+from types import MethodType
+
+import ldm.models.diffusion.ddpm
+import ldm.models.diffusion.ddim
+
+from ldm.models.diffusion.ddpm import LatentDiffusion
+from ldm.models.diffusion.ddim import DDIMSampler, noise_like
+
+# =================================================================================================
+# Monkey patch DDIMSampler methods from RunwayML repo directly.
+# Adapted from:
+# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
+# =================================================================================================
+@torch.no_grad()
+def sample(
+ self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ ctmp = conditioning[list(conditioning.keys())[0]]
+ while isinstance(ctmp, list):
+ ctmp = elf.inpainting_fill == 2:
+ self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
+ elif self.inpainting_fill == 3:
+ self.init_latent = self.init_latent * self.mask
+
+ if self.image_mask is not None:
+ conditioning_mask = np.array(self.image_mask.convert("L"))
+ conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
+ conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
+
+ # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
+ conditioning_mask = torch.round(conditioning_mask)
+ else:
+ conditioning_mask = torch.ones(1, 1, *image.shape[-2:])
+
+ # Create another latent image, this time with a masked version of the original input.
+ conditioning_mask = conditioning_mask.to(image.device)
+ conditioning_image = image * (1.0 - conditioning_mask)
+ conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
+
+ # Create the concatenated conditioning tensor to be fed to `c_concat`
+ conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=self.init_latent.shape[-2:])
+ conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
+ self.image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
+ self.image_conditioning = self.image_conditioning.to(shared.device).type(self.sd_model.dtype)
+
+ def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
+ x = create_random_tensors([opctmp[0]
+ cbs = ctmp.shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
+
+ samples, intermediates = self.ddim_sampling(conditioning, size,
+ callback=callback,
+ img_callback=img_callback,
+ quantize_denoised=quantize_x0,
+ mask=mask, x0=x0,
+ ddim_use_original_steps=False,
+ noise_dropout=noise_dropout,
+ temperature=temperature,
+ score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ x_T=x_T,
+ log_every_t=log_every_t,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ )
+ return samples, intermediates
+
+
+@torch.no_grad()
+def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None):
+ b, *_, device = *x.shape, x.device
+
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+ e_t = self.model.apply_model(x, t, c)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t] * 2)
+ if isinstance(c, dict):
+ assert isinstance(unconditional_conditioning, dict)
+ c_in = dict()
+ for k in c:
+ if isinstance(c[k], list):
+ c_in[k] = [
+ torch.cat([unconditional_conditioning[k][i], c[k][i]])
+ for i in range(len(c[k]))
+ ]
+ else:
+ c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
+ else:
+ c_in = torch.cat([unconditional_conditioning, c])
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+
+ if score_corrector is not None:
+ assert self.model.parameterization == "eps"
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+ # select parameters corresponding to the currently considered timestep
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
+
+ # current prediction for x_0
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+ if quantize_denoised:
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+ # direction pointing to x_t
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+ return x_prev, pred_x0
+
+
+# =================================================================================================
+# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
+# Adapted from:
+# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddpm.py
+# =================================================================================================
+
+@torch.no_grad()
+def get_unconditional_conditioning(self, batch_size, null_label=None):
+ if null_label is not None:
+ xc = null_label
+ if isinstance(xc, ListConfig):
+ xc = list(xc)
+ if isinstance(xc, dict) or isinstance(xc, list):
+ c = self.get_learned_conditioning(xc)
+ else:
+ if hasattr(xc, "to"):
+ xc = xc.to(self.device)
+ c = self.get_learned_conditioning(xc)
+ else:
+ # todo: get null label from cond_stage_model
+ raise NotImplementedError()
+ c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
+ return c
+
+class LatentInpaintDiffusion(LatentDiffusion):
+ def __init__(
+ self,
+ concat_keys=("mask", "masked_image"),
+ masked_image_key="masked_image",
+ *args,
+ **kwargs,
+ ):
+ super().__init__(*args, **kwargs)
+ self.masked_image_key = masked_image_key
+ assert self.masked_image_key in concat_keys
+ self.concat_keys = concat_keys
+
+def should_hijack_inpainting(checkpoint_info):
+ return str(checkpoint_info.filename).endswith("inpainting.ckpt") and not checkpoint_info.config.endswith("inpainting.yaml")
+
+def do_inpainting_hijack():
+ ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
+ ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
+ ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
+ ldm.models.diffusion.ddim.DDIMSampler.sample = sample
\ No newline at end of file
diff --git a/modules/sd_models.py b/modules/sd_models.py
index eae22e87..47836d25 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -9,6 +9,7 @@ from ldm.util import instantiate_from_config
from modules import shared, modelloader, devices
from modules.paths import models_path
+from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir))
@@ -211,6 +212,19 @@ def load_model():
print(f"Loading config from: {checkpoint_info.config}")
sd_config = OmegaConf.load(checkpoint_info.config)
+
+ if should_hijack_inpainting(checkpoint_info):
+ do_inpainting_hijack()
+
+ # Hardcoded config for now...
+ sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
+ sd_config.model.params.use_ema = False
+ sd_config.model.params.conditioning_key = "hybrid"
+ sd_config.model.params.unet_config.params.in_channels = 9
+
+ # Create a "fake" config with a different name so that we know to unload it when switching models.
+ checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))
+
sd_model = instantiate_from_config(sd_config.model)
load_model_weights(sd_model, checkpoint_info)
@@ -234,7 +248,7 @@ def reload_model_weights(sd_model, info=None):
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
- if sd_model.sd_checkpoint_info.config != checkpoint_info.config:
+ if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
checkpoints_loaded.clear()
shared.sd_model = load_model()
return shared.sd_model
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index b58e810b..9d3cf289 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -136,9 +136,15 @@ class VanillaStableDiffusionSampler:
if self.stop_at is not None and self.step > self.stop_at:
raise InterruptedException
+ # Have to unwrap the inpainting conditioning here to perform pre-preocessing
+ image_conditioning = None
+ if isinstance(cond, dict):
+ image_conditioning = cond["c_concat"][0]
+ cond = cond["c_crossattn"][0]
+ unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
- unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
+ unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
cond = tensor
@@ -157,6 +163,10 @@ class VanillaStableDiffusionSampler:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
x_dec = img_orig * self.mask + self.nmask * x_dec
+ if image_conditioning is not None:
+ cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
+ unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
+
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
if self.mask is not None:
@@ -182,7 +192,7 @@ class VanillaStableDiffusionSampler:
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
+ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps)
self.initialize(p)
@@ -202,7 +212,7 @@ class VanillaStableDiffusionSampler:
return samples
- def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
+ def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
self.initialize(p)
self.init_latent = None
@@ -210,6 +220,11 @@ class VanillaStableDiffusionSampler:
steps = steps or p.steps
+ # Wrap the conditioning models with additional image conditioning for inpainting model
+ if image_conditioning is not None:
+ conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
+ unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
+
# existing code fails with certain step counts, like 9
try:
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
@@ -228,7 +243,7 @@ class CFGDenoiser(torch.nn.Module):
self.init_latent = None
self.step = 0
- def forward(self, x, sigma, uncond, cond, cond_scale):
+ def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
if state.interrupted or state.skipped:
raise InterruptedException
@@ -239,28 +254,29 @@ class CFGDenoiser(torch.nn.Module):
repeats = [len(conds_list[i]) for i in range(batch_size)]
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
+ image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
if tensor.shape[1] == uncond.shape[1]:
cond_in = torch.cat([tensor, uncond])
if shared.batch_cond_uncond:
- x_out = self.inner_model(x_in, sigma_in, cond=cond_in)
+ x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
else:
x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset
b = a + batch_size
- x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=cond_in[a:b])
+ x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
else:
x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
for batch_offset in range(0, tensor.shape[0], batch_size):
a = batch_offset
b = min(a + batch_size, tensor.shape[0])
- x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=tensor[a:b])
+ x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]})
- x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=uncond)
+ x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
denoised_uncond = x_out[-uncond.shape[0]:]
denoised = torch.clone(denoised_uncond)
@@ -361,7 +377,7 @@ class KDiffusionSampler:
return extra_params_kwargs
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
+ def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps)
if p.sampler_noise_scheduler_override:
@@ -389,11 +405,16 @@ class KDiffusionSampler:
self.model_wrap_cfg.init_latent = x
- samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs))
+ samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
+ 'cond': conditioning,
+ 'image_cond': image_conditioning,
+ 'uncond': unconditional_conditioning,
+ 'cond_scale': p.cfg_scale
+ }, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples
- def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
+ def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
steps = steps or p.steps
if p.sampler_noise_scheduler_override:
@@ -414,7 +435,12 @@ class KDiffusionSampler:
else:
extra_params_kwargs['sigmas'] = sigmas
- samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs))
+ samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
+ 'cond': conditioning,
+ 'image_cond': image_conditioning,
+ 'uncond': unconditional_conditioning,
+ 'cond_scale': p.cfg_scale
+ }, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples
From 0719c10bf1b817364a498ee11b90d30d3d527344 Mon Sep 17 00:00:00 2001
From: random_thoughtss
Date: Wed, 19 Oct 2022 13:56:26 -0700
Subject: [PATCH 032/100] Fixed copying mistake
---
modules/sd_hijack_inpainting.py | 79 +++++++++++----------------------
1 file changed, 25 insertions(+), 54 deletions(-)
diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py
index 7e5670d6..d4d28d2e 100644
--- a/modules/sd_hijack_inpainting.py
+++ b/modules/sd_hijack_inpainting.py
@@ -19,63 +19,35 @@ from ldm.models.diffusion.ddim import DDIMSampler, noise_like
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
# =================================================================================================
@torch.no_grad()
-def sample(
- self,
- S,
- batch_size,
- shape,
- conditioning=None,
- callback=None,
- normals_sequence=None,
- img_callback=None,
- quantize_x0=False,
- eta=0.,
- mask=None,
- x0=None,
- temperature=1.,
- noise_dropout=0.,
- score_corrector=None,
- corrector_kwargs=None,
- verbose=True,
- x_T=None,
- log_every_t=100,
- unconditional_guidance_scale=1.,
- unconditional_conditioning=None,
- # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
- **kwargs
- ):
+def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ **kwargs
+ ):
if conditioning is not None:
if isinstance(conditioning, dict):
ctmp = conditioning[list(conditioning.keys())[0]]
while isinstance(ctmp, list):
- ctmp = elf.inpainting_fill == 2:
- self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
- elif self.inpainting_fill == 3:
- self.init_latent = self.init_latent * self.mask
-
- if self.image_mask is not None:
- conditioning_mask = np.array(self.image_mask.convert("L"))
- conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
- conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
-
- # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
- conditioning_mask = torch.round(conditioning_mask)
- else:
- conditioning_mask = torch.ones(1, 1, *image.shape[-2:])
-
- # Create another latent image, this time with a masked version of the original input.
- conditioning_mask = conditioning_mask.to(image.device)
- conditioning_image = image * (1.0 - conditioning_mask)
- conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
-
- # Create the concatenated conditioning tensor to be fed to `c_concat`
- conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=self.init_latent.shape[-2:])
- conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
- self.image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
- self.image_conditioning = self.image_conditioning.to(shared.device).type(self.sd_model.dtype)
-
- def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
- x = create_random_tensors([opctmp[0]
+ ctmp = ctmp[0]
cbs = ctmp.shape[0]
if cbs != batch_size:
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
@@ -106,7 +78,6 @@ def sample(
)
return samples, intermediates
-
@torch.no_grad()
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
From dde9f960727bfe151d418e43685a2881cf580a17 Mon Sep 17 00:00:00 2001
From: random_thoughtss
Date: Wed, 19 Oct 2022 14:14:24 -0700
Subject: [PATCH 033/100] added support for ddim img2img
---
modules/sd_samplers.py | 6 ++++++
1 file changed, 6 insertions(+)
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index 9d3cf289..d270e4df 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -208,6 +208,12 @@ class VanillaStableDiffusionSampler:
self.init_latent = x
self.step = 0
+ # Wrap the conditioning models with additional image conditioning for inpainting model
+ if image_conditioning is not None:
+ conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
+ unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
+
+
samples = self.launch_sampling(steps, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
return samples
From c418467c03db916c3e5312e6ac4a67365e196dbd Mon Sep 17 00:00:00 2001
From: random_thoughtss
Date: Wed, 19 Oct 2022 15:09:43 -0700
Subject: [PATCH 034/100] Don't compute latent mask if were not using it. Also
added support for fixed highres_fix generation.
---
modules/processing.py | 70 ++++++++++++++++++++++++++----------------
modules/sd_samplers.py | 4 +++
2 files changed, 48 insertions(+), 26 deletions(-)
diff --git a/modules/processing.py b/modules/processing.py
index a6c308f9..684e5833 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -541,12 +541,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
- def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
- self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
-
- if not self.enable_hr:
- x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
-
+ def create_dummy_mask(self, x):
+ if self.sampler.conditioning_key in {'hybrid', 'concat'}:
# The "masked-image" in this case will just be all zeros since the entire image is masked.
image_conditioning = torch.zeros(x.shape[0], 3, self.height, self.width, device=x.device)
image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
@@ -555,11 +551,23 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
image_conditioning = image_conditioning.to(x.dtype)
- samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=image_conditioning)
+ else:
+ # Dummy zero conditioning if we're not using inpainting model.
+ # Still takes up a bit of memory, but no encoder call.
+ image_conditioning = torch.zeros(x.shape[0], 5, x.shape[-2], x.shape[-1], dtype=x.dtype, device=x.device)
+
+ return image_conditioning
+
+ def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
+ self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model)
+
+ if not self.enable_hr:
+ x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
+ samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x))
return samples
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
- samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
+ samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x))
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
@@ -596,7 +604,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
x = None
devices.torch_gc()
- samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
+ samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=self.create_dummy_mask(samples))
return samples
@@ -723,26 +731,36 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
- if self.image_mask is not None:
- conditioning_mask = np.array(self.image_mask.convert("L"))
- conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
- conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
+ conditioning_key = self.sampler.conditioning_key
- # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
- conditioning_mask = torch.round(conditioning_mask)
+ if conditioning_key in {'hybrid', 'concat'}:
+ if self.image_mask is not None:
+ conditioning_mask = np.array(self.image_mask.convert("L"))
+ conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
+ conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
+
+ # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
+ conditioning_mask = torch.round(conditioning_mask)
+ else:
+ conditioning_mask = torch.ones(1, 1, *image.shape[-2:])
+
+ # Create another latent image, this time with a masked version of the original input.
+ conditioning_mask = conditioning_mask.to(image.device)
+ conditioning_image = image * (1.0 - conditioning_mask)
+ conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
+
+ # Create the concatenated conditioning tensor to be fed to `c_concat`
+ conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=self.init_latent.shape[-2:])
+ conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
+ self.image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
+ self.image_conditioning = self.image_conditioning.to(shared.device).type(self.sd_model.dtype)
else:
- conditioning_mask = torch.ones(1, 1, *image.shape[-2:])
+ self.image_conditioning = torch.zeros(
+ self.init_latent.shape[0], 5, self.init_latent.shape[-2], self.init_latent.shape[-1],
+ dtype=self.init_latent.dtype,
+ device=self.init_latent.device
+ )
- # Create another latent image, this time with a masked version of the original input.
- conditioning_mask = conditioning_mask.to(image.device)
- conditioning_image = image * (1.0 - conditioning_mask)
- conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
-
- # Create the concatenated conditioning tensor to be fed to `c_concat`
- conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=self.init_latent.shape[-2:])
- conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
- self.image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
- self.image_conditioning = self.image_conditioning.to(shared.device).type(self.sd_model.dtype)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index d270e4df..c21be26e 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -117,6 +117,8 @@ class VanillaStableDiffusionSampler:
self.config = None
self.last_latent = None
+ self.conditioning_key = sd_model.model.conditioning_key
+
def number_of_needed_noises(self, p):
return 0
@@ -328,6 +330,8 @@ class KDiffusionSampler:
self.config = None
self.last_latent = None
+ self.conditioning_key = sd_model.model.conditioning_key
+
def callback_state(self, d):
step = d['i']
latent = d["denoised"]
From d6ea5841374a28f3f6deb73abc251c8f0bcb240f Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 00:07:57 +0100
Subject: [PATCH 035/100] change html output
---
modules/hypernetworks/hypernetwork.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 7d519cd9..73c1cb80 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -380,7 +380,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
Loss: {mean_loss:.7f}
Step: {hypernetwork.step}
Last prompt: {html.escape(entries[0].cond_text)}
-Last saved embedding: {html.escape(last_saved_file)}
+Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
From 166be3919b817cee5e702fd01c34afe9081b952c Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 00:09:40 +0100
Subject: [PATCH 036/100] allow overwrite old hn
---
modules/hypernetworks/ui.py | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index 08f75f15..f45345ea 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -10,9 +10,10 @@ from modules import sd_hijack, shared, devices
from modules.hypernetworks import hypernetwork
-def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False):
+def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, add_layer_norm=False):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
- assert not os.path.exists(fn), f"file {fn} already exists"
+ if not overwrite_old:
+ assert not os.path.exists(fn), f"file {fn} already exists"
if type(layer_structure) == str:
layer_structure = tuple(map(int, re.sub(r'\D', '', layer_structure)))
From 0087079c2d487b67b06ffc30f36ce486a74e6318 Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 00:10:59 +0100
Subject: [PATCH 037/100] allow overwrite old embedding
---
modules/textual_inversion/textual_inversion.py | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 3be69562..5776778b 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -153,7 +153,7 @@ class EmbeddingDatabase:
return None, None
-def create_embedding(name, num_vectors_per_token, init_text='*'):
+def create_embedding(name, num_vectors_per_token, overwrite_old, init_text='*'):
cond_model = shared.sd_model.cond_stage_model
embedding_layer = cond_model.wrapped.transformer.text_model.embeddings
@@ -165,7 +165,8 @@ def create_embedding(name, num_vectors_per_token, init_text='*'):
vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token]
fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt")
- assert not os.path.exists(fn), f"file {fn} already exists"
+ if not overwrite_old:
+ assert not os.path.exists(fn), f"file {fn} already exists"
embedding = Embedding(vec, name)
embedding.step = 0
From 632e8d660293081cadb145d8062e5aff0a4a8f0d Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 00:19:40 +0100
Subject: [PATCH 038/100] split learn rates
---
modules/ui.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/modules/ui.py b/modules/ui.py
index cdb9d335..d07184ee 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1342,7 +1342,7 @@ def create_ui(wrap_gradio_gpu_call):
_js="start_training_textual_inversion",
inputs=[
train_embedding_name,
- learn_rate,
+ embedding_learn_rate,
batch_size,
dataset_directory,
log_directory,
@@ -1367,7 +1367,7 @@ def create_ui(wrap_gradio_gpu_call):
_js="start_training_textual_inversion",
inputs=[
train_hypernetwork_name,
- learn_rate,
+ hypernetwork_learn_rate,
batch_size,
dataset_directory,
log_directory,
From c3835ec85cbb44fa3c46fa871c622b6fee235c89 Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 00:24:24 +0100
Subject: [PATCH 039/100] pass overwrite old flag
---
modules/textual_inversion/ui.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/modules/textual_inversion/ui.py b/modules/textual_inversion/ui.py
index 36881e7a..e712284d 100644
--- a/modules/textual_inversion/ui.py
+++ b/modules/textual_inversion/ui.py
@@ -7,8 +7,8 @@ import modules.textual_inversion.preprocess
from modules import sd_hijack, shared
-def create_embedding(name, initialization_text, nvpt):
- filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, init_text=initialization_text)
+def create_embedding(name, initialization_text, nvpt, overwrite_old):
+ filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, overwrite_old, init_text=initialization_text)
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
From 4d6b9f76a55fd0ac0f72634071032dd9c6efb409 Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 00:27:16 +0100
Subject: [PATCH 040/100] reorder create_hypernetwork params
---
modules/ui.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/ui.py b/modules/ui.py
index d07184ee..322c082b 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1307,9 +1307,9 @@ def create_ui(wrap_gradio_gpu_call):
inputs=[
new_hypernetwork_name,
new_hypernetwork_sizes,
+ overwrite_old_hypernetwork,
new_hypernetwork_layer_structure,
new_hypernetwork_add_layer_norm,
- overwrite_old_hypernetwork,
],
outputs=[
train_hypernetwork_name,
From fbcce66601994f6ed370db36d9c238840fed6bd2 Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 00:46:54 +0100
Subject: [PATCH 041/100] add existing caption file handling
---
modules/textual_inversion/preprocess.py | 32 ++++++++++++++++++-------
1 file changed, 24 insertions(+), 8 deletions(-)
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 886cf0c3..5c43fe13 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -48,7 +48,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
shared.state.textinfo = "Preprocessing..."
shared.state.job_count = len(files)
- def save_pic_with_caption(image, index):
+ def save_pic_with_caption(image, index, existing_caption=None):
caption = ""
if process_caption:
@@ -66,17 +66,26 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
basename = f"{index:05}-{subindex[0]}-{filename_part}"
image.save(os.path.join(dst, f"{basename}.png"))
+ if preprocess_txt_action == 'prepend' and existing_caption:
+ caption = existing_caption + ' ' + caption
+ elif preprocess_txt_action == 'append' and existing_caption:
+ caption = caption + ' ' + existing_caption
+ elif preprocess_txt_action == 'copy' and existing_caption:
+ caption = existing_caption
+
+ caption = caption.strip()
+
if len(caption) > 0:
with open(os.path.join(dst, f"{basename}.txt"), "w", encoding="utf8") as file:
file.write(caption)
subindex[0] += 1
- def save_pic(image, index):
+ def save_pic(image, index, existing_caption=None):
save_pic_with_caption(image, index)
if process_flip:
- save_pic_with_caption(ImageOps.mirror(image), index)
+ save_pic_with_caption(ImageOps.mirror(image), index, existing_caption=existing_caption)
for index, imagefile in enumerate(tqdm.tqdm(files)):
subindex = [0]
@@ -86,6 +95,13 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
except Exception:
continue
+ existing_caption = None
+
+ try:
+ existing_caption = open(os.path.splitext(filename)[0] + '.txt', 'r').read()
+ except Exception as e:
+ print(e)
+
if shared.state.interrupted:
break
@@ -97,20 +113,20 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
img = img.resize((width, height * img.height // img.width))
top = img.crop((0, 0, width, height))
- save_pic(top, index)
+ save_pic(top, index, existing_caption=existing_caption)
bot = img.crop((0, img.height - height, width, img.height))
- save_pic(bot, index)
+ save_pic(bot, index, existing_caption=existing_caption)
elif process_split and is_wide:
img = img.resize((width * img.width // img.height, height))
left = img.crop((0, 0, width, height))
- save_pic(left, index)
+ save_pic(left, index, existing_caption=existing_caption)
right = img.crop((img.width - width, 0, img.width, height))
- save_pic(right, index)
+ save_pic(right, index, existing_caption=existing_caption)
else:
img = images.resize_image(1, img, width, height)
- save_pic(img, index)
+ save_pic(img, index, existing_caption=existing_caption)
shared.state.nextjob()
From ab353b141df8eee042b0964bcb645015dabf3459 Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 00:48:07 +0100
Subject: [PATCH 042/100] link existing txt option
---
modules/ui.py | 2 ++
1 file changed, 2 insertions(+)
diff --git a/modules/ui.py b/modules/ui.py
index 322c082b..7f52ac0c 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1234,6 +1234,7 @@ def create_ui(wrap_gradio_gpu_call):
process_dst = gr.Textbox(label='Destination directory')
process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
+ preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', choices=['ignore', 'copy', 'prepend', 'append'])
with gr.Row():
process_flip = gr.Checkbox(label='Create flipped copies')
@@ -1326,6 +1327,7 @@ def create_ui(wrap_gradio_gpu_call):
process_dst,
process_width,
process_height,
+ preprocess_txt_action,
process_flip,
process_split,
process_caption,
From 9b65c4ecf4f8eb6187ee721918adebe68e9bc631 Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 00:49:23 +0100
Subject: [PATCH 043/100] pass preprocess_txt_action param
---
modules/textual_inversion/preprocess.py | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 5c43fe13..3713bc89 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -11,7 +11,7 @@ if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru
-def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
+def preprocess(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False):
try:
if process_caption:
shared.interrogator.load()
@@ -21,7 +21,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
- preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru)
+ preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru)
finally:
@@ -33,7 +33,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
-def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
+def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_flip, process_split, process_caption, process_caption_deepbooru=False):
width = process_width
height = process_height
src = os.path.abspath(process_src)
From 55d8c6cce6d3aef848b9f194adad2ce53064d8b7 Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 00:53:29 +0100
Subject: [PATCH 044/100] default to ignore existing captions
---
modules/ui.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/ui.py b/modules/ui.py
index 7f52ac0c..bd5f1b05 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1234,7 +1234,7 @@ def create_ui(wrap_gradio_gpu_call):
process_dst = gr.Textbox(label='Destination directory')
process_width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
process_height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
- preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', choices=['ignore', 'copy', 'prepend', 'append'])
+ preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"])
with gr.Row():
process_flip = gr.Checkbox(label='Create flipped copies')
From 858462f719c22ca9f24b94a41699653c34b5f4fb Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Thu, 20 Oct 2022 02:57:18 +0100
Subject: [PATCH 045/100] do caption copy for both flips
---
modules/textual_inversion/preprocess.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 3713bc89..6bba3852 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -82,7 +82,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
subindex[0] += 1
def save_pic(image, index, existing_caption=None):
- save_pic_with_caption(image, index)
+ save_pic_with_caption(image, index, existing_caption=existing_caption)
if process_flip:
save_pic_with_caption(ImageOps.mirror(image), index, existing_caption=existing_caption)
From aa7ff2a1972f3865883e10ba28c5414cdebe8e3b Mon Sep 17 00:00:00 2001
From: random_thoughtss
Date: Wed, 19 Oct 2022 21:46:13 -0700
Subject: [PATCH 046/100] Fixed non-square highres fix generation
---
modules/processing.py | 9 ++++++---
1 file changed, 6 insertions(+), 3 deletions(-)
diff --git a/modules/processing.py b/modules/processing.py
index 684e5833..3caac25e 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -541,10 +541,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
- def create_dummy_mask(self, x):
+ def create_dummy_mask(self, x, first_phase: bool = False):
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
+ height = self.firstphase_height if first_phase else self.height
+ width = self.firstphase_width if first_phase else self.width
+
# The "masked-image" in this case will just be all zeros since the entire image is masked.
- image_conditioning = torch.zeros(x.shape[0], 3, self.height, self.width, device=x.device)
+ image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
image_conditioning = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image_conditioning))
# Add the fake full 1s mask to the first dimension.
@@ -567,7 +570,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
return samples
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
- samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x))
+ samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x, first_phase=True))
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
From 4281f255d5e7c67515d619f53654be59a6fc1e13 Mon Sep 17 00:00:00 2001
From: wywywywy
Date: Thu, 20 Oct 2022 15:31:09 +0100
Subject: [PATCH 047/100] Implemented batch count logic to Outpainting mk2
---
scripts/outpainting_mk_2.py | 36 ++++++++++++++++++++++++++----------
1 file changed, 26 insertions(+), 10 deletions(-)
diff --git a/scripts/outpainting_mk_2.py b/scripts/outpainting_mk_2.py
index a6468e09..02e655e9 100644
--- a/scripts/outpainting_mk_2.py
+++ b/scripts/outpainting_mk_2.py
@@ -242,21 +242,37 @@ class Script(scripts.Script):
out = out.crop((0, 0, res_w, res_h))
return out
- img = init_image
+ batch_count = p.n_iter
+ p.n_iter = 1
+ state.job_count = batch_count
+ all_images = []
- if left > 0:
- img = expand(img, left, is_left=True)
- if right > 0:
- img = expand(img, right, is_right=True)
- if up > 0:
- img = expand(img, up, is_top=True)
- if down > 0:
- img = expand(img, down, is_bottom=True)
+ for i in range(batch_count):
+ img = init_image
+ state.job = f"Batch {i + 1} out of {state.job_count}"
- res = Processed(p, [img], initial_seed_and_info[0], initial_seed_and_info[1])
+ if left > 0:
+ img = expand(img, left, is_left=True)
+ if right > 0:
+ img = expand(img, right, is_right=True)
+ if up > 0:
+ img = expand(img, up, is_top=True)
+ if down > 0:
+ img = expand(img, down, is_bottom=True)
+
+ all_images.append(img)
+
+ combined_grid_image = images.image_grid(all_images)
+ if opts.return_grid:
+ all_images = [combined_grid_image] + all_images
+
+ res = Processed(p, all_images, initial_seed_and_info[0], initial_seed_and_info[1])
if opts.samples_save:
images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p)
+ if opts.grid_save:
+ images.save_image(combined_grid_image, p.outpath_grids, "grid", res.seed, p.prompt, opts.grid_format, info=res.info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
+
return res
From 9681419e422515e42444e0174355b760645a846f Mon Sep 17 00:00:00 2001
From: Milly
Date: Thu, 20 Oct 2022 16:53:46 +0900
Subject: [PATCH 048/100] train: fixed preprocess image ratio
---
modules/textual_inversion/preprocess.py | 54 ++++++++++++++++---------
1 file changed, 35 insertions(+), 19 deletions(-)
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 886cf0c3..2743bdeb 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -1,5 +1,6 @@
import os
from PIL import Image, ImageOps
+import math
import platform
import sys
import tqdm
@@ -38,6 +39,8 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
height = process_height
src = os.path.abspath(process_src)
dst = os.path.abspath(process_dst)
+ split_threshold = 0.5
+ overlap_ratio = 0.2
assert src != dst, 'same directory specified as source and destination'
@@ -78,6 +81,29 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
if process_flip:
save_pic_with_caption(ImageOps.mirror(image), index)
+ def split_pic(image, inverse_xy):
+ if inverse_xy:
+ from_w, from_h = image.height, image.width
+ to_w, to_h = height, width
+ else:
+ from_w, from_h = image.width, image.height
+ to_w, to_h = width, height
+ h = from_h * to_w // from_w
+ if inverse_xy:
+ image = image.resize((h, to_w))
+ else:
+ image = image.resize((to_w, h))
+
+ split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio)))
+ y_step = (h - to_h) / (split_count - 1)
+ for i in range(split_count):
+ y = int(y_step * i)
+ if inverse_xy:
+ splitted = image.crop((y, 0, y + to_h, to_w))
+ else:
+ splitted = image.crop((0, y, to_w, y + to_h))
+ yield splitted
+
for index, imagefile in enumerate(tqdm.tqdm(files)):
subindex = [0]
filename = os.path.join(src, imagefile)
@@ -89,26 +115,16 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
if shared.state.interrupted:
break
- ratio = img.height / img.width
- is_tall = ratio > 1.35
- is_wide = ratio < 1 / 1.35
+ if img.height > img.width:
+ ratio = (img.width * height) / (img.height * width)
+ inverse_xy = False
+ else:
+ ratio = (img.height * width) / (img.width * height)
+ inverse_xy = True
- if process_split and is_tall:
- img = img.resize((width, height * img.height // img.width))
-
- top = img.crop((0, 0, width, height))
- save_pic(top, index)
-
- bot = img.crop((0, img.height - height, width, img.height))
- save_pic(bot, index)
- elif process_split and is_wide:
- img = img.resize((width * img.width // img.height, height))
-
- left = img.crop((0, 0, width, height))
- save_pic(left, index)
-
- right = img.crop((img.width - width, 0, img.width, height))
- save_pic(right, index)
+ if process_split and ratio < 1.0 and ratio <= split_threshold:
+ for splitted in split_pic(img, inverse_xy):
+ save_pic(splitted, index)
else:
img = images.resize_image(1, img, width, height)
save_pic(img, index)
From 85dd62c4c7635b8e21a75f140d093036069e97a1 Mon Sep 17 00:00:00 2001
From: Milly
Date: Thu, 20 Oct 2022 22:56:45 +0900
Subject: [PATCH 049/100] train: ui: added `Split image threshold` and `Split
image overlap ratio` to preprocess
---
modules/textual_inversion/preprocess.py | 10 +++++-----
modules/ui.py | 16 ++++++++++++++--
2 files changed, 19 insertions(+), 7 deletions(-)
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 2743bdeb..c8df8aa0 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -12,7 +12,7 @@ if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru
-def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
+def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2):
try:
if process_caption:
shared.interrogator.load()
@@ -22,7 +22,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
- preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru)
+ preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio)
finally:
@@ -34,13 +34,13 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
-def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
+def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2):
width = process_width
height = process_height
src = os.path.abspath(process_src)
dst = os.path.abspath(process_dst)
- split_threshold = 0.5
- overlap_ratio = 0.2
+ split_threshold = max(0.0, min(1.0, split_threshold))
+ overlap_ratio = max(0.0, min(0.9, overlap_ratio))
assert src != dst, 'same directory specified as source and destination'
diff --git a/modules/ui.py b/modules/ui.py
index a2dbd41e..bc7f3330 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1240,10 +1240,14 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Row():
process_flip = gr.Checkbox(label='Create flipped copies')
- process_split = gr.Checkbox(label='Split oversized images into two')
+ process_split = gr.Checkbox(label='Split oversized images')
process_caption = gr.Checkbox(label='Use BLIP for caption')
process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True if cmd_opts.deepdanbooru else False)
+ with gr.Row(visible=False) as process_split_extra_row:
+ process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05)
+ process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05)
+
with gr.Row():
with gr.Column(scale=3):
gr.HTML(value="")
@@ -1251,6 +1255,12 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
run_preprocess = gr.Button(value="Preprocess", variant='primary')
+ process_split.change(
+ fn=lambda show: gr_show(show),
+ inputs=[process_split],
+ outputs=[process_split_extra_row],
+ )
+
with gr.Tab(label="Train"):
gr.HTML(value="Train an embedding; must specify a directory with a set of 1:1 ratio images
")
with gr.Row():
@@ -1327,7 +1337,9 @@ def create_ui(wrap_gradio_gpu_call):
process_flip,
process_split,
process_caption,
- process_caption_deepbooru
+ process_caption_deepbooru,
+ process_split_threshold,
+ process_overlap_ratio,
],
outputs=[
ti_output,
From 91efe138b35dda65e83070c14e9eb94f481fe476 Mon Sep 17 00:00:00 2001
From: wywywywy
Date: Thu, 20 Oct 2022 16:02:32 +0100
Subject: [PATCH 050/100] Implemented batch_size logic in outpainting_mk2
---
scripts/outpainting_mk_2.py | 106 +++++++++++++++++++-----------------
1 file changed, 57 insertions(+), 49 deletions(-)
diff --git a/scripts/outpainting_mk_2.py b/scripts/outpainting_mk_2.py
index 02e655e9..0377ab32 100644
--- a/scripts/outpainting_mk_2.py
+++ b/scripts/outpainting_mk_2.py
@@ -176,50 +176,53 @@ class Script(scripts.Script):
state.job_count = (1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0)
- def expand(init, expand_pixels, is_left=False, is_right=False, is_top=False, is_bottom=False):
+ def expand(init, count, expand_pixels, is_left=False, is_right=False, is_top=False, is_bottom=False):
is_horiz = is_left or is_right
is_vert = is_top or is_bottom
pixels_horiz = expand_pixels if is_horiz else 0
pixels_vert = expand_pixels if is_vert else 0
- res_w = init.width + pixels_horiz
- res_h = init.height + pixels_vert
- process_res_w = math.ceil(res_w / 64) * 64
- process_res_h = math.ceil(res_h / 64) * 64
+ images_to_process = []
+ for n in range(count):
+ res_w = init[n].width + pixels_horiz
+ res_h = init[n].height + pixels_vert
+ process_res_w = math.ceil(res_w / 64) * 64
+ process_res_h = math.ceil(res_h / 64) * 64
- img = Image.new("RGB", (process_res_w, process_res_h))
- img.paste(init, (pixels_horiz if is_left else 0, pixels_vert if is_top else 0))
- mask = Image.new("RGB", (process_res_w, process_res_h), "white")
- draw = ImageDraw.Draw(mask)
- draw.rectangle((
- expand_pixels + mask_blur if is_left else 0,
- expand_pixels + mask_blur if is_top else 0,
- mask.width - expand_pixels - mask_blur if is_right else res_w,
- mask.height - expand_pixels - mask_blur if is_bottom else res_h,
- ), fill="black")
+ img = Image.new("RGB", (process_res_w, process_res_h))
+ img.paste(init[n], (pixels_horiz if is_left else 0, pixels_vert if is_top else 0))
+ mask = Image.new("RGB", (process_res_w, process_res_h), "white")
+ draw = ImageDraw.Draw(mask)
+ draw.rectangle((
+ expand_pixels + mask_blur if is_left else 0,
+ expand_pixels + mask_blur if is_top else 0,
+ mask.width - expand_pixels - mask_blur if is_right else res_w,
+ mask.height - expand_pixels - mask_blur if is_bottom else res_h,
+ ), fill="black")
- np_image = (np.asarray(img) / 255.0).astype(np.float64)
- np_mask = (np.asarray(mask) / 255.0).astype(np.float64)
- noised = get_matched_noise(np_image, np_mask, noise_q, color_variation)
- out = Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB")
+ np_image = (np.asarray(img) / 255.0).astype(np.float64)
+ np_mask = (np.asarray(mask) / 255.0).astype(np.float64)
+ noised = get_matched_noise(np_image, np_mask, noise_q, color_variation)
+ out = Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB")
- target_width = min(process_width, init.width + pixels_horiz) if is_horiz else img.width
- target_height = min(process_height, init.height + pixels_vert) if is_vert else img.height
+ target_width = min(process_width, init[n].width + pixels_horiz) if is_horiz else img.width
+ target_height = min(process_height, init[n].height + pixels_vert) if is_vert else img.height
+ p.width = target_width if is_horiz else img.width
+ p.height = target_height if is_vert else img.height
- crop_region = (
- 0 if is_left else out.width - target_width,
- 0 if is_top else out.height - target_height,
- target_width if is_left else out.width,
- target_height if is_top else out.height,
- )
+ crop_region = (
+ 0 if is_left else out.width - target_width,
+ 0 if is_top else out.height - target_height,
+ target_width if is_left else out.width,
+ target_height if is_top else out.height,
+ )
+ mask = mask.crop(crop_region)
+ p.image_mask = mask
- image_to_process = out.crop(crop_region)
- mask = mask.crop(crop_region)
+ image_to_process = out.crop(crop_region)
+ images_to_process.append(image_to_process)
- p.width = target_width if is_horiz else img.width
- p.height = target_height if is_vert else img.height
- p.init_images = [image_to_process]
- p.image_mask = mask
+ p.init_images = images_to_process
latent_mask = Image.new("RGB", (p.width, p.height), "white")
draw = ImageDraw.Draw(latent_mask)
@@ -232,44 +235,49 @@ class Script(scripts.Script):
p.latent_mask = latent_mask
proc = process_images(p)
- proc_img = proc.images[0]
if initial_seed_and_info[0] is None:
initial_seed_and_info[0] = proc.seed
initial_seed_and_info[1] = proc.info
- out.paste(proc_img, (0 if is_left else out.width - proc_img.width, 0 if is_top else out.height - proc_img.height))
- out = out.crop((0, 0, res_w, res_h))
- return out
+ for proc_img in proc.images:
+ out.paste(proc_img, (0 if is_left else out.width - proc_img.width, 0 if is_top else out.height - proc_img.height))
+ out = out.crop((0, 0, res_w, res_h))
+
+ return proc.images
batch_count = p.n_iter
+ batch_size = p.batch_size
p.n_iter = 1
state.job_count = batch_count
- all_images = []
+ all_processed_images = []
for i in range(batch_count):
- img = init_image
- state.job = f"Batch {i + 1} out of {state.job_count}"
+ imgs = [init_img] * batch_size
+ state.job = f"Batch {i + 1} out of {batch_count}"
if left > 0:
- img = expand(img, left, is_left=True)
+ imgs = expand(imgs, batch_size, left, is_left=True)
if right > 0:
- img = expand(img, right, is_right=True)
+ imgs = expand(imgs, batch_size, right, is_right=True)
if up > 0:
- img = expand(img, up, is_top=True)
+ imgs = expand(imgs, batch_size, up, is_top=True)
if down > 0:
- img = expand(img, down, is_bottom=True)
+ imgs = expand(imgs, batch_size, down, is_bottom=True)
- all_images.append(img)
+ all_processed_images += imgs
+
+ combined_grid_image = images.image_grid(all_processed_images)
+ all_images = all_processed_images
- combined_grid_image = images.image_grid(all_images)
if opts.return_grid:
- all_images = [combined_grid_image] + all_images
-
+ all_images = [combined_grid_image] + all_processed_images
+
res = Processed(p, all_images, initial_seed_and_info[0], initial_seed_and_info[1])
if opts.samples_save:
- images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p)
+ for img in all_processed_images:
+ images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p)
if opts.grid_save:
images.save_image(combined_grid_image, p.outpath_grids, "grid", res.seed, p.prompt, opts.grid_format, info=res.info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
From 18df060c3e9252f1cf79b494e7173aff4181049a Mon Sep 17 00:00:00 2001
From: wywywywy
Date: Thu, 20 Oct 2022 16:16:09 +0100
Subject: [PATCH 051/100] Fixed outpainting_mk2 output cropping
---
scripts/outpainting_mk_2.py | 21 +++++++++++----------
1 file changed, 11 insertions(+), 10 deletions(-)
diff --git a/scripts/outpainting_mk_2.py b/scripts/outpainting_mk_2.py
index 0377ab32..726417e7 100644
--- a/scripts/outpainting_mk_2.py
+++ b/scripts/outpainting_mk_2.py
@@ -183,6 +183,7 @@ class Script(scripts.Script):
pixels_vert = expand_pixels if is_vert else 0
images_to_process = []
+ output_images = []
for n in range(count):
res_w = init[n].width + pixels_horiz
res_h = init[n].height + pixels_vert
@@ -203,7 +204,7 @@ class Script(scripts.Script):
np_image = (np.asarray(img) / 255.0).astype(np.float64)
np_mask = (np.asarray(mask) / 255.0).astype(np.float64)
noised = get_matched_noise(np_image, np_mask, noise_q, color_variation)
- out = Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB")
+ output_images.append(Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB"))
target_width = min(process_width, init[n].width + pixels_horiz) if is_horiz else img.width
target_height = min(process_height, init[n].height + pixels_vert) if is_vert else img.height
@@ -211,15 +212,15 @@ class Script(scripts.Script):
p.height = target_height if is_vert else img.height
crop_region = (
- 0 if is_left else out.width - target_width,
- 0 if is_top else out.height - target_height,
- target_width if is_left else out.width,
- target_height if is_top else out.height,
+ 0 if is_left else output_images[n].width - target_width,
+ 0 if is_top else output_images[n].height - target_height,
+ target_width if is_left else output_images[n].width,
+ target_height if is_top else output_images[n].height,
)
mask = mask.crop(crop_region)
p.image_mask = mask
- image_to_process = out.crop(crop_region)
+ image_to_process = output_images[n].crop(crop_region)
images_to_process.append(image_to_process)
p.init_images = images_to_process
@@ -240,11 +241,11 @@ class Script(scripts.Script):
initial_seed_and_info[0] = proc.seed
initial_seed_and_info[1] = proc.info
- for proc_img in proc.images:
- out.paste(proc_img, (0 if is_left else out.width - proc_img.width, 0 if is_top else out.height - proc_img.height))
- out = out.crop((0, 0, res_w, res_h))
+ for n in range(count):
+ output_images[n].paste(proc.images[n], (0 if is_left else output_images[n].width - proc.images[n].width, 0 if is_top else output_images[n].height - proc.images[n].height))
+ output_images[n] = output_images[n].crop((0, 0, res_w, res_h))
- return proc.images
+ return output_images
batch_count = p.n_iter
batch_size = p.batch_size
From 92a17a7a4a13fceb3c3e25a2e854b2a7dd6eb5df Mon Sep 17 00:00:00 2001
From: random_thoughtss
Date: Thu, 20 Oct 2022 09:45:03 -0700
Subject: [PATCH 052/100] Made dummy latents smaller. Minor code cleanups
---
modules/processing.py | 7 ++++---
modules/sd_samplers.py | 6 ++++--
2 files changed, 8 insertions(+), 5 deletions(-)
diff --git a/modules/processing.py b/modules/processing.py
index 3caac25e..539cde38 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -557,7 +557,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
else:
# Dummy zero conditioning if we're not using inpainting model.
# Still takes up a bit of memory, but no encoder call.
- image_conditioning = torch.zeros(x.shape[0], 5, x.shape[-2], x.shape[-1], dtype=x.dtype, device=x.device)
+ # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
+ image_conditioning = torch.zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
return image_conditioning
@@ -759,8 +760,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.image_conditioning = self.image_conditioning.to(shared.device).type(self.sd_model.dtype)
else:
self.image_conditioning = torch.zeros(
- self.init_latent.shape[0], 5, self.init_latent.shape[-2], self.init_latent.shape[-1],
- dtype=self.init_latent.dtype,
+ self.init_latent.shape[0], 5, 1, 1,
+ dtype=self.init_latent.dtype,
device=self.init_latent.device
)
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index c21be26e..cc682593 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -138,7 +138,7 @@ class VanillaStableDiffusionSampler:
if self.stop_at is not None and self.step > self.stop_at:
raise InterruptedException
- # Have to unwrap the inpainting conditioning here to perform pre-preocessing
+ # Have to unwrap the inpainting conditioning here to perform pre-processing
image_conditioning = None
if isinstance(cond, dict):
image_conditioning = cond["c_concat"][0]
@@ -146,7 +146,7 @@ class VanillaStableDiffusionSampler:
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
- unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
+ unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
cond = tensor
@@ -165,6 +165,8 @@ class VanillaStableDiffusionSampler:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
x_dec = img_orig * self.mask + self.nmask * x_dec
+ # Wrap the image conditioning back up since the DDIM code can accept the dict directly.
+ # Note that they need to be lists because it just concatenates them later.
if image_conditioning is not None:
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
From d1cb08bfb221cd1b0cfc6078162b4e206ea80a5c Mon Sep 17 00:00:00 2001
From: Vladimir Repin <32306715+mezotaken@users.noreply.github.com>
Date: Thu, 20 Oct 2022 22:49:06 +0300
Subject: [PATCH 053/100] fix skip and interrupt for highres. fix option
---
modules/processing.py | 4 +---
1 file changed, 1 insertion(+), 3 deletions(-)
diff --git a/modules/processing.py b/modules/processing.py
index bcb0c32c..6324ca91 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -587,9 +587,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
x = None
devices.torch_gc()
- samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
-
- return samples
+ return self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps) or samples
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
From 708c3a7bd8ce68cbe1aa7c268e5a4b1980affc9f Mon Sep 17 00:00:00 2001
From: random_thoughtss
Date: Thu, 20 Oct 2022 13:28:43 -0700
Subject: [PATCH 054/100] Added PLMS hijack and made sure to always replace
methods
---
modules/sd_hijack_inpainting.py | 163 ++++++++++++++++++++++++++++++--
modules/sd_models.py | 3 +-
2 files changed, 157 insertions(+), 9 deletions(-)
diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py
index d4d28d2e..43938071 100644
--- a/modules/sd_hijack_inpainting.py
+++ b/modules/sd_hijack_inpainting.py
@@ -1,16 +1,14 @@
import torch
-import numpy as np
-from tqdm import tqdm
-from einops import rearrange, repeat
+from einops import repeat
from omegaconf import ListConfig
-from types import MethodType
-
import ldm.models.diffusion.ddpm
import ldm.models.diffusion.ddim
+import ldm.models.diffusion.plms
from ldm.models.diffusion.ddpm import LatentDiffusion
+from ldm.models.diffusion.plms import PLMSSampler
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
# =================================================================================================
@@ -19,7 +17,7 @@ from ldm.models.diffusion.ddim import DDIMSampler, noise_like
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
# =================================================================================================
@torch.no_grad()
-def sample(self,
+def sample_ddim(self,
S,
batch_size,
shape,
@@ -132,6 +130,153 @@ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=F
return x_prev, pred_x0
+# =================================================================================================
+# Monkey patch PLMSSampler methods.
+# This one was not actually patched correctly in the RunwayML repo, but we can replicate the changes.
+# Adapted from:
+# https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py
+# =================================================================================================
+@torch.no_grad()
+def sample_plms(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ ctmp = conditioning[list(conditioning.keys())[0]]
+ while isinstance(ctmp, list):
+ ctmp = ctmp[0]
+ cbs = ctmp.shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ print(f'Data shape for PLMS sampling is {size}')
+
+ samples, intermediates = self.plms_sampling(conditioning, size,
+ callback=callback,
+ img_callback=img_callback,
+ quantize_denoised=quantize_x0,
+ mask=mask, x0=x0,
+ ddim_use_original_steps=False,
+ noise_dropout=noise_dropout,
+ temperature=temperature,
+ score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ x_T=x_T,
+ log_every_t=log_every_t,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ )
+ return samples, intermediates
+
+
+@torch.no_grad()
+def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
+ b, *_, device = *x.shape, x.device
+
+ def get_model_output(x, t):
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+ e_t = self.model.apply_model(x, t, c)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t] * 2)
+
+ if isinstance(c, dict):
+ assert isinstance(unconditional_conditioning, dict)
+ c_in = dict()
+ for k in c:
+ if isinstance(c[k], list):
+ c_in[k] = [
+ torch.cat([unconditional_conditioning[k][i], c[k][i]])
+ for i in range(len(c[k]))
+ ]
+ else:
+ c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
+ else:
+ c_in = torch.cat([unconditional_conditioning, c])
+
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+
+ if score_corrector is not None:
+ assert self.model.parameterization == "eps"
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+ return e_t
+
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+
+ def get_x_prev_and_pred_x0(e_t, index):
+ # select parameters corresponding to the currently considered timestep
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
+
+ # current prediction for x_0
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+ if quantize_denoised:
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+ # direction pointing to x_t
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+ return x_prev, pred_x0
+
+ e_t = get_model_output(x, t)
+ if len(old_eps) == 0:
+ # Pseudo Improved Euler (2nd order)
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
+ e_t_next = get_model_output(x_prev, t_next)
+ e_t_prime = (e_t + e_t_next) / 2
+ elif len(old_eps) == 1:
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
+ elif len(old_eps) == 2:
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
+ elif len(old_eps) >= 3:
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
+
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
+
+ return x_prev, pred_x0, e_t
+
# =================================================================================================
# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
# Adapted from:
@@ -175,5 +320,9 @@ def should_hijack_inpainting(checkpoint_info):
def do_inpainting_hijack():
ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
+
ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
- ldm.models.diffusion.ddim.DDIMSampler.sample = sample
\ No newline at end of file
+ ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim
+
+ ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
+ ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms
\ No newline at end of file
diff --git a/modules/sd_models.py b/modules/sd_models.py
index 47836d25..7072db08 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -214,8 +214,6 @@ def load_model():
sd_config = OmegaConf.load(checkpoint_info.config)
if should_hijack_inpainting(checkpoint_info):
- do_inpainting_hijack()
-
# Hardcoded config for now...
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
sd_config.model.params.use_ema = False
@@ -225,6 +223,7 @@ def load_model():
# Create a "fake" config with a different name so that we know to unload it when switching models.
checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))
+ do_inpainting_hijack()
sd_model = instantiate_from_config(sd_config.model)
load_model_weights(sd_model, checkpoint_info)
From d23a46ceaa76af2847f11172f32c92665c268b1b Mon Sep 17 00:00:00 2001
From: Vladimir Repin <32306715+mezotaken@users.noreply.github.com>
Date: Thu, 20 Oct 2022 23:49:14 +0300
Subject: [PATCH 055/100] Different approach to skip/interrupt with highres fix
---
modules/processing.py | 4 +++-
modules/sd_samplers.py | 4 ++++
2 files changed, 7 insertions(+), 1 deletion(-)
diff --git a/modules/processing.py b/modules/processing.py
index 6324ca91..bcb0c32c 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -587,7 +587,9 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
x = None
devices.torch_gc()
- return self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps) or samples
+ samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
+
+ return samples
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py
index b58e810b..7ff77c01 100644
--- a/modules/sd_samplers.py
+++ b/modules/sd_samplers.py
@@ -196,6 +196,7 @@ class VanillaStableDiffusionSampler:
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
self.init_latent = x
+ self.last_latent = x
self.step = 0
samples = self.launch_sampling(steps, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
@@ -206,6 +207,7 @@ class VanillaStableDiffusionSampler:
self.initialize(p)
self.init_latent = None
+ self.last_latent = x
self.step = 0
steps = steps or p.steps
@@ -388,6 +390,7 @@ class KDiffusionSampler:
extra_params_kwargs['sigmas'] = sigma_sched
self.model_wrap_cfg.init_latent = x
+ self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, xi, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs))
@@ -414,6 +417,7 @@ class KDiffusionSampler:
else:
extra_params_kwargs['sigmas'] = sigmas
+ self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples
From 49533eed9e3aad19e9868ee140708baec4fd44be Mon Sep 17 00:00:00 2001
From: random_thoughtss
Date: Thu, 20 Oct 2022 16:01:27 -0700
Subject: [PATCH 056/100] XY grid correctly re-assignes model when config
changes
---
modules/sd_models.py | 6 +++---
scripts/xy_grid.py | 1 +
2 files changed, 4 insertions(+), 3 deletions(-)
diff --git a/modules/sd_models.py b/modules/sd_models.py
index 7072db08..fea84630 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -204,9 +204,9 @@ def load_model_weights(model, checkpoint_info):
model.sd_checkpoint_info = checkpoint_info
-def load_model():
+def load_model(checkpoint_info=None):
from modules import lowvram, sd_hijack
- checkpoint_info = select_checkpoint()
+ checkpoint_info = checkpoint_info or select_checkpoint()
if checkpoint_info.config != shared.cmd_opts.config:
print(f"Loading config from: {checkpoint_info.config}")
@@ -249,7 +249,7 @@ def reload_model_weights(sd_model, info=None):
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
checkpoints_loaded.clear()
- shared.sd_model = load_model()
+ shared.sd_model = load_model(checkpoint_info)
return shared.sd_model
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py
index 5cca168a..eff0c942 100644
--- a/scripts/xy_grid.py
+++ b/scripts/xy_grid.py
@@ -89,6 +89,7 @@ def apply_checkpoint(p, x, xs):
if info is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
modules.sd_models.reload_model_weights(shared.sd_model, info)
+ p.sd_model = shared.sd_model
def confirm_checkpoints(p, xs):
From 1fc278bcc642f720484a77eb169271054d3153b1 Mon Sep 17 00:00:00 2001
From: wywywywy
Date: Fri, 21 Oct 2022 02:38:24 +0100
Subject: [PATCH 057/100] Fixed job count & single-output grid
---
scripts/outpainting_mk_2.py | 14 +++++---------
1 file changed, 5 insertions(+), 9 deletions(-)
diff --git a/scripts/outpainting_mk_2.py b/scripts/outpainting_mk_2.py
index 726417e7..633dc119 100644
--- a/scripts/outpainting_mk_2.py
+++ b/scripts/outpainting_mk_2.py
@@ -172,10 +172,6 @@ class Script(scripts.Script):
if down > 0:
down = target_h - init_img.height - up
- init_image = p.init_images[0]
-
- state.job_count = (1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0)
-
def expand(init, count, expand_pixels, is_left=False, is_right=False, is_top=False, is_bottom=False):
is_horiz = is_left or is_right
is_vert = is_top or is_bottom
@@ -250,7 +246,7 @@ class Script(scripts.Script):
batch_count = p.n_iter
batch_size = p.batch_size
p.n_iter = 1
- state.job_count = batch_count
+ state.job_count = batch_count * batch_size * ((1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0))
all_processed_images = []
for i in range(batch_count):
@@ -268,10 +264,11 @@ class Script(scripts.Script):
all_processed_images += imgs
- combined_grid_image = images.image_grid(all_processed_images)
all_images = all_processed_images
- if opts.return_grid:
+ combined_grid_image = images.image_grid(all_processed_images)
+ unwanted_grid_because_of_img_count = len(all_processed_images) < 2 and opts.grid_only_if_multiple
+ if opts.return_grid and not unwanted_grid_because_of_img_count:
all_images = [combined_grid_image] + all_processed_images
res = Processed(p, all_images, initial_seed_and_info[0], initial_seed_and_info[1])
@@ -280,8 +277,7 @@ class Script(scripts.Script):
for img in all_processed_images:
images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p)
- if opts.grid_save:
+ if opts.grid_save and not unwanted_grid_because_of_img_count:
images.save_image(combined_grid_image, p.outpath_grids, "grid", res.seed, p.prompt, opts.grid_format, info=res.info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
return res
-
From 0110429dc4bc004ac56573fe1a6b05cb0123678e Mon Sep 17 00:00:00 2001
From: winterspringsummer
Date: Thu, 20 Oct 2022 19:10:32 +0900
Subject: [PATCH 058/100] Fixed path issue while extras batch processing
---
modules/extras.py | 10 +++++++---
1 file changed, 7 insertions(+), 3 deletions(-)
diff --git a/modules/extras.py b/modules/extras.py
index b853fa5b..f9796624 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -118,10 +118,14 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
while len(cached_images) > 2:
del cached_images[next(iter(cached_images.keys()))]
+
+ if opts.use_original_name_batch and image_name != None:
+ basename = os.path.splitext(os.path.basename(image_name))[0]
+ else:
+ basename = ''
- images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
- no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
- forced_filename=image_name if opts.use_original_name_batch else None)
+ images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
+ no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
if opts.enable_pnginfo:
image.info = existing_pnginfo
From aacc4c1ecbcba3cef421d8776dc5b4b239df9b42 Mon Sep 17 00:00:00 2001
From: winterspringsummer
Date: Thu, 20 Oct 2022 21:31:29 +0900
Subject: [PATCH 059/100] Added try except to extras batch from directory
---
modules/extras.py | 11 +++++++----
1 file changed, 7 insertions(+), 4 deletions(-)
diff --git a/modules/extras.py b/modules/extras.py
index f9796624..0d817cf9 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -41,7 +41,10 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
return outputs, "Please select an input directory.", ''
image_list = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
for img in image_list:
- image = Image.open(img)
+ try:
+ image = Image.open(img)
+ except Exception:
+ continue
imageArr.append(image)
imageNameArr.append(img)
else:
@@ -122,10 +125,10 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
if opts.use_original_name_batch and image_name != None:
basename = os.path.splitext(os.path.basename(image_name))[0]
else:
- basename = ''
+ basename = None
- images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
- no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
+ images.save_image(image, path=outpath, basename='', seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
+ no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=basename)
if opts.enable_pnginfo:
image.info = existing_pnginfo
From bc16b135b527224545dca555a9d51edb0adcee2d Mon Sep 17 00:00:00 2001
From: winterspringsummer
Date: Thu, 20 Oct 2022 21:43:27 +0900
Subject: [PATCH 060/100] Fixed path issue while extras batch processing
---
modules/extras.py | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/modules/extras.py b/modules/extras.py
index 0d817cf9..ac85142c 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -125,10 +125,10 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
if opts.use_original_name_batch and image_name != None:
basename = os.path.splitext(os.path.basename(image_name))[0]
else:
- basename = None
+ basename = ''
- images.save_image(image, path=outpath, basename='', seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
- no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=basename)
+ images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
+ no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
if opts.enable_pnginfo:
image.info = existing_pnginfo
From 991a595686b8d105025d68d0e833d1cbf44cb143 Mon Sep 17 00:00:00 2001
From: winterspringsummer
Date: Fri, 21 Oct 2022 09:23:13 +0900
Subject: [PATCH 061/100] sort file list in alphabetical ordering in extras
---
modules/extras.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/extras.py b/modules/extras.py
index ac85142c..22c5a1c1 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -39,7 +39,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
if input_dir == '':
return outputs, "Please select an input directory.", ''
- image_list = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
+ image_list = [file for file in [os.path.join(input_dir, x) for x in sorted(os.listdir(input_dir))] if os.path.isfile(file)]
for img in image_list:
try:
image = Image.open(img)
From 45872181902ada06267e2de601586d512cf5df1a Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 09:00:39 +0300
Subject: [PATCH 062/100] updated readme and some small stylistic changes to
code
---
README.md | 1 +
modules/processing.py | 14 ++++++--------
modules/sd_hijack_inpainting.py | 3 +++
3 files changed, 10 insertions(+), 8 deletions(-)
diff --git a/README.md b/README.md
index 859a91b6..a98bb00b 100644
--- a/README.md
+++ b/README.md
@@ -70,6 +70,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
+- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
diff --git a/modules/processing.py b/modules/processing.py
index 539cde38..21786968 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -540,11 +540,10 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
self.truncate_x = int(self.firstphase_width - firstphase_width_truncated) // opt_f
self.truncate_y = int(self.firstphase_height - firstphase_height_truncated) // opt_f
-
- def create_dummy_mask(self, x, first_phase: bool = False):
+ def create_dummy_mask(self, x, width=None, height=None):
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
- height = self.firstphase_height if first_phase else self.height
- width = self.firstphase_width if first_phase else self.width
+ height = height or self.height
+ width = width or self.width
# The "masked-image" in this case will just be all zeros since the entire image is masked.
image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
@@ -571,7 +570,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
return samples
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
- samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x, first_phase=True))
+ samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.create_dummy_mask(x, self.firstphase_width, self.firstphase_height))
samples = samples[:, :, self.truncate_y//2:samples.shape[2]-self.truncate_y//2, self.truncate_x//2:samples.shape[3]-self.truncate_x//2]
@@ -634,6 +633,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.inpainting_mask_invert = inpainting_mask_invert
self.mask = None
self.nmask = None
+ self.image_conditioning = None
def init(self, all_prompts, all_seeds, all_subseeds):
self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers_for_img2img, self.sampler_index, self.sd_model)
@@ -735,9 +735,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask
- conditioning_key = self.sampler.conditioning_key
-
- if conditioning_key in {'hybrid', 'concat'}:
+ if self.sampler.conditioning_key in {'hybrid', 'concat'}:
if self.image_mask is not None:
conditioning_mask = np.array(self.image_mask.convert("L"))
conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
diff --git a/modules/sd_hijack_inpainting.py b/modules/sd_hijack_inpainting.py
index 43938071..fd92a335 100644
--- a/modules/sd_hijack_inpainting.py
+++ b/modules/sd_hijack_inpainting.py
@@ -301,6 +301,7 @@ def get_unconditional_conditioning(self, batch_size, null_label=None):
c = repeat(c, "1 ... -> b ...", b=batch_size).to(self.device)
return c
+
class LatentInpaintDiffusion(LatentDiffusion):
def __init__(
self,
@@ -314,9 +315,11 @@ class LatentInpaintDiffusion(LatentDiffusion):
assert self.masked_image_key in concat_keys
self.concat_keys = concat_keys
+
def should_hijack_inpainting(checkpoint_info):
return str(checkpoint_info.filename).endswith("inpainting.ckpt") and not checkpoint_info.config.endswith("inpainting.yaml")
+
def do_inpainting_hijack():
ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
From 74088c2a06a975092806362aede22f82716cb011 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Thu, 20 Oct 2022 08:18:02 +0300
Subject: [PATCH 063/100] allow float sizes for hypernet's layer_structure
---
modules/hypernetworks/ui.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index 08f75f15..e0741d08 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -15,7 +15,7 @@ def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm
assert not os.path.exists(fn), f"file {fn} already exists"
if type(layer_structure) == str:
- layer_structure = tuple(map(int, re.sub(r'\D', '', layer_structure)))
+ layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
name=name,
From 60872c5b404114336f9ca0c671ba88fa4a8201c9 Mon Sep 17 00:00:00 2001
From: winterspringsummer
Date: Thu, 20 Oct 2022 19:10:32 +0900
Subject: [PATCH 064/100] Fixed path issue while extras batch processing
---
modules/extras.py | 10 +++++++---
1 file changed, 7 insertions(+), 3 deletions(-)
diff --git a/modules/extras.py b/modules/extras.py
index b853fa5b..f9796624 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -118,10 +118,14 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
while len(cached_images) > 2:
del cached_images[next(iter(cached_images.keys()))]
+
+ if opts.use_original_name_batch and image_name != None:
+ basename = os.path.splitext(os.path.basename(image_name))[0]
+ else:
+ basename = ''
- images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
- no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
- forced_filename=image_name if opts.use_original_name_batch else None)
+ images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
+ no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
if opts.enable_pnginfo:
image.info = existing_pnginfo
From fb5a8cf0d9ed027ea3aa2e5422c946d8e6e72efe Mon Sep 17 00:00:00 2001
From: winterspringsummer
Date: Thu, 20 Oct 2022 21:31:29 +0900
Subject: [PATCH 065/100] Added try except to extras batch from directory
---
modules/extras.py | 11 +++++++----
1 file changed, 7 insertions(+), 4 deletions(-)
diff --git a/modules/extras.py b/modules/extras.py
index f9796624..0d817cf9 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -41,7 +41,10 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
return outputs, "Please select an input directory.", ''
image_list = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
for img in image_list:
- image = Image.open(img)
+ try:
+ image = Image.open(img)
+ except Exception:
+ continue
imageArr.append(image)
imageNameArr.append(img)
else:
@@ -122,10 +125,10 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
if opts.use_original_name_batch and image_name != None:
basename = os.path.splitext(os.path.basename(image_name))[0]
else:
- basename = ''
+ basename = None
- images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
- no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
+ images.save_image(image, path=outpath, basename='', seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
+ no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=basename)
if opts.enable_pnginfo:
image.info = existing_pnginfo
From a13c3bed3cec27afe3c015d3d62db36e25b10d1f Mon Sep 17 00:00:00 2001
From: winterspringsummer
Date: Thu, 20 Oct 2022 21:43:27 +0900
Subject: [PATCH 066/100] Fixed path issue while extras batch processing
---
modules/extras.py | 6 +++---
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/modules/extras.py b/modules/extras.py
index 0d817cf9..ac85142c 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -125,10 +125,10 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
if opts.use_original_name_batch and image_name != None:
basename = os.path.splitext(os.path.basename(image_name))[0]
else:
- basename = None
+ basename = ''
- images.save_image(image, path=outpath, basename='', seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
- no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=basename)
+ images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
+ no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
if opts.enable_pnginfo:
image.info = existing_pnginfo
From 9d71eef02e7395e179b8d5e61e6d91ddd8928d2e Mon Sep 17 00:00:00 2001
From: winterspringsummer
Date: Fri, 21 Oct 2022 09:23:13 +0900
Subject: [PATCH 067/100] sort file list in alphabetical ordering in extras
---
modules/extras.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/extras.py b/modules/extras.py
index ac85142c..22c5a1c1 100644
--- a/modules/extras.py
+++ b/modules/extras.py
@@ -39,7 +39,7 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
if input_dir == '':
return outputs, "Please select an input directory.", ''
- image_list = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
+ image_list = [file for file in [os.path.join(input_dir, x) for x in sorted(os.listdir(input_dir))] if os.path.isfile(file)]
for img in image_list:
try:
image = Image.open(img)
From c23f666dba2b484d521d2dc4be91cf9e09312647 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 09:47:43 +0300
Subject: [PATCH 068/100] a more strict check for activation type and a more
reasonable check for type of layer in hypernets
---
modules/hypernetworks/hypernetwork.py | 12 +++++++++---
1 file changed, 9 insertions(+), 3 deletions(-)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 7d617680..84e7e350 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -32,10 +32,16 @@ class HypernetworkModule(torch.nn.Module):
linears = []
for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
+
if activation_func == "relu":
linears.append(torch.nn.ReLU())
- if activation_func == "leakyrelu":
+ elif activation_func == "leakyrelu":
linears.append(torch.nn.LeakyReLU())
+ elif activation_func == 'linear' or activation_func is None:
+ pass
+ else:
+ raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
+
if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
@@ -46,7 +52,7 @@ class HypernetworkModule(torch.nn.Module):
self.load_state_dict(state_dict)
else:
for layer in self.linear:
- if not "ReLU" in layer.__str__():
+ if type(layer) == torch.nn.Linear:
layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
@@ -74,7 +80,7 @@ class HypernetworkModule(torch.nn.Module):
def trainables(self):
layer_structure = []
for layer in self.linear:
- if not "ReLU" in layer.__str__():
+ if type(layer) == torch.nn.Linear:
layer_structure += [layer.weight, layer.bias]
return layer_structure
From 5f4fec307c14dd7f817244ffa92e8a4a64abed0b Mon Sep 17 00:00:00 2001
From: Stephen
Date: Thu, 20 Oct 2022 11:32:17 -0400
Subject: [PATCH 069/100] [Bugfix][API] - Fix API arg in launch script
---
webui.py | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)
diff --git a/webui.py b/webui.py
index 177bef74..87589064 100644
--- a/webui.py
+++ b/webui.py
@@ -118,7 +118,8 @@ def api_only():
api.launch(server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1", port=cmd_opts.port if cmd_opts.port else 7861)
-def webui(launch_api=False):
+def webui():
+ launch_api = cmd_opts.api
initialize()
while 1:
@@ -158,4 +159,4 @@ if __name__ == "__main__":
if cmd_opts.nowebui:
api_only()
else:
- webui(cmd_opts.api)
+ webui()
From 7157e5d064741fa57ca81a2c6432a651f21ee82f Mon Sep 17 00:00:00 2001
From: Patryk Wychowaniec
Date: Thu, 20 Oct 2022 19:22:59 +0200
Subject: [PATCH 070/100] interrogate: Fix CLIP-interrogation on CPU
Currently, trying to perform CLIP interrogation on a CPU fails, saying:
```
RuntimeError: "slow_conv2d_cpu" not implemented for 'Half'
```
This merge request fixes this issue by detecting whether the target
device is CPU and, if so, force-enabling `--no-half` and passing
`device="cpu"` to `clip.load()` (which then does some extra tricks to
ensure it works correctly on CPU).
---
modules/interrogate.py | 12 +++++++++---
1 file changed, 9 insertions(+), 3 deletions(-)
diff --git a/modules/interrogate.py b/modules/interrogate.py
index 64b91eb4..65b05d34 100644
--- a/modules/interrogate.py
+++ b/modules/interrogate.py
@@ -28,9 +28,11 @@ class InterrogateModels:
clip_preprocess = None
categories = None
dtype = None
+ running_on_cpu = None
def __init__(self, content_dir):
self.categories = []
+ self.running_on_cpu = devices.device_interrogate == torch.device("cpu")
if os.path.exists(content_dir):
for filename in os.listdir(content_dir):
@@ -53,7 +55,11 @@ class InterrogateModels:
def load_clip_model(self):
import clip
- model, preprocess = clip.load(clip_model_name)
+ if self.running_on_cpu:
+ model, preprocess = clip.load(clip_model_name, device="cpu")
+ else:
+ model, preprocess = clip.load(clip_model_name)
+
model.eval()
model = model.to(devices.device_interrogate)
@@ -62,14 +68,14 @@ class InterrogateModels:
def load(self):
if self.blip_model is None:
self.blip_model = self.load_blip_model()
- if not shared.cmd_opts.no_half:
+ if not shared.cmd_opts.no_half and not self.running_on_cpu:
self.blip_model = self.blip_model.half()
self.blip_model = self.blip_model.to(devices.device_interrogate)
if self.clip_model is None:
self.clip_model, self.clip_preprocess = self.load_clip_model()
- if not shared.cmd_opts.no_half:
+ if not shared.cmd_opts.no_half and not self.running_on_cpu:
self.clip_model = self.clip_model.half()
self.clip_model = self.clip_model.to(devices.device_interrogate)
From b69c37d25e4ffc56e8f8c247fa2c38b4648cefb7 Mon Sep 17 00:00:00 2001
From: guaneec
Date: Thu, 20 Oct 2022 22:21:12 +0800
Subject: [PATCH 071/100] Allow datasets with only 1 image in TI
---
modules/textual_inversion/dataset.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index 23bb4b6a..5b1c5002 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -83,7 +83,7 @@ class PersonalizedBase(Dataset):
self.dataset.append(entry)
- assert len(self.dataset) > 1, "No images have been found in the dataset."
+ assert len(self.dataset) > 0, "No images have been found in the dataset."
self.length = len(self.dataset) * repeats // batch_size
self.initial_indexes = np.arange(len(self.dataset))
@@ -91,7 +91,7 @@ class PersonalizedBase(Dataset):
self.shuffle()
def shuffle(self):
- self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])]
+ self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0]).numpy()]
def create_text(self, filename_text):
text = random.choice(self.lines)
From 5245c7a4935f67b677da0f5a1fc2b74c074aa0e2 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Wed, 19 Oct 2022 12:21:32 -0700
Subject: [PATCH 072/100] Issue #2921-Give PNG info to Hypernet previews.
---
modules/hypernetworks/hypernetwork.py | 9 +++++++--
1 file changed, 7 insertions(+), 2 deletions(-)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 84e7e350..68c8f26d 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -256,6 +256,9 @@ def stack_conds(conds):
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
+ # images is required here to give training previews their infotext. Importing this at the very top causes a circular dependency.
+ from modules import images
+
assert hypernetwork_name, 'hypernetwork not selected'
path = shared.hypernetworks.get(hypernetwork_name, None)
@@ -298,6 +301,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
last_saved_file = ""
last_saved_image = ""
+ forced_filename = ""
ititial_step = hypernetwork.step or 0
if ititial_step > steps:
@@ -345,7 +349,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
})
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
- last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png')
+ forced_filename = f'{hypernetwork_name}-{hypernetwork.step}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
optimizer.zero_grad()
shared.sd_model.cond_stage_model.to(devices.device)
@@ -381,7 +386,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
if image is not None:
shared.state.current_image = image
- image.save(last_saved_image)
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename)
last_saved_image += f", prompt: {preview_text}"
shared.state.job_no = hypernetwork.step
From 6014fb8afbe05c8d02fffe7a36a2e48128713bd2 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Wed, 19 Oct 2022 12:22:23 -0700
Subject: [PATCH 073/100] Do nothing if image file already exists.
---
modules/images.py | 6 +++++-
1 file changed, 5 insertions(+), 1 deletion(-)
diff --git a/modules/images.py b/modules/images.py
index b9589563..550e53ae 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -416,7 +416,11 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
dirname = apply_filename_pattern(opts.directories_filename_pattern or "[prompt_words]", p, seed, prompt).strip('\\ /')
path = os.path.join(path, dirname)
- os.makedirs(path, exist_ok=True)
+ try:
+ os.makedirs(path, exist_ok=True)
+ except FileExistsError:
+ # If the file already exists, continue and allow said file to be overwritten.
+ pass
if forced_filename is None:
basecount = get_next_sequence_number(path, basename)
From 4ff274e1e35bb642687253ce744d2cfa738ab293 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Wed, 19 Oct 2022 12:32:22 -0700
Subject: [PATCH 074/100] Revise comments.
---
modules/hypernetworks/hypernetwork.py | 2 +-
modules/images.py | 2 +-
2 files changed, 2 insertions(+), 2 deletions(-)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 68c8f26d..3f96361c 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -256,7 +256,7 @@ def stack_conds(conds):
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
- # images is required here to give training previews their infotext. Importing this at the very top causes a circular dependency.
+ # images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
assert hypernetwork_name, 'hypernetwork not selected'
diff --git a/modules/images.py b/modules/images.py
index 550e53ae..b8834e3c 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -419,7 +419,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
try:
os.makedirs(path, exist_ok=True)
except FileExistsError:
- # If the file already exists, continue and allow said file to be overwritten.
+ # If the file already exists, allow said file to be overwritten.
pass
if forced_filename is None:
From 2273e752fb3e578f1047f6d38b96330b07bf61a9 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Wed, 19 Oct 2022 14:23:48 -0700
Subject: [PATCH 075/100] Remove redundant try/except.
---
modules/images.py | 6 +-----
1 file changed, 1 insertion(+), 5 deletions(-)
diff --git a/modules/images.py b/modules/images.py
index b8834e3c..b9589563 100644
--- a/modules/images.py
+++ b/modules/images.py
@@ -416,11 +416,7 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
dirname = apply_filename_pattern(opts.directories_filename_pattern or "[prompt_words]", p, seed, prompt).strip('\\ /')
path = os.path.join(path, dirname)
- try:
- os.makedirs(path, exist_ok=True)
- except FileExistsError:
- # If the file already exists, allow said file to be overwritten.
- pass
+ os.makedirs(path, exist_ok=True)
if forced_filename is None:
basecount = get_next_sequence_number(path, basename)
From 03a1e288c4973dd2dff57a97469b40f146b6fccf Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 10:13:24 +0300
Subject: [PATCH 076/100] turns out LayerNorm also has weight and bias and
needs to be pre-multiplied and trained for hypernets
---
modules/hypernetworks/hypernetwork.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 3274a802..b1a5d0c7 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -52,7 +52,7 @@ class HypernetworkModule(torch.nn.Module):
self.load_state_dict(state_dict)
else:
for layer in self.linear:
- if type(layer) == torch.nn.Linear:
+ if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer.weight.data.normal_(mean=0.0, std=0.01)
layer.bias.data.zero_()
@@ -80,7 +80,7 @@ class HypernetworkModule(torch.nn.Module):
def trainables(self):
layer_structure = []
for layer in self.linear:
- if type(layer) == torch.nn.Linear:
+ if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
layer_structure += [layer.weight, layer.bias]
return layer_structure
From bf30673f5132c8f28357b31224c54331e788d3e7 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 10:19:25 +0300
Subject: [PATCH 077/100] Fix Hypernet infotext string split bug for PR #3283
---
modules/processing.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/processing.py b/modules/processing.py
index 21786968..d1deffa9 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -304,7 +304,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
"Size": f"{p.width}x{p.height}",
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
- "Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.filename.split('\\')[-1].split('.')[0]),
+ "Hypernet": (None if shared.loaded_hypernetwork is None else os.path.splitext(os.path.basename(shared.loaded_hypernetwork.filename))[0]),
"Batch size": (None if p.batch_size < 2 else p.batch_size),
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
From 1ed227b3b57f06f4152be3bfc9f83b0a839a2604 Mon Sep 17 00:00:00 2001
From: Leo Mozoloa
Date: Fri, 21 Oct 2022 10:57:40 +0200
Subject: [PATCH 078/100] wtf is happening
---
.github/ISSUE_TEMPLATE/config.yml | 5 +++++
1 file changed, 5 insertions(+)
create mode 100644 .github/ISSUE_TEMPLATE/config.yml
diff --git a/.github/ISSUE_TEMPLATE/config.yml b/.github/ISSUE_TEMPLATE/config.yml
new file mode 100644
index 00000000..f58c94a9
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/config.yml
@@ -0,0 +1,5 @@
+blank_issues_enabled: false
+contact_links:
+ - name: WebUI Community Support
+ url: https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions
+ about: Please ask and answer questions here.
From 003d2c7fe427edde299274c9e0d5fa59734e7f7e Mon Sep 17 00:00:00 2001
From: ClashSAN <98228077+ClashSAN@users.noreply.github.com>
Date: Fri, 21 Oct 2022 11:40:37 +0000
Subject: [PATCH 079/100] Update README.md
---
README.md | 16 ++++++++++++----
1 file changed, 12 insertions(+), 4 deletions(-)
diff --git a/README.md b/README.md
index a89593bf..348aaf87 100644
--- a/README.md
+++ b/README.md
@@ -24,6 +24,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token
- works with half precision floating point numbers
+ - train embeddings on 8GB (also reports of 6GB working)
- Extras tab with:
- GFPGAN, neural network that fixes faces
- CodeFormer, face restoration tool as an alternative to GFPGAN
@@ -60,7 +61,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- CLIP interrogator, a button that tries to guess prompt from an image
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
- Batch Processing, process a group of files using img2img
-- Img2img Alternative
+- Img2img Alternative, reverse Euler method of cross attention control
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
- Reloading checkpoints on the fly
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
@@ -73,15 +74,22 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- History tab: view, direct and delete images conveniently within the UI
- Generate forever option
-- Training Tab
-- Preprocessing Image Datasets: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
+- Training tab
+ - hypernetworks and embeddings options
+ - Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
+- Clip skip
+- Use Hypernetworks
+- Use VAEs
+- Estimated completion time in progress bar
+- API
+- Support for dedicated inpainting model by RunwayML.
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
-Alternatively, use online services(like Google Colab):
+Alternatively, use online services (like Google Colab):
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
From df5706409386cc2e88718bd9101045587c39f8bb Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 16:10:51 +0300
Subject: [PATCH 080/100] do not load aesthetic clip model until it's needed
add refresh button for aesthetic embeddings add aesthetic params to images'
infotext
---
modules/aesthetic_clip.py | 40 ++++++++++++++---
modules/generation_parameters_copypaste.py | 18 +++++++-
modules/img2img.py | 5 +--
modules/processing.py | 4 +-
modules/sd_models.py | 3 --
modules/txt2img.py | 4 +-
modules/ui.py | 52 +++++++++++++++-------
style.css | 2 +-
8 files changed, 89 insertions(+), 39 deletions(-)
diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py
index 34efa931..8c828541 100644
--- a/modules/aesthetic_clip.py
+++ b/modules/aesthetic_clip.py
@@ -40,6 +40,8 @@ def iter_to_batched(iterable, n=1):
def create_ui():
+ import modules.ui
+
with gr.Group():
with gr.Accordion("Open for Clip Aesthetic!", open=False):
with gr.Row():
@@ -55,6 +57,8 @@ def create_ui():
label="Aesthetic imgs embedding",
value="None")
+ modules.ui.create_refresh_button(aesthetic_imgs, shared.update_aesthetic_embeddings, lambda: {"choices": sorted(shared.aesthetic_embeddings.keys())}, "refresh_aesthetic_embeddings")
+
with gr.Row():
aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs',
placeholder="This text is used to rotate the feature space of the imgs embs",
@@ -66,11 +70,21 @@ def create_ui():
return aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative
+aesthetic_clip_model = None
+
+
+def aesthetic_clip():
+ global aesthetic_clip_model
+
+ if aesthetic_clip_model is None or aesthetic_clip_model.name_or_path != shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path:
+ aesthetic_clip_model = CLIPModel.from_pretrained(shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path)
+ aesthetic_clip_model.cpu()
+
+ return aesthetic_clip_model
+
+
def generate_imgs_embd(name, folder, batch_size):
- # clipModel = CLIPModel.from_pretrained(
- # shared.sd_model.cond_stage_model.clipModel.name_or_path
- # )
- model = shared.clip_model.to(device)
+ model = aesthetic_clip().to(device)
processor = CLIPProcessor.from_pretrained(model.name_or_path)
with torch.no_grad():
@@ -91,7 +105,7 @@ def generate_imgs_embd(name, folder, batch_size):
path = str(Path(shared.cmd_opts.aesthetic_embeddings_dir) / f"{name}.pt")
torch.save(embs, path)
- model = model.cpu()
+ model.cpu()
del processor
del embs
gc.collect()
@@ -132,7 +146,7 @@ class AestheticCLIP:
self.image_embs = None
self.load_image_embs(None)
- def set_aesthetic_params(self, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None,
+ def set_aesthetic_params(self, p, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None,
aesthetic_slerp=True, aesthetic_imgs_text="",
aesthetic_slerp_angle=0.15,
aesthetic_text_negative=False):
@@ -145,6 +159,18 @@ class AestheticCLIP:
self.aesthetic_steps = aesthetic_steps
self.load_image_embs(image_embs_name)
+ if self.image_embs_name is not None:
+ p.extra_generation_params.update({
+ "Aesthetic LR": aesthetic_lr,
+ "Aesthetic weight": aesthetic_weight,
+ "Aesthetic steps": aesthetic_steps,
+ "Aesthetic embedding": self.image_embs_name,
+ "Aesthetic slerp": aesthetic_slerp,
+ "Aesthetic text": aesthetic_imgs_text,
+ "Aesthetic text negative": aesthetic_text_negative,
+ "Aesthetic slerp angle": aesthetic_slerp_angle,
+ })
+
def set_skip(self, skip):
self.skip = skip
@@ -168,7 +194,7 @@ class AestheticCLIP:
tokens = torch.asarray(remade_batch_tokens).to(device)
- model = copy.deepcopy(shared.clip_model).to(device)
+ model = copy.deepcopy(aesthetic_clip()).to(device)
model.requires_grad_(True)
if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0:
text_embs_2 = model.get_text_features(
diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py
index 0f041449..f73647da 100644
--- a/modules/generation_parameters_copypaste.py
+++ b/modules/generation_parameters_copypaste.py
@@ -4,13 +4,22 @@ import gradio as gr
from modules.shared import script_path
from modules import shared
-re_param_code = r"\s*([\w ]+):\s*([^,]+)(?:,|$)"
+re_param_code = r'\s*([\w ]+):\s*("(?:\\|\"|[^\"])+"|[^,]*)(?:,|$)'
re_param = re.compile(re_param_code)
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
type_of_gr_update = type(gr.update())
+def quote(text):
+ if ',' not in str(text):
+ return text
+
+ text = str(text)
+ text = text.replace('\\', '\\\\')
+ text = text.replace('"', '\\"')
+ return f'"{text}"'
+
def parse_generation_parameters(x: str):
"""parses generation parameters string, the one you see in text field under the picture in UI:
```
@@ -83,7 +92,12 @@ def connect_paste(button, paste_fields, input_comp, js=None):
else:
try:
valtype = type(output.value)
- val = valtype(v)
+
+ if valtype == bool and v == "False":
+ val = False
+ else:
+ val = valtype(v)
+
res.append(gr.update(value=val))
except Exception:
res.append(gr.update())
diff --git a/modules/img2img.py b/modules/img2img.py
index bc7c66bc..eea5199b 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -109,10 +109,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
inpainting_mask_invert=inpainting_mask_invert,
)
- shared.aesthetic_clip.set_aesthetic_params(float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps),
- aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text,
- aesthetic_slerp_angle,
- aesthetic_text_negative)
+ shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative)
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
diff --git a/modules/processing.py b/modules/processing.py
index d1deffa9..f0852cd5 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -12,7 +12,7 @@ from skimage import exposure
from typing import Any, Dict, List, Optional
import modules.sd_hijack
-from modules import devices, prompt_parser, masking, sd_samplers, lowvram
+from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste
from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
@@ -318,7 +318,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
generation_params.update(p.extra_generation_params)
- generation_params_text = ", ".join([k if k == v else f'{k}: {v}' for k, v in generation_params.items() if v is not None])
+ generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
negative_prompt_text = "\nNegative prompt: " + p.negative_prompt if p.negative_prompt else ""
diff --git a/modules/sd_models.py b/modules/sd_models.py
index 05a1df28..b1c91b0d 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -234,9 +234,6 @@ def load_model(checkpoint_info=None):
sd_hijack.model_hijack.hijack(sd_model)
- if shared.clip_model is None or shared.clip_model.transformer.name_or_path != sd_model.cond_stage_model.wrapped.transformer.name_or_path:
- shared.clip_model = CLIPModel.from_pretrained(sd_model.cond_stage_model.wrapped.transformer.name_or_path)
-
sd_model.eval()
print(f"Model loaded.")
diff --git a/modules/txt2img.py b/modules/txt2img.py
index 32ed1d8d..1761cfa2 100644
--- a/modules/txt2img.py
+++ b/modules/txt2img.py
@@ -36,9 +36,7 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
firstphase_height=firstphase_height if enable_hr else None,
)
- shared.aesthetic_clip.set_aesthetic_params(float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps),
- aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle,
- aesthetic_text_negative)
+ shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative)
if cmd_opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
diff --git a/modules/ui.py b/modules/ui.py
index 381ca925..0d020de6 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -597,27 +597,29 @@ def apply_setting(key, value):
return value
+def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
+ def refresh():
+ refresh_method()
+ args = refreshed_args() if callable(refreshed_args) else refreshed_args
+
+ for k, v in args.items():
+ setattr(refresh_component, k, v)
+
+ return gr.update(**(args or {}))
+
+ refresh_button = gr.Button(value=refresh_symbol, elem_id=elem_id)
+ refresh_button.click(
+ fn=refresh,
+ inputs=[],
+ outputs=[refresh_component]
+ )
+ return refresh_button
+
+
def create_ui(wrap_gradio_gpu_call):
import modules.img2img
import modules.txt2img
- def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
- def refresh():
- refresh_method()
- args = refreshed_args() if callable(refreshed_args) else refreshed_args
-
- for k, v in args.items():
- setattr(refresh_component, k, v)
-
- return gr.update(**(args or {}))
-
- refresh_button = gr.Button(value=refresh_symbol, elem_id=elem_id)
- refresh_button.click(
- fn = refresh,
- inputs = [],
- outputs = [refresh_component]
- )
- return refresh_button
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False)
@@ -802,6 +804,14 @@ def create_ui(wrap_gradio_gpu_call):
(hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)),
(firstphase_width, "First pass size-1"),
(firstphase_height, "First pass size-2"),
+ (aesthetic_lr, "Aesthetic LR"),
+ (aesthetic_weight, "Aesthetic weight"),
+ (aesthetic_steps, "Aesthetic steps"),
+ (aesthetic_imgs, "Aesthetic embedding"),
+ (aesthetic_slerp, "Aesthetic slerp"),
+ (aesthetic_imgs_text, "Aesthetic text"),
+ (aesthetic_text_negative, "Aesthetic text negative"),
+ (aesthetic_slerp_angle, "Aesthetic slerp angle"),
]
txt2img_preview_params = [
@@ -1077,6 +1087,14 @@ def create_ui(wrap_gradio_gpu_call):
(seed_resize_from_w, "Seed resize from-1"),
(seed_resize_from_h, "Seed resize from-2"),
(denoising_strength, "Denoising strength"),
+ (aesthetic_lr_im, "Aesthetic LR"),
+ (aesthetic_weight_im, "Aesthetic weight"),
+ (aesthetic_steps_im, "Aesthetic steps"),
+ (aesthetic_imgs_im, "Aesthetic embedding"),
+ (aesthetic_slerp_im, "Aesthetic slerp"),
+ (aesthetic_imgs_text_im, "Aesthetic text"),
+ (aesthetic_text_negative_im, "Aesthetic text negative"),
+ (aesthetic_slerp_angle_im, "Aesthetic slerp angle"),
]
token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
diff --git a/style.css b/style.css
index 26ae36a5..5d2bacc9 100644
--- a/style.css
+++ b/style.css
@@ -477,7 +477,7 @@ input[type="range"]{
padding: 0;
}
-#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{
+#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization, #refresh_aesthetic_embeddings{
max-width: 2.5em;
min-width: 2.5em;
height: 2.4em;
From 9286fe53de2eef91f13cc3ad5938ddf67ecc8413 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 16:38:06 +0300
Subject: [PATCH 081/100] make aestetic embedding ciompatible with prompts
longer than 75 tokens
---
modules/sd_hijack.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 36198a3c..1f8587d1 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -332,8 +332,8 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
multipliers.append([1.0] * 75)
z1 = self.process_tokens(tokens, multipliers)
+ z1 = shared.aesthetic_clip(z1, remade_batch_tokens)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
- z = shared.aesthetic_clip(z, remade_batch_tokens)
remade_batch_tokens = rem_tokens
batch_multipliers = rem_multipliers
From d0ea471b0cdaede163c6e7f6fae8535f5c3cd226 Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Fri, 21 Oct 2022 14:04:41 +0100
Subject: [PATCH 082/100] Use opts in textual_inversion image_embedding.py for
dynamic fonts
---
modules/textual_inversion/image_embedding.py | 1 +
1 file changed, 1 insertion(+)
diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py
index 898ce3b3..c50b1e7b 100644
--- a/modules/textual_inversion/image_embedding.py
+++ b/modules/textual_inversion/image_embedding.py
@@ -5,6 +5,7 @@ import zlib
from PIL import Image, PngImagePlugin, ImageDraw, ImageFont
from fonts.ttf import Roboto
import torch
+from modules.shared import opts
class EmbeddingEncoder(json.JSONEncoder):
From 306e2ff6ab8f4c7e94ab55f4f08ab8f94d73d287 Mon Sep 17 00:00:00 2001
From: DepFA <35278260+dfaker@users.noreply.github.com>
Date: Fri, 21 Oct 2022 14:47:21 +0100
Subject: [PATCH 083/100] Update image_embedding.py
---
modules/textual_inversion/image_embedding.py | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
diff --git a/modules/textual_inversion/image_embedding.py b/modules/textual_inversion/image_embedding.py
index c50b1e7b..ea653806 100644
--- a/modules/textual_inversion/image_embedding.py
+++ b/modules/textual_inversion/image_embedding.py
@@ -134,7 +134,7 @@ def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, t
from math import cos
image = srcimage.copy()
-
+ fontsize = 32
if textfont is None:
try:
textfont = ImageFont.truetype(opts.font or Roboto, fontsize)
@@ -151,7 +151,7 @@ def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, t
image = Image.alpha_composite(image.convert('RGBA'), gradient.resize(image.size))
draw = ImageDraw.Draw(image)
- fontsize = 32
+
font = ImageFont.truetype(textfont, fontsize)
padding = 10
From 85cb5918ee7c97cafafe4149880ed82f1933d919 Mon Sep 17 00:00:00 2001
From: parsec501 <105080989+parsec501@users.noreply.github.com>
Date: Fri, 21 Oct 2022 14:43:23 +0200
Subject: [PATCH 084/100] Make commit hash mandatory field
---
.github/ISSUE_TEMPLATE/bug_report.yml | 2 ++
1 file changed, 2 insertions(+)
diff --git a/.github/ISSUE_TEMPLATE/bug_report.yml b/.github/ISSUE_TEMPLATE/bug_report.yml
index 35802a53..9c2ff313 100644
--- a/.github/ISSUE_TEMPLATE/bug_report.yml
+++ b/.github/ISSUE_TEMPLATE/bug_report.yml
@@ -45,6 +45,8 @@ body:
attributes:
label: Commit where the problem happens
description: Which commit are you running ? (copy the **Commit hash** shown in the cmd/terminal when you launch the UI)
+ validations:
+ required: true
- type: dropdown
id: platforms
attributes:
From 51e3dc9ccad157d7161b697a246e26c868d46a7c Mon Sep 17 00:00:00 2001
From: timntorres
Date: Fri, 21 Oct 2022 02:11:12 -0700
Subject: [PATCH 085/100] Sanitize hypernet name input.
---
modules/hypernetworks/ui.py | 3 +++
1 file changed, 3 insertions(+)
diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py
index 266f04f6..e6f50a1f 100644
--- a/modules/hypernetworks/ui.py
+++ b/modules/hypernetworks/ui.py
@@ -11,6 +11,9 @@ from modules.hypernetworks import hypernetwork
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, add_layer_norm=False, activation_func=None):
+ # Remove illegal characters from name.
+ name = "".join( x for x in name if (x.isalnum() or x in "._- "))
+
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
if not overwrite_old:
assert not os.path.exists(fn), f"file {fn} already exists"
From 19818f023cfafc472c6c241cab0b72896a168481 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Fri, 21 Oct 2022 02:14:02 -0700
Subject: [PATCH 086/100] Match hypernet name with filename in all cases.
---
modules/hypernetworks/hypernetwork.py | 8 +++++++-
1 file changed, 7 insertions(+), 1 deletion(-)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index b1a5d0c7..6d392be4 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -340,7 +340,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
pbar.set_description(f"loss: {mean_loss:.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt')
+ temp = hypernetwork.name
+ # Before saving, change name to match current checkpoint.
+ hypernetwork.name = f'{hypernetwork_name}-{hypernetwork.step}'
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
hypernetwork.save(last_saved_file)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
@@ -405,6 +408,9 @@ Last saved image: {html.escape(last_saved_image)}
hypernetwork.sd_checkpoint = checkpoint.hash
hypernetwork.sd_checkpoint_name = checkpoint.model_name
+ # Before saving for the last time, change name back to the base name (as opposed to the save_hypernetwork_every step-suffixed naming convention).
+ hypernetwork.name = hypernetwork_name
+ filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork.name}.pt')
hypernetwork.save(filename)
return hypernetwork, filename
From fccad18a59e3c2c33fefbbb1763c6a87a3a68eba Mon Sep 17 00:00:00 2001
From: timntorres
Date: Fri, 21 Oct 2022 02:17:26 -0700
Subject: [PATCH 087/100] Refer to Hypernet's name, sensibly, by its name
variable.
---
modules/processing.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/processing.py b/modules/processing.py
index f0852cd5..ff1ec4c9 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -304,7 +304,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
"Size": f"{p.width}x{p.height}",
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
- "Hypernet": (None if shared.loaded_hypernetwork is None else os.path.splitext(os.path.basename(shared.loaded_hypernetwork.filename))[0]),
+ "Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name),
"Batch size": (None if p.batch_size < 2 else p.batch_size),
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
From 272fa527bbe93143668ffc16838107b7dca35b40 Mon Sep 17 00:00:00 2001
From: timntorres
Date: Fri, 21 Oct 2022 02:41:55 -0700
Subject: [PATCH 088/100] Remove unused variable.
---
modules/hypernetworks/hypernetwork.py | 1 -
1 file changed, 1 deletion(-)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 6d392be4..47d91ea5 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -340,7 +340,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
pbar.set_description(f"loss: {mean_loss:.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
- temp = hypernetwork.name
# Before saving, change name to match current checkpoint.
hypernetwork.name = f'{hypernetwork_name}-{hypernetwork.step}'
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
From 02e4d4694dd9254a6ca9f05c2eb7b01ea508abc7 Mon Sep 17 00:00:00 2001
From: Rcmcpe
Date: Fri, 21 Oct 2022 15:53:35 +0800
Subject: [PATCH 089/100] Change option description of
unload_models_when_training
---
modules/shared.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/modules/shared.py b/modules/shared.py
index 5c675b80..41d7f08e 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -266,7 +266,7 @@ options_templates.update(options_section(('system', "System"), {
}))
options_templates.update(options_section(('training', "Training"), {
- "unload_models_when_training": OptionInfo(False, "Unload VAE and CLIP from VRAM when training"),
+ "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM."),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
From 704036ff07b71bf86cadcbbff2bcfeebdd1ed3a6 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 17:11:42 +0300
Subject: [PATCH 090/100] make aspect ratio overlay work regardless of selected
localization
---
javascript/aspectRatioOverlay.js | 36 +++++++++++++++-----------------
javascript/dragdrop.js | 2 +-
modules/ui.py | 4 ++--
3 files changed, 20 insertions(+), 22 deletions(-)
diff --git a/javascript/aspectRatioOverlay.js b/javascript/aspectRatioOverlay.js
index 96f1c00d..d3ca2781 100644
--- a/javascript/aspectRatioOverlay.js
+++ b/javascript/aspectRatioOverlay.js
@@ -3,12 +3,12 @@ let currentWidth = null;
let currentHeight = null;
let arFrameTimeout = setTimeout(function(){},0);
-function dimensionChange(e,dimname){
+function dimensionChange(e, is_width, is_height){
- if(dimname == 'Width'){
+ if(is_width){
currentWidth = e.target.value*1.0
}
- if(dimname == 'Height'){
+ if(is_height){
currentHeight = e.target.value*1.0
}
@@ -98,22 +98,20 @@ onUiUpdate(function(){
var inImg2img = Boolean(gradioApp().querySelector("button.rounded-t-lg.border-gray-200"))
if(inImg2img){
let inputs = gradioApp().querySelectorAll('input');
- inputs.forEach(function(e){
- let parentLabel = e.parentElement.querySelector('label')
- if(parentLabel && parentLabel.innerText){
- if(!e.classList.contains('scrollwatch')){
- if(parentLabel.innerText == 'Width' || parentLabel.innerText == 'Height'){
- e.addEventListener('input', function(e){dimensionChange(e,parentLabel.innerText)} )
- e.classList.add('scrollwatch')
- }
- if(parentLabel.innerText == 'Width'){
- currentWidth = e.value*1.0
- }
- if(parentLabel.innerText == 'Height'){
- currentHeight = e.value*1.0
- }
- }
- }
+ inputs.forEach(function(e){
+ var is_width = e.parentElement.id == "img2img_width"
+ var is_height = e.parentElement.id == "img2img_height"
+
+ if((is_width || is_height) && !e.classList.contains('scrollwatch')){
+ e.addEventListener('input', function(e){dimensionChange(e, is_width, is_height)} )
+ e.classList.add('scrollwatch')
+ }
+ if(is_width){
+ currentWidth = e.value*1.0
+ }
+ if(is_height){
+ currentHeight = e.value*1.0
+ }
})
}
});
diff --git a/javascript/dragdrop.js b/javascript/dragdrop.js
index 070cf255..3ed1cb3c 100644
--- a/javascript/dragdrop.js
+++ b/javascript/dragdrop.js
@@ -43,7 +43,7 @@ function dropReplaceImage( imgWrap, files ) {
window.document.addEventListener('dragover', e => {
const target = e.composedPath()[0];
const imgWrap = target.closest('[data-testid="image"]');
- if ( !imgWrap && target.placeholder.indexOf("Prompt") == -1) {
+ if ( !imgWrap && target.placeholder && target.placeholder.indexOf("Prompt") == -1) {
return;
}
e.stopPropagation();
diff --git a/modules/ui.py b/modules/ui.py
index 0d020de6..85f95792 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -879,8 +879,8 @@ def create_ui(wrap_gradio_gpu_call):
sampler_index = gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index")
with gr.Group():
- width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512)
- height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512)
+ width = gr.Slider(minimum=64, maximum=2048, step=64, label="Width", value=512, elem_id="img2img_width")
+ height = gr.Slider(minimum=64, maximum=2048, step=64, label="Height", value=512, elem_id="img2img_height")
with gr.Row():
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
From 3d898044e5e55dca1698e9b5b7d3558b5b78675a Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 17:26:30 +0300
Subject: [PATCH 091/100] batch_size does not affect job count
---
scripts/outpainting_mk_2.py | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/scripts/outpainting_mk_2.py b/scripts/outpainting_mk_2.py
index 633dc119..2afd4aa5 100644
--- a/scripts/outpainting_mk_2.py
+++ b/scripts/outpainting_mk_2.py
@@ -246,7 +246,7 @@ class Script(scripts.Script):
batch_count = p.n_iter
batch_size = p.batch_size
p.n_iter = 1
- state.job_count = batch_count * batch_size * ((1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0))
+ state.job_count = batch_count * ((1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0))
all_processed_images = []
for i in range(batch_count):
From ac0aa2b18efeeb9220a5994c8dd54c7cdda7cc40 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 17:35:51 +0300
Subject: [PATCH 092/100] loading SD VAE, see PR #3303
---
modules/sd_models.py | 5 ++++-
1 file changed, 4 insertions(+), 1 deletion(-)
diff --git a/modules/sd_models.py b/modules/sd_models.py
index b1c91b0d..d99dbce8 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -155,6 +155,9 @@ def get_state_dict_from_checkpoint(pl_sd):
return pl_sd
+vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
+
+
def load_model_weights(model, checkpoint_info):
checkpoint_file = checkpoint_info.filename
sd_model_hash = checkpoint_info.hash
@@ -186,7 +189,7 @@ def load_model_weights(model, checkpoint_info):
if os.path.exists(vae_file):
print(f"Loading VAE weights from: {vae_file}")
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
- vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss"}
+ vae_dict = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys}
model.first_stage_model.load_state_dict(vae_dict)
model.first_stage_model.to(devices.dtype_vae)
From 24ce67a13bd74202d298cd8e2a306d90214980d8 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 17:41:47 +0300
Subject: [PATCH 093/100] make aspect ratio overlay work regardless of selected
localization, pt2
---
javascript/aspectRatioOverlay.js | 19 +++++--------------
1 file changed, 5 insertions(+), 14 deletions(-)
diff --git a/javascript/aspectRatioOverlay.js b/javascript/aspectRatioOverlay.js
index d3ca2781..66f26a22 100644
--- a/javascript/aspectRatioOverlay.js
+++ b/javascript/aspectRatioOverlay.js
@@ -18,22 +18,13 @@ function dimensionChange(e, is_width, is_height){
return;
}
- var img2imgMode = gradioApp().querySelector('#mode_img2img.tabs > div > button.rounded-t-lg.border-gray-200')
- if(img2imgMode){
- img2imgMode=img2imgMode.innerText
- }else{
- return;
- }
-
- var redrawImage = gradioApp().querySelector('div[data-testid=image] img');
- var inpaintImage = gradioApp().querySelector('#img2maskimg div[data-testid=image] img')
-
var targetElement = null;
- if(img2imgMode=='img2img' && redrawImage){
- targetElement = redrawImage;
- }else if(img2imgMode=='Inpaint' && inpaintImage){
- targetElement = inpaintImage;
+ var tabIndex = get_tab_index('mode_img2img')
+ if(tabIndex == 0){
+ targetElement = gradioApp().querySelector('div[data-testid=image] img');
+ } else if(tabIndex == 1){
+ targetElement = gradioApp().querySelector('#img2maskimg div[data-testid=image] img');
}
if(targetElement){
From f49c08ea566385db339c6628f65c3a121033f67c Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Fri, 21 Oct 2022 18:46:02 +0300
Subject: [PATCH 094/100] prevent error spam when processing images without txt
files for captions
---
modules/textual_inversion/preprocess.py | 9 ++++-----
1 file changed, 4 insertions(+), 5 deletions(-)
diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py
index 17e4ddc1..33eaddb6 100644
--- a/modules/textual_inversion/preprocess.py
+++ b/modules/textual_inversion/preprocess.py
@@ -122,11 +122,10 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
continue
existing_caption = None
-
- try:
- existing_caption = open(os.path.splitext(filename)[0] + '.txt', 'r').read()
- except Exception as e:
- print(e)
+ existing_caption_filename = os.path.splitext(filename)[0] + '.txt'
+ if os.path.exists(existing_caption_filename):
+ with open(existing_caption_filename, 'r', encoding="utf8") as file:
+ existing_caption = file.read()
if shared.state.interrupted:
break
From 57eb54b838faa383c10079e1bb5471b7bee6a695 Mon Sep 17 00:00:00 2001
From: Extraltodeus
Date: Sat, 22 Oct 2022 00:11:07 +0200
Subject: [PATCH 095/100] implement CUDA device selection by ID
---
modules/devices.py | 21 ++++++++++++++++++---
1 file changed, 18 insertions(+), 3 deletions(-)
diff --git a/modules/devices.py b/modules/devices.py
index eb422583..8a159282 100644
--- a/modules/devices.py
+++ b/modules/devices.py
@@ -1,7 +1,6 @@
+import sys, os, shlex
import contextlib
-
import torch
-
from modules import errors
# has_mps is only available in nightly pytorch (for now), `getattr` for compatibility
@@ -9,10 +8,26 @@ has_mps = getattr(torch, 'has_mps', False)
cpu = torch.device("cpu")
+def extract_device_id(args, name):
+ for x in range(len(args)):
+ if name in args[x]: return args[x+1]
+ return None
def get_optimal_device():
if torch.cuda.is_available():
- return torch.device("cuda")
+ # CUDA device selection support:
+ if "shared" not in sys.modules:
+ commandline_args = os.environ.get('COMMANDLINE_ARGS', "") #re-parse the commandline arguments because using the shared.py module creates an import loop.
+ sys.argv += shlex.split(commandline_args)
+ device_id = extract_device_id(sys.argv, '--device-id')
+ else:
+ device_id = shared.cmd_opts.device_id
+
+ if device_id is not None:
+ cuda_device = f"cuda:{device_id}"
+ return torch.device(cuda_device)
+ else:
+ return torch.device("cuda")
if has_mps:
return torch.device("mps")
From 29bfacd63cb5c73b9643d94f255cca818fd49d9c Mon Sep 17 00:00:00 2001
From: Extraltodeus
Date: Sat, 22 Oct 2022 00:12:46 +0200
Subject: [PATCH 096/100] implement CUDA device selection, --device-id arg
---
modules/shared.py | 1 +
1 file changed, 1 insertion(+)
diff --git a/modules/shared.py b/modules/shared.py
index 41d7f08e..03032a47 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -80,6 +80,7 @@ parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencode
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui")
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui")
+parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
cmd_opts = parser.parse_args()
restricted_opts = [
From 2b91251637078e04472c91a06a8d9c4db9c1dcf0 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Sat, 22 Oct 2022 12:23:45 +0300
Subject: [PATCH 097/100] removed aesthetic gradients as built-in added support
for extensions
---
.gitignore | 2 +-
extensions/put extension here.txt | 0
modules/aesthetic_clip.py | 241 ------------------------------
modules/images_history.py | 2 +-
modules/img2img.py | 5 +-
modules/processing.py | 35 +++--
modules/script_callbacks.py | 42 ++++++
modules/scripts.py | 210 +++++++++++++++++++-------
modules/sd_hijack.py | 1 -
modules/sd_models.py | 7 +-
modules/shared.py | 19 ---
modules/txt2img.py | 5 +-
modules/ui.py | 83 ++--------
webui.py | 7 +-
14 files changed, 249 insertions(+), 410 deletions(-)
create mode 100644 extensions/put extension here.txt
delete mode 100644 modules/aesthetic_clip.py
create mode 100644 modules/script_callbacks.py
diff --git a/.gitignore b/.gitignore
index f9c3357c..2f1e08ed 100644
--- a/.gitignore
+++ b/.gitignore
@@ -27,4 +27,4 @@ __pycache__
notification.mp3
/SwinIR
/textual_inversion
-.vscode
\ No newline at end of file
+.vscode
diff --git a/extensions/put extension here.txt b/extensions/put extension here.txt
new file mode 100644
index 00000000..e69de29b
diff --git a/modules/aesthetic_clip.py b/modules/aesthetic_clip.py
deleted file mode 100644
index 8c828541..00000000
--- a/modules/aesthetic_clip.py
+++ /dev/null
@@ -1,241 +0,0 @@
-import copy
-import itertools
-import os
-from pathlib import Path
-import html
-import gc
-
-import gradio as gr
-import torch
-from PIL import Image
-from torch import optim
-
-from modules import shared
-from transformers import CLIPModel, CLIPProcessor, CLIPTokenizer
-from tqdm.auto import tqdm, trange
-from modules.shared import opts, device
-
-
-def get_all_images_in_folder(folder):
- return [os.path.join(folder, f) for f in os.listdir(folder) if
- os.path.isfile(os.path.join(folder, f)) and check_is_valid_image_file(f)]
-
-
-def check_is_valid_image_file(filename):
- return filename.lower().endswith(('.png', '.jpg', '.jpeg', ".gif", ".tiff", ".webp"))
-
-
-def batched(dataset, total, n=1):
- for ndx in range(0, total, n):
- yield [dataset.__getitem__(i) for i in range(ndx, min(ndx + n, total))]
-
-
-def iter_to_batched(iterable, n=1):
- it = iter(iterable)
- while True:
- chunk = tuple(itertools.islice(it, n))
- if not chunk:
- return
- yield chunk
-
-
-def create_ui():
- import modules.ui
-
- with gr.Group():
- with gr.Accordion("Open for Clip Aesthetic!", open=False):
- with gr.Row():
- aesthetic_weight = gr.Slider(minimum=0, maximum=1, step=0.01, label="Aesthetic weight",
- value=0.9)
- aesthetic_steps = gr.Slider(minimum=0, maximum=50, step=1, label="Aesthetic steps", value=5)
-
- with gr.Row():
- aesthetic_lr = gr.Textbox(label='Aesthetic learning rate',
- placeholder="Aesthetic learning rate", value="0.0001")
- aesthetic_slerp = gr.Checkbox(label="Slerp interpolation", value=False)
- aesthetic_imgs = gr.Dropdown(sorted(shared.aesthetic_embeddings.keys()),
- label="Aesthetic imgs embedding",
- value="None")
-
- modules.ui.create_refresh_button(aesthetic_imgs, shared.update_aesthetic_embeddings, lambda: {"choices": sorted(shared.aesthetic_embeddings.keys())}, "refresh_aesthetic_embeddings")
-
- with gr.Row():
- aesthetic_imgs_text = gr.Textbox(label='Aesthetic text for imgs',
- placeholder="This text is used to rotate the feature space of the imgs embs",
- value="")
- aesthetic_slerp_angle = gr.Slider(label='Slerp angle', minimum=0, maximum=1, step=0.01,
- value=0.1)
- aesthetic_text_negative = gr.Checkbox(label="Is negative text", value=False)
-
- return aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative
-
-
-aesthetic_clip_model = None
-
-
-def aesthetic_clip():
- global aesthetic_clip_model
-
- if aesthetic_clip_model is None or aesthetic_clip_model.name_or_path != shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path:
- aesthetic_clip_model = CLIPModel.from_pretrained(shared.sd_model.cond_stage_model.wrapped.transformer.name_or_path)
- aesthetic_clip_model.cpu()
-
- return aesthetic_clip_model
-
-
-def generate_imgs_embd(name, folder, batch_size):
- model = aesthetic_clip().to(device)
- processor = CLIPProcessor.from_pretrained(model.name_or_path)
-
- with torch.no_grad():
- embs = []
- for paths in tqdm(iter_to_batched(get_all_images_in_folder(folder), batch_size),
- desc=f"Generating embeddings for {name}"):
- if shared.state.interrupted:
- break
- inputs = processor(images=[Image.open(path) for path in paths], return_tensors="pt").to(device)
- outputs = model.get_image_features(**inputs).cpu()
- embs.append(torch.clone(outputs))
- inputs.to("cpu")
- del inputs, outputs
-
- embs = torch.cat(embs, dim=0).mean(dim=0, keepdim=True)
-
- # The generated embedding will be located here
- path = str(Path(shared.cmd_opts.aesthetic_embeddings_dir) / f"{name}.pt")
- torch.save(embs, path)
-
- model.cpu()
- del processor
- del embs
- gc.collect()
- torch.cuda.empty_cache()
- res = f"""
- Done generating embedding for {name}!
- Aesthetic embedding saved to {html.escape(path)}
- """
- shared.update_aesthetic_embeddings()
- return gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()), label="Imgs embedding",
- value="None"), \
- gr.Dropdown.update(choices=sorted(shared.aesthetic_embeddings.keys()),
- label="Imgs embedding",
- value="None"), res, ""
-
-
-def slerp(low, high, val):
- low_norm = low / torch.norm(low, dim=1, keepdim=True)
- high_norm = high / torch.norm(high, dim=1, keepdim=True)
- omega = torch.acos((low_norm * high_norm).sum(1))
- so = torch.sin(omega)
- res = (torch.sin((1.0 - val) * omega) / so).unsqueeze(1) * low + (torch.sin(val * omega) / so).unsqueeze(1) * high
- return res
-
-
-class AestheticCLIP:
- def __init__(self):
- self.skip = False
- self.aesthetic_steps = 0
- self.aesthetic_weight = 0
- self.aesthetic_lr = 0
- self.slerp = False
- self.aesthetic_text_negative = ""
- self.aesthetic_slerp_angle = 0
- self.aesthetic_imgs_text = ""
-
- self.image_embs_name = None
- self.image_embs = None
- self.load_image_embs(None)
-
- def set_aesthetic_params(self, p, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, image_embs_name=None,
- aesthetic_slerp=True, aesthetic_imgs_text="",
- aesthetic_slerp_angle=0.15,
- aesthetic_text_negative=False):
- self.aesthetic_imgs_text = aesthetic_imgs_text
- self.aesthetic_slerp_angle = aesthetic_slerp_angle
- self.aesthetic_text_negative = aesthetic_text_negative
- self.slerp = aesthetic_slerp
- self.aesthetic_lr = aesthetic_lr
- self.aesthetic_weight = aesthetic_weight
- self.aesthetic_steps = aesthetic_steps
- self.load_image_embs(image_embs_name)
-
- if self.image_embs_name is not None:
- p.extra_generation_params.update({
- "Aesthetic LR": aesthetic_lr,
- "Aesthetic weight": aesthetic_weight,
- "Aesthetic steps": aesthetic_steps,
- "Aesthetic embedding": self.image_embs_name,
- "Aesthetic slerp": aesthetic_slerp,
- "Aesthetic text": aesthetic_imgs_text,
- "Aesthetic text negative": aesthetic_text_negative,
- "Aesthetic slerp angle": aesthetic_slerp_angle,
- })
-
- def set_skip(self, skip):
- self.skip = skip
-
- def load_image_embs(self, image_embs_name):
- if image_embs_name is None or len(image_embs_name) == 0 or image_embs_name == "None":
- image_embs_name = None
- self.image_embs_name = None
- if image_embs_name is not None and self.image_embs_name != image_embs_name:
- self.image_embs_name = image_embs_name
- self.image_embs = torch.load(shared.aesthetic_embeddings[self.image_embs_name], map_location=device)
- self.image_embs /= self.image_embs.norm(dim=-1, keepdim=True)
- self.image_embs.requires_grad_(False)
-
- def __call__(self, z, remade_batch_tokens):
- if not self.skip and self.aesthetic_steps != 0 and self.aesthetic_lr != 0 and self.aesthetic_weight != 0 and self.image_embs_name is not None:
- tokenizer = shared.sd_model.cond_stage_model.tokenizer
- if not opts.use_old_emphasis_implementation:
- remade_batch_tokens = [
- [tokenizer.bos_token_id] + x[:75] + [tokenizer.eos_token_id] for x in
- remade_batch_tokens]
-
- tokens = torch.asarray(remade_batch_tokens).to(device)
-
- model = copy.deepcopy(aesthetic_clip()).to(device)
- model.requires_grad_(True)
- if self.aesthetic_imgs_text is not None and len(self.aesthetic_imgs_text) > 0:
- text_embs_2 = model.get_text_features(
- **tokenizer([self.aesthetic_imgs_text], padding=True, return_tensors="pt").to(device))
- if self.aesthetic_text_negative:
- text_embs_2 = self.image_embs - text_embs_2
- text_embs_2 /= text_embs_2.norm(dim=-1, keepdim=True)
- img_embs = slerp(self.image_embs, text_embs_2, self.aesthetic_slerp_angle)
- else:
- img_embs = self.image_embs
-
- with torch.enable_grad():
-
- # We optimize the model to maximize the similarity
- optimizer = optim.Adam(
- model.text_model.parameters(), lr=self.aesthetic_lr
- )
-
- for _ in trange(self.aesthetic_steps, desc="Aesthetic optimization"):
- text_embs = model.get_text_features(input_ids=tokens)
- text_embs = text_embs / text_embs.norm(dim=-1, keepdim=True)
- sim = text_embs @ img_embs.T
- loss = -sim
- optimizer.zero_grad()
- loss.mean().backward()
- optimizer.step()
-
- zn = model.text_model(input_ids=tokens, output_hidden_states=-opts.CLIP_stop_at_last_layers)
- if opts.CLIP_stop_at_last_layers > 1:
- zn = zn.hidden_states[-opts.CLIP_stop_at_last_layers]
- zn = model.text_model.final_layer_norm(zn)
- else:
- zn = zn.last_hidden_state
- model.cpu()
- del model
- gc.collect()
- torch.cuda.empty_cache()
- zn = torch.concat([zn[77 * i:77 * (i + 1)] for i in range(max(z.shape[1] // 77, 1))], 1)
- if self.slerp:
- z = slerp(z, zn, self.aesthetic_weight)
- else:
- z = z * (1 - self.aesthetic_weight) + zn * self.aesthetic_weight
-
- return z
diff --git a/modules/images_history.py b/modules/images_history.py
index 78fd0543..bc5cf11f 100644
--- a/modules/images_history.py
+++ b/modules/images_history.py
@@ -310,7 +310,7 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
forward = gr.Button('Prev batch')
backward = gr.Button('Next batch')
with gr.Column(scale=3):
- load_info = gr.HTML(visible=not custom_dir)
+ load_info = gr.HTML(visible=not custom_dir)
with gr.Row(visible=False) as warning:
warning_box = gr.Textbox("Message", interactive=False)
diff --git a/modules/img2img.py b/modules/img2img.py
index eea5199b..8d9f7cf9 100644
--- a/modules/img2img.py
+++ b/modules/img2img.py
@@ -56,7 +56,7 @@ def process_batch(p, input_dir, output_dir, args):
processed_image.save(os.path.join(output_dir, filename))
-def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
+def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
is_inpaint = mode == 1
is_batch = mode == 2
@@ -109,7 +109,8 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
inpainting_mask_invert=inpainting_mask_invert,
)
- shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative)
+ p.scripts = modules.scripts.scripts_txt2img
+ p.script_args = args
if shared.cmd_opts.enable_console_prompts:
print(f"\nimg2img: {prompt}", file=shared.progress_print_out)
diff --git a/modules/processing.py b/modules/processing.py
index ff1ec4c9..372489f7 100644
--- a/modules/processing.py
+++ b/modules/processing.py
@@ -104,6 +104,12 @@ class StableDiffusionProcessing():
self.seed_resize_from_h = 0
self.seed_resize_from_w = 0
+ self.scripts = None
+ self.script_args = None
+ self.all_prompts = None
+ self.all_seeds = None
+ self.all_subseeds = None
+
def init(self, all_prompts, all_seeds, all_subseeds):
pass
@@ -350,32 +356,35 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
shared.prompt_styles.apply_styles(p)
if type(p.prompt) == list:
- all_prompts = p.prompt
+ p.all_prompts = p.prompt
else:
- all_prompts = p.batch_size * p.n_iter * [p.prompt]
+ p.all_prompts = p.batch_size * p.n_iter * [p.prompt]
if type(seed) == list:
- all_seeds = seed
+ p.all_seeds = seed
else:
- all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(all_prompts))]
+ p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
if type(subseed) == list:
- all_subseeds = subseed
+ p.all_subseeds = subseed
else:
- all_subseeds = [int(subseed) + x for x in range(len(all_prompts))]
+ p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
def infotext(iteration=0, position_in_batch=0):
- return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch)
+ return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch)
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
+ if p.scripts is not None:
+ p.scripts.run_alwayson_scripts(p)
+
infotexts = []
output_images = []
with torch.no_grad(), p.sd_model.ema_scope():
with devices.autocast():
- p.init(all_prompts, all_seeds, all_subseeds)
+ p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
if state.job_count == -1:
state.job_count = p.n_iter
@@ -387,9 +396,9 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
if state.interrupted:
break
- prompts = all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
- seeds = all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
- subseeds = all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
+ prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
+ seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
+ subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
if (len(prompts) == 0):
break
@@ -490,10 +499,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
index_of_first_image = 1
if opts.grid_save:
- images.save_image(grid, p.outpath_grids, "grid", all_seeds[0], all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
+ images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
devices.torch_gc()
- return Processed(p, output_images, all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=all_subseeds[0], all_prompts=all_prompts, all_seeds=all_seeds, all_subseeds=all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
+ return Processed(p, output_images, p.all_seeds[0], infotext() + "".join(["\n\n" + x for x in comments]), subseed=p.all_subseeds[0], all_prompts=p.all_prompts, all_seeds=p.all_seeds, all_subseeds=p.all_subseeds, index_of_first_image=index_of_first_image, infotexts=infotexts)
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
diff --git a/modules/script_callbacks.py b/modules/script_callbacks.py
new file mode 100644
index 00000000..866b7acd
--- /dev/null
+++ b/modules/script_callbacks.py
@@ -0,0 +1,42 @@
+
+callbacks_model_loaded = []
+callbacks_ui_tabs = []
+
+
+def clear_callbacks():
+ callbacks_model_loaded.clear()
+ callbacks_ui_tabs.clear()
+
+
+def model_loaded_callback(sd_model):
+ for callback in callbacks_model_loaded:
+ callback(sd_model)
+
+
+def ui_tabs_callback():
+ res = []
+
+ for callback in callbacks_ui_tabs:
+ res += callback() or []
+
+ return res
+
+
+def on_model_loaded(callback):
+ """register a function to be called when the stable diffusion model is created; the model is
+ passed as an argument"""
+ callbacks_model_loaded.append(callback)
+
+
+def on_ui_tabs(callback):
+ """register a function to be called when the UI is creating new tabs.
+ The function must either return a None, which means no new tabs to be added, or a list, where
+ each element is a tuple:
+ (gradio_component, title, elem_id)
+
+ gradio_component is a gradio component to be used for contents of the tab (usually gr.Blocks)
+ title is tab text displayed to user in the UI
+ elem_id is HTML id for the tab
+ """
+ callbacks_ui_tabs.append(callback)
+
diff --git a/modules/scripts.py b/modules/scripts.py
index 1039fa9c..65f25f49 100644
--- a/modules/scripts.py
+++ b/modules/scripts.py
@@ -1,86 +1,153 @@
import os
import sys
import traceback
+from collections import namedtuple
import modules.ui as ui
import gradio as gr
from modules.processing import StableDiffusionProcessing
-from modules import shared
+from modules import shared, paths, script_callbacks
+
+AlwaysVisible = object()
+
class Script:
filename = None
args_from = None
args_to = None
+ alwayson = False
+
+ infotext_fields = None
+ """if set in ui(), this is a list of pairs of gradio component + text; the text will be used when
+ parsing infotext to set the value for the component; see ui.py's txt2img_paste_fields for an example
+ """
- # The title of the script. This is what will be displayed in the dropdown menu.
def title(self):
+ """this function should return the title of the script. This is what will be displayed in the dropdown menu."""
+
raise NotImplementedError()
- # How the script is displayed in the UI. See https://gradio.app/docs/#components
- # for the different UI components you can use and how to create them.
- # Most UI components can return a value, such as a boolean for a checkbox.
- # The returned values are passed to the run method as parameters.
def ui(self, is_img2img):
+ """this function should create gradio UI elements. See https://gradio.app/docs/#components
+ The return value should be an array of all components that are used in processing.
+ Values of those returned componenbts will be passed to run() and process() functions.
+ """
+
pass
- # Determines when the script should be shown in the dropdown menu via the
- # returned value. As an example:
- # is_img2img is True if the current tab is img2img, and False if it is txt2img.
- # Thus, return is_img2img to only show the script on the img2img tab.
def show(self, is_img2img):
+ """
+ is_img2img is True if this function is called for the img2img interface, and Fasle otherwise
+
+ This function should return:
+ - False if the script should not be shown in UI at all
+ - True if the script should be shown in UI if it's scelected in the scripts drowpdown
+ - script.AlwaysVisible if the script should be shown in UI at all times
+ """
+
return True
- # This is where the additional processing is implemented. The parameters include
- # self, the model object "p" (a StableDiffusionProcessing class, see
- # processing.py), and the parameters returned by the ui method.
- # Custom functions can be defined here, and additional libraries can be imported
- # to be used in processing. The return value should be a Processed object, which is
- # what is returned by the process_images method.
- def run(self, *args):
+ def run(self, p, *args):
+ """
+ This function is called if the script has been selected in the script dropdown.
+ It must do all processing and return the Processed object with results, same as
+ one returned by processing.process_images.
+
+ Usually the processing is done by calling the processing.process_images function.
+
+ args contains all values returned by components from ui()
+ """
+
raise NotImplementedError()
- # The description method is currently unused.
- # To add a description that appears when hovering over the title, amend the "titles"
- # dict in script.js to include the script title (returned by title) as a key, and
- # your description as the value.
+ def process(self, p, *args):
+ """
+ This function is called before processing begins for AlwaysVisible scripts.
+ scripts. You can modify the processing object (p) here, inject hooks, etc.
+ """
+
+ pass
+
def describe(self):
+ """unused"""
return ""
+current_basedir = paths.script_path
+
+
+def basedir():
+ """returns the base directory for the current script. For scripts in the main scripts directory,
+ this is the main directory (where webui.py resides), and for scripts in extensions directory
+ (ie extensions/aesthetic/script/aesthetic.py), this is extension's directory (extensions/aesthetic)
+ """
+ return current_basedir
+
+
scripts_data = []
+ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"])
+ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir"])
-def load_scripts(basedir):
- if not os.path.exists(basedir):
- return
+def list_scripts(scriptdirname, extension):
+ scripts_list = []
- for filename in sorted(os.listdir(basedir)):
- path = os.path.join(basedir, filename)
+ basedir = os.path.join(paths.script_path, scriptdirname)
+ if os.path.exists(basedir):
+ for filename in sorted(os.listdir(basedir)):
+ scripts_list.append(ScriptFile(paths.script_path, filename, os.path.join(basedir, filename)))
- if os.path.splitext(path)[1].lower() != '.py':
- continue
+ extdir = os.path.join(paths.script_path, "extensions")
+ if os.path.exists(extdir):
+ for dirname in sorted(os.listdir(extdir)):
+ dirpath = os.path.join(extdir, dirname)
+ if not os.path.isdir(dirpath):
+ continue
- if not os.path.isfile(path):
- continue
+ for filename in sorted(os.listdir(os.path.join(dirpath, scriptdirname))):
+ scripts_list.append(ScriptFile(dirpath, filename, os.path.join(dirpath, scriptdirname, filename)))
+ scripts_list = [x for x in scripts_list if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
+
+ return scripts_list
+
+
+def load_scripts():
+ global current_basedir
+ scripts_data.clear()
+ script_callbacks.clear_callbacks()
+
+ scripts_list = list_scripts("scripts", ".py")
+
+ syspath = sys.path
+
+ for scriptfile in sorted(scripts_list):
try:
- with open(path, "r", encoding="utf8") as file:
+ if scriptfile.basedir != paths.script_path:
+ sys.path = [scriptfile.basedir] + sys.path
+ current_basedir = scriptfile.basedir
+
+ with open(scriptfile.path, "r", encoding="utf8") as file:
text = file.read()
from types import ModuleType
- compiled = compile(text, path, 'exec')
- module = ModuleType(filename)
+ compiled = compile(text, scriptfile.path, 'exec')
+ module = ModuleType(scriptfile.filename)
exec(compiled, module.__dict__)
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
- scripts_data.append((script_class, path))
+ scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir))
except Exception:
- print(f"Error loading script: {filename}", file=sys.stderr)
+ print(f"Error loading script: {scriptfile.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
+ finally:
+ sys.path = syspath
+ current_basedir = paths.script_path
+
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try:
@@ -96,56 +163,80 @@ def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
class ScriptRunner:
def __init__(self):
self.scripts = []
+ self.selectable_scripts = []
+ self.alwayson_scripts = []
self.titles = []
+ self.infotext_fields = []
def setup_ui(self, is_img2img):
- for script_class, path in scripts_data:
+ for script_class, path, basedir in scripts_data:
script = script_class()
script.filename = path
- if not script.show(is_img2img):
- continue
+ visibility = script.show(is_img2img)
- self.scripts.append(script)
+ if visibility == AlwaysVisible:
+ self.scripts.append(script)
+ self.alwayson_scripts.append(script)
+ script.alwayson = True
- self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.scripts]
+ elif visibility:
+ self.scripts.append(script)
+ self.selectable_scripts.append(script)
- dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index")
- dropdown.save_to_config = True
- inputs = [dropdown]
+ self.titles = [wrap_call(script.title, script.filename, "title") or f"{script.filename} [error]" for script in self.selectable_scripts]
- for script in self.scripts:
+ inputs = [None]
+ inputs_alwayson = [True]
+
+ def create_script_ui(script, inputs, inputs_alwayson):
script.args_from = len(inputs)
script.args_to = len(inputs)
controls = wrap_call(script.ui, script.filename, "ui", is_img2img)
if controls is None:
- continue
+ return
for control in controls:
control.custom_script_source = os.path.basename(script.filename)
- control.visible = False
+ if not script.alwayson:
+ control.visible = False
+
+ if script.infotext_fields is not None:
+ self.infotext_fields += script.infotext_fields
inputs += controls
+ inputs_alwayson += [script.alwayson for _ in controls]
script.args_to = len(inputs)
+ for script in self.alwayson_scripts:
+ with gr.Group():
+ create_script_ui(script, inputs, inputs_alwayson)
+
+ dropdown = gr.Dropdown(label="Script", choices=["None"] + self.titles, value="None", type="index")
+ dropdown.save_to_config = True
+ inputs[0] = dropdown
+
+ for script in self.selectable_scripts:
+ create_script_ui(script, inputs, inputs_alwayson)
+
def select_script(script_index):
- if 0 < script_index <= len(self.scripts):
- script = self.scripts[script_index-1]
+ if 0 < script_index <= len(self.selectable_scripts):
+ script = self.selectable_scripts[script_index-1]
args_from = script.args_from
args_to = script.args_to
else:
args_from = 0
args_to = 0
- return [ui.gr_show(True if i == 0 else args_from <= i < args_to) for i in range(len(inputs))]
+ return [ui.gr_show(True if i == 0 else args_from <= i < args_to or is_alwayson) for i, is_alwayson in enumerate(inputs_alwayson)]
def init_field(title):
if title == 'None':
return
script_index = self.titles.index(title)
- script = self.scripts[script_index]
+ script = self.selectable_scripts[script_index]
for i in range(script.args_from, script.args_to):
inputs[i].visible = True
@@ -164,7 +255,7 @@ class ScriptRunner:
if script_index == 0:
return None
- script = self.scripts[script_index-1]
+ script = self.selectable_scripts[script_index-1]
if script is None:
return None
@@ -176,6 +267,15 @@ class ScriptRunner:
return processed
+ def run_alwayson_scripts(self, p):
+ for script in self.alwayson_scripts:
+ try:
+ script_args = p.script_args[script.args_from:script.args_to]
+ script.process(p, *script_args)
+ except Exception:
+ print(f"Error running alwayson script: {script.filename}", file=sys.stderr)
+ print(traceback.format_exc(), file=sys.stderr)
+
def reload_sources(self):
for si, script in list(enumerate(self.scripts)):
with open(script.filename, "r", encoding="utf8") as file:
@@ -197,19 +297,21 @@ class ScriptRunner:
self.scripts[si].args_from = args_from
self.scripts[si].args_to = args_to
+
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
+
def reload_script_body_only():
scripts_txt2img.reload_sources()
scripts_img2img.reload_sources()
-def reload_scripts(basedir):
+def reload_scripts():
global scripts_txt2img, scripts_img2img
- scripts_data.clear()
- load_scripts(basedir)
+ load_scripts()
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
+
diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py
index 1f8587d1..0f10828e 100644
--- a/modules/sd_hijack.py
+++ b/modules/sd_hijack.py
@@ -332,7 +332,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
multipliers.append([1.0] * 75)
z1 = self.process_tokens(tokens, multipliers)
- z1 = shared.aesthetic_clip(z1, remade_batch_tokens)
z = z1 if z is None else torch.cat((z, z1), axis=-2)
remade_batch_tokens = rem_tokens
diff --git a/modules/sd_models.py b/modules/sd_models.py
index d99dbce8..f9b3063d 100644
--- a/modules/sd_models.py
+++ b/modules/sd_models.py
@@ -7,7 +7,7 @@ from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
-from modules import shared, modelloader, devices
+from modules import shared, modelloader, devices, script_callbacks
from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
@@ -238,6 +238,9 @@ def load_model(checkpoint_info=None):
sd_hijack.model_hijack.hijack(sd_model)
sd_model.eval()
+ shared.sd_model = sd_model
+
+ script_callbacks.model_loaded_callback(sd_model)
print(f"Model loaded.")
return sd_model
@@ -252,7 +255,7 @@ def reload_model_weights(sd_model, info=None):
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
checkpoints_loaded.clear()
- shared.sd_model = load_model(checkpoint_info)
+ load_model(checkpoint_info)
return shared.sd_model
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
diff --git a/modules/shared.py b/modules/shared.py
index 0dbe360d..7d786f07 100644
--- a/modules/shared.py
+++ b/modules/shared.py
@@ -31,7 +31,6 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
-parser.add_argument("--aesthetic_embeddings-dir", type=str, default=os.path.join(models_path, 'aesthetic_embeddings'), help="aesthetic_embeddings directory(default: aesthetic_embeddings)")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui")
@@ -109,21 +108,6 @@ os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
loaded_hypernetwork = None
-
-os.makedirs(cmd_opts.aesthetic_embeddings_dir, exist_ok=True)
-aesthetic_embeddings = {}
-
-
-def update_aesthetic_embeddings():
- global aesthetic_embeddings
- aesthetic_embeddings = {f.replace(".pt", ""): os.path.join(cmd_opts.aesthetic_embeddings_dir, f) for f in
- os.listdir(cmd_opts.aesthetic_embeddings_dir) if f.endswith(".pt")}
- aesthetic_embeddings = OrderedDict(**{"None": None}, **aesthetic_embeddings)
-
-
-update_aesthetic_embeddings()
-
-
def reload_hypernetworks():
global hypernetworks
@@ -415,9 +399,6 @@ sd_model = None
clip_model = None
-from modules.aesthetic_clip import AestheticCLIP
-aesthetic_clip = AestheticCLIP()
-
progress_print_out = sys.stdout
diff --git a/modules/txt2img.py b/modules/txt2img.py
index 1761cfa2..c9d5a090 100644
--- a/modules/txt2img.py
+++ b/modules/txt2img.py
@@ -7,7 +7,7 @@ import modules.processing as processing
from modules.ui import plaintext_to_html
-def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, aesthetic_lr=0, aesthetic_weight=0, aesthetic_steps=0, aesthetic_imgs=None, aesthetic_slerp=False, aesthetic_imgs_text="", aesthetic_slerp_angle=0.15, aesthetic_text_negative=False, *args):
+def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, firstphase_width: int, firstphase_height: int, *args):
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@@ -36,7 +36,8 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
firstphase_height=firstphase_height if enable_hr else None,
)
- shared.aesthetic_clip.set_aesthetic_params(p, float(aesthetic_lr), float(aesthetic_weight), int(aesthetic_steps), aesthetic_imgs, aesthetic_slerp, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative)
+ p.scripts = modules.scripts.scripts_txt2img
+ p.script_args = args
if cmd_opts.enable_console_prompts:
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)
diff --git a/modules/ui.py b/modules/ui.py
index 70a9cf10..c977482c 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -23,10 +23,10 @@ import gradio as gr
import gradio.utils
import gradio.routes
-from modules import sd_hijack, sd_models, localization
+from modules import sd_hijack, sd_models, localization, script_callbacks
from modules.paths import script_path
-from modules.shared import opts, cmd_opts, restricted_opts, aesthetic_embeddings
+from modules.shared import opts, cmd_opts, restricted_opts
if cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
@@ -44,7 +44,6 @@ from modules.images import save_image
import modules.textual_inversion.ui
import modules.hypernetworks.ui
-import modules.aesthetic_clip as aesthetic_clip
import modules.images_history as img_his
@@ -662,8 +661,6 @@ def create_ui(wrap_gradio_gpu_call):
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
- aesthetic_weight, aesthetic_steps, aesthetic_lr, aesthetic_slerp, aesthetic_imgs, aesthetic_imgs_text, aesthetic_slerp_angle, aesthetic_text_negative = aesthetic_clip.create_ui()
-
with gr.Group():
custom_inputs = modules.scripts.scripts_txt2img.setup_ui(is_img2img=False)
@@ -718,14 +715,6 @@ def create_ui(wrap_gradio_gpu_call):
denoising_strength,
firstphase_width,
firstphase_height,
- aesthetic_lr,
- aesthetic_weight,
- aesthetic_steps,
- aesthetic_imgs,
- aesthetic_slerp,
- aesthetic_imgs_text,
- aesthetic_slerp_angle,
- aesthetic_text_negative
] + custom_inputs,
outputs=[
@@ -804,14 +793,7 @@ def create_ui(wrap_gradio_gpu_call):
(hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)),
(firstphase_width, "First pass size-1"),
(firstphase_height, "First pass size-2"),
- (aesthetic_lr, "Aesthetic LR"),
- (aesthetic_weight, "Aesthetic weight"),
- (aesthetic_steps, "Aesthetic steps"),
- (aesthetic_imgs, "Aesthetic embedding"),
- (aesthetic_slerp, "Aesthetic slerp"),
- (aesthetic_imgs_text, "Aesthetic text"),
- (aesthetic_text_negative, "Aesthetic text negative"),
- (aesthetic_slerp_angle, "Aesthetic slerp angle"),
+ *modules.scripts.scripts_txt2img.infotext_fields
]
txt2img_preview_params = [
@@ -896,8 +878,6 @@ def create_ui(wrap_gradio_gpu_call):
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs()
- aesthetic_weight_im, aesthetic_steps_im, aesthetic_lr_im, aesthetic_slerp_im, aesthetic_imgs_im, aesthetic_imgs_text_im, aesthetic_slerp_angle_im, aesthetic_text_negative_im = aesthetic_clip.create_ui()
-
with gr.Group():
custom_inputs = modules.scripts.scripts_img2img.setup_ui(is_img2img=True)
@@ -988,14 +968,6 @@ def create_ui(wrap_gradio_gpu_call):
inpainting_mask_invert,
img2img_batch_input_dir,
img2img_batch_output_dir,
- aesthetic_lr_im,
- aesthetic_weight_im,
- aesthetic_steps_im,
- aesthetic_imgs_im,
- aesthetic_slerp_im,
- aesthetic_imgs_text_im,
- aesthetic_slerp_angle_im,
- aesthetic_text_negative_im,
] + custom_inputs,
outputs=[
img2img_gallery,
@@ -1087,14 +1059,7 @@ def create_ui(wrap_gradio_gpu_call):
(seed_resize_from_w, "Seed resize from-1"),
(seed_resize_from_h, "Seed resize from-2"),
(denoising_strength, "Denoising strength"),
- (aesthetic_lr_im, "Aesthetic LR"),
- (aesthetic_weight_im, "Aesthetic weight"),
- (aesthetic_steps_im, "Aesthetic steps"),
- (aesthetic_imgs_im, "Aesthetic embedding"),
- (aesthetic_slerp_im, "Aesthetic slerp"),
- (aesthetic_imgs_text_im, "Aesthetic text"),
- (aesthetic_text_negative_im, "Aesthetic text negative"),
- (aesthetic_slerp_angle_im, "Aesthetic slerp angle"),
+ *modules.scripts.scripts_img2img.infotext_fields
]
token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
@@ -1217,9 +1182,9 @@ def create_ui(wrap_gradio_gpu_call):
)
#images history
images_history_switch_dict = {
- "fn":modules.generation_parameters_copypaste.connect_paste,
- "t2i":txt2img_paste_fields,
- "i2i":img2img_paste_fields
+ "fn": modules.generation_parameters_copypaste.connect_paste,
+ "t2i": txt2img_paste_fields,
+ "i2i": img2img_paste_fields
}
images_history = img_his.create_history_tabs(gr, opts, cmd_opts, wrap_gradio_call(modules.extras.run_pnginfo), images_history_switch_dict)
@@ -1264,18 +1229,6 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Column():
create_embedding = gr.Button(value="Create embedding", variant='primary')
- with gr.Tab(label="Create aesthetic images embedding"):
-
- new_embedding_name_ae = gr.Textbox(label="Name")
- process_src_ae = gr.Textbox(label='Source directory')
- batch_ae = gr.Slider(minimum=1, maximum=1024, step=1, label="Batch size", value=256)
- with gr.Row():
- with gr.Column(scale=3):
- gr.HTML(value="")
-
- with gr.Column():
- create_embedding_ae = gr.Button(value="Create images embedding", variant='primary')
-
with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
@@ -1375,21 +1328,6 @@ def create_ui(wrap_gradio_gpu_call):
]
)
- create_embedding_ae.click(
- fn=aesthetic_clip.generate_imgs_embd,
- inputs=[
- new_embedding_name_ae,
- process_src_ae,
- batch_ae
- ],
- outputs=[
- aesthetic_imgs,
- aesthetic_imgs_im,
- ti_output,
- ti_outcome,
- ]
- )
-
create_hypernetwork.click(
fn=modules.hypernetworks.ui.create_hypernetwork,
inputs=[
@@ -1580,10 +1518,10 @@ Requested path was: {f}
if not opts.same_type(value, opts.data_labels[key].default):
return gr.update(visible=True), opts.dumpjson()
+ oldval = opts.data.get(key, None)
if cmd_opts.hide_ui_dir_config and key in restricted_opts:
return gr.update(value=oldval), opts.dumpjson()
- oldval = opts.data.get(key, None)
opts.data[key] = value
if oldval != value:
@@ -1692,9 +1630,12 @@ Requested path was: {f}
(images_history, "Image Browser", "images_history"),
(modelmerger_interface, "Checkpoint Merger", "modelmerger"),
(train_interface, "Train", "ti"),
- (settings_interface, "Settings", "settings"),
]
+ interfaces += script_callbacks.ui_tabs_callback()
+
+ interfaces += [(settings_interface, "Settings", "settings")]
+
with open(os.path.join(script_path, "style.css"), "r", encoding="utf8") as file:
css = file.read()
diff --git a/webui.py b/webui.py
index 87589064..b1deca1b 100644
--- a/webui.py
+++ b/webui.py
@@ -71,6 +71,7 @@ def wrap_gradio_gpu_call(func, extra_outputs=None):
return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs)
+
def initialize():
modelloader.cleanup_models()
modules.sd_models.setup_model()
@@ -79,9 +80,9 @@ def initialize():
shared.face_restorers.append(modules.face_restoration.FaceRestoration())
modelloader.load_upscalers()
- modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
+ modules.scripts.load_scripts()
- shared.sd_model = modules.sd_models.load_model()
+ modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
@@ -145,7 +146,7 @@ def webui():
sd_samplers.set_samplers()
print('Reloading Custom Scripts')
- modules.scripts.reload_scripts(os.path.join(script_path, "scripts"))
+ modules.scripts.reload_scripts()
print('Reloading modules: modules.ui')
importlib.reload(modules.ui)
print('Refreshing Model List')
From 6398dc9b1049f242576ca309f95a3fb1e654951c Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Sat, 22 Oct 2022 13:34:49 +0300
Subject: [PATCH 098/100] further support for extensions
---
.gitignore | 1 +
README.md | 3 +--
modules/scripts.py | 44 +++++++++++++++++++++++++++++++++++---------
modules/ui.py | 19 ++++++++++---------
style.css | 2 +-
5 files changed, 48 insertions(+), 21 deletions(-)
diff --git a/.gitignore b/.gitignore
index 2f1e08ed..8fa05852 100644
--- a/.gitignore
+++ b/.gitignore
@@ -28,3 +28,4 @@ notification.mp3
/SwinIR
/textual_inversion
.vscode
+/extensions
diff --git a/README.md b/README.md
index 5b5dc8ba..6853aea0 100644
--- a/README.md
+++ b/README.md
@@ -83,8 +83,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
-- Aesthetic Gradients, a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
-
+- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
diff --git a/modules/scripts.py b/modules/scripts.py
index 65f25f49..9323af3e 100644
--- a/modules/scripts.py
+++ b/modules/scripts.py
@@ -102,17 +102,39 @@ def list_scripts(scriptdirname, extension):
if os.path.exists(extdir):
for dirname in sorted(os.listdir(extdir)):
dirpath = os.path.join(extdir, dirname)
- if not os.path.isdir(dirpath):
+ scriptdirpath = os.path.join(dirpath, scriptdirname)
+
+ if not os.path.isdir(scriptdirpath):
continue
- for filename in sorted(os.listdir(os.path.join(dirpath, scriptdirname))):
- scripts_list.append(ScriptFile(dirpath, filename, os.path.join(dirpath, scriptdirname, filename)))
+ for filename in sorted(os.listdir(scriptdirpath)):
+ scripts_list.append(ScriptFile(dirpath, filename, os.path.join(scriptdirpath, filename)))
scripts_list = [x for x in scripts_list if os.path.splitext(x.path)[1].lower() == extension and os.path.isfile(x.path)]
return scripts_list
+def list_files_with_name(filename):
+ res = []
+
+ dirs = [paths.script_path]
+
+ extdir = os.path.join(paths.script_path, "extensions")
+ if os.path.exists(extdir):
+ dirs += [os.path.join(extdir, d) for d in sorted(os.listdir(extdir))]
+
+ for dirpath in dirs:
+ if not os.path.isdir(dirpath):
+ continue
+
+ path = os.path.join(dirpath, filename)
+ if os.path.isfile(filename):
+ res.append(path)
+
+ return res
+
+
def load_scripts():
global current_basedir
scripts_data.clear()
@@ -276,7 +298,7 @@ class ScriptRunner:
print(f"Error running alwayson script: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
- def reload_sources(self):
+ def reload_sources(self, cache):
for si, script in list(enumerate(self.scripts)):
with open(script.filename, "r", encoding="utf8") as file:
args_from = script.args_from
@@ -286,9 +308,12 @@ class ScriptRunner:
from types import ModuleType
- compiled = compile(text, filename, 'exec')
- module = ModuleType(script.filename)
- exec(compiled, module.__dict__)
+ module = cache.get(filename, None)
+ if module is None:
+ compiled = compile(text, filename, 'exec')
+ module = ModuleType(script.filename)
+ exec(compiled, module.__dict__)
+ cache[filename] = module
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
@@ -303,8 +328,9 @@ scripts_img2img = ScriptRunner()
def reload_script_body_only():
- scripts_txt2img.reload_sources()
- scripts_img2img.reload_sources()
+ cache = {}
+ scripts_txt2img.reload_sources(cache)
+ scripts_img2img.reload_sources(cache)
def reload_scripts():
diff --git a/modules/ui.py b/modules/ui.py
index c977482c..29986124 100644
--- a/modules/ui.py
+++ b/modules/ui.py
@@ -1636,13 +1636,15 @@ Requested path was: {f}
interfaces += [(settings_interface, "Settings", "settings")]
- with open(os.path.join(script_path, "style.css"), "r", encoding="utf8") as file:
- css = file.read()
+ css = ""
+
+ for cssfile in modules.scripts.list_files_with_name("style.css"):
+ with open(cssfile, "r", encoding="utf8") as file:
+ css += file.read() + "\n"
if os.path.exists(os.path.join(script_path, "user.css")):
with open(os.path.join(script_path, "user.css"), "r", encoding="utf8") as file:
- usercss = file.read()
- css += usercss
+ css += file.read() + "\n"
if not cmd_opts.no_progressbar_hiding:
css += css_hide_progressbar
@@ -1865,9 +1867,9 @@ def load_javascript(raw_response):
with open(os.path.join(script_path, "script.js"), "r", encoding="utf8") as jsfile:
javascript = f''
- jsdir = os.path.join(script_path, "javascript")
- for filename in sorted(os.listdir(jsdir)):
- with open(os.path.join(jsdir, filename), "r", encoding="utf8") as jsfile:
+ scripts_list = modules.scripts.list_scripts("javascript", ".js")
+ for basedir, filename, path in scripts_list:
+ with open(path, "r", encoding="utf8") as jsfile:
javascript += f"\n"
if cmd_opts.theme is not None:
@@ -1885,6 +1887,5 @@ def load_javascript(raw_response):
gradio.routes.templates.TemplateResponse = template_response
-reload_javascript = partial(load_javascript,
- gradio.routes.templates.TemplateResponse)
+reload_javascript = partial(load_javascript, gradio.routes.templates.TemplateResponse)
reload_javascript()
diff --git a/style.css b/style.css
index 5d2bacc9..26ae36a5 100644
--- a/style.css
+++ b/style.css
@@ -477,7 +477,7 @@ input[type="range"]{
padding: 0;
}
-#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization, #refresh_aesthetic_embeddings{
+#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name, #refresh_localization{
max-width: 2.5em;
min-width: 2.5em;
height: 2.4em;
From 5aa9525046b7520d39fe8fc8c5c6cc10ab4d5fdb Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Sat, 22 Oct 2022 13:40:07 +0300
Subject: [PATCH 099/100] updated readme with info about Aesthetic Gradients
---
README.md | 10 ++++++++++
1 file changed, 10 insertions(+)
diff --git a/README.md b/README.md
index 6853aea0..1a0e4f6a 100644
--- a/README.md
+++ b/README.md
@@ -85,6 +85,16 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
+## Where are Aesthetic Gradients?!?!
+Aesthetic Gradients are now an extension. You can install it using git:
+
+```commandline
+git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients extensions/aesthetic-gradients
+```
+
+After running this command, make sure that you have `aesthetic-gradients` dir in webui's `extensions` directory and restart
+the UI. The interface for Aesthetic Gradients should appear exactly the same as it was.
+
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
From 50b5504401e50b6c94eba41b37fe212b2f27b792 Mon Sep 17 00:00:00 2001
From: AUTOMATIC <16777216c@gmail.com>
Date: Sat, 22 Oct 2022 14:04:14 +0300
Subject: [PATCH 100/100] remove parsing command line from devices.py
---
modules/devices.py | 14 +++++---------
modules/lowvram.py | 9 ++++-----
2 files changed, 9 insertions(+), 14 deletions(-)
diff --git a/modules/devices.py b/modules/devices.py
index 8a159282..dc1f3cdd 100644
--- a/modules/devices.py
+++ b/modules/devices.py
@@ -15,14 +15,10 @@ def extract_device_id(args, name):
def get_optimal_device():
if torch.cuda.is_available():
- # CUDA device selection support:
- if "shared" not in sys.modules:
- commandline_args = os.environ.get('COMMANDLINE_ARGS', "") #re-parse the commandline arguments because using the shared.py module creates an import loop.
- sys.argv += shlex.split(commandline_args)
- device_id = extract_device_id(sys.argv, '--device-id')
- else:
- device_id = shared.cmd_opts.device_id
-
+ from modules import shared
+
+ device_id = shared.cmd_opts.device_id
+
if device_id is not None:
cuda_device = f"cuda:{device_id}"
return torch.device(cuda_device)
@@ -49,7 +45,7 @@ def enable_tf32():
errors.run(enable_tf32, "Enabling TF32")
-device = device_interrogate = device_gfpgan = device_bsrgan = device_esrgan = device_scunet = device_codeformer = get_optimal_device()
+device = device_interrogate = device_gfpgan = device_bsrgan = device_esrgan = device_scunet = device_codeformer = None
dtype = torch.float16
dtype_vae = torch.float16
diff --git a/modules/lowvram.py b/modules/lowvram.py
index 7eba1349..f327c3df 100644
--- a/modules/lowvram.py
+++ b/modules/lowvram.py
@@ -1,9 +1,8 @@
import torch
-from modules.devices import get_optimal_device
+from modules import devices
module_in_gpu = None
cpu = torch.device("cpu")
-device = gpu = get_optimal_device()
def send_everything_to_cpu():
@@ -33,7 +32,7 @@ def setup_for_low_vram(sd_model, use_medvram):
if module_in_gpu is not None:
module_in_gpu.to(cpu)
- module.to(gpu)
+ module.to(devices.device)
module_in_gpu = module
# see below for register_forward_pre_hook;
@@ -51,7 +50,7 @@ def setup_for_low_vram(sd_model, use_medvram):
# send the model to GPU. Then put modules back. the modules will be in CPU.
stored = sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = None, None, None
- sd_model.to(device)
+ sd_model.to(devices.device)
sd_model.cond_stage_model.transformer, sd_model.first_stage_model, sd_model.model = stored
# register hooks for those the first two models
@@ -70,7 +69,7 @@ def setup_for_low_vram(sd_model, use_medvram):
# so that only one of them is in GPU at a time
stored = diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = None, None, None, None
- sd_model.model.to(device)
+ sd_model.model.to(devices.device)
diff_model.input_blocks, diff_model.middle_block, diff_model.output_blocks, diff_model.time_embed = stored
# install hooks for bits of third model