diff --git a/modules/sd_models.py b/modules/sd_models.py index 139952ba..5b37f3fe 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -227,6 +227,8 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.sd_model_checkpoint = checkpoint_file model.sd_checkpoint_info = checkpoint_info + sd_vae.delete_base_vae() + sd_vae.clear_loaded_vae() vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) sd_vae.load_vae(model, vae_file) diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 9c120975..25638a83 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -4,6 +4,7 @@ from collections import namedtuple from modules import shared, devices, script_callbacks from modules.paths import models_path import glob +from copy import deepcopy model_dir = "Stable-diffusion" @@ -15,7 +16,7 @@ vae_path = os.path.abspath(os.path.join(models_path, vae_dir)) vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} -default_vae_dict = {"auto": "auto", "None": "None"} +default_vae_dict = {"auto": "auto", "None": None, None: None} default_vae_list = ["auto", "None"] @@ -39,7 +40,8 @@ def get_base_vae(model): def store_base_vae(model): global base_vae, checkpoint_info if checkpoint_info != model.sd_checkpoint_info: - base_vae = model.first_stage_model.state_dict().copy() + assert not loaded_vae_file, "Trying to store non-base VAE!" + base_vae = deepcopy(model.first_stage_model.state_dict()) checkpoint_info = model.sd_checkpoint_info @@ -50,9 +52,11 @@ def delete_base_vae(): def restore_base_vae(model): - global base_vae, checkpoint_info + global loaded_vae_file if base_vae is not None and checkpoint_info == model.sd_checkpoint_info: - load_vae_dict(model, base_vae) + print("Restoring base VAE") + _load_vae_dict(model, base_vae) + loaded_vae_file = None delete_base_vae() @@ -148,9 +152,10 @@ def load_vae(model, vae_file=None): if vae_file: assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}" print(f"Loading VAE weights from: {vae_file}") + store_base_vae(model) vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} - load_vae_dict(model, vae_dict_1) + _load_vae_dict(model, vae_dict_1) # If vae used is not in dict, update it # It will be removed on refresh though @@ -158,30 +163,22 @@ def load_vae(model, vae_file=None): if vae_opt not in vae_dict: vae_dict[vae_opt] = vae_file vae_list.append(vae_opt) + elif loaded_vae_file: + restore_base_vae(model) loaded_vae_file = vae_file - """ - # Save current VAE to VAE settings, maybe? will it work? - if save_settings: - if vae_file is None: - vae_opt = "None" - - # shared.opts.sd_vae = vae_opt - """ - first_load = False # don't call this from outside -def load_vae_dict(model, vae_dict_1=None): - if vae_dict_1: - store_base_vae(model) - model.first_stage_model.load_state_dict(vae_dict_1) - else: - restore_base_vae() +def _load_vae_dict(model, vae_dict_1): + model.first_stage_model.load_state_dict(vae_dict_1) model.first_stage_model.to(devices.dtype_vae) +def clear_loaded_vae(): + global loaded_vae_file + loaded_vae_file = None def reload_vae_weights(sd_model=None, vae_file="auto"): from modules import lowvram, devices, sd_hijack