mirror of
https://github.com/openvinotoolkit/stable-diffusion-webui.git
synced 2024-12-15 07:03:06 +03:00
prototype progress api
This commit is contained in:
parent
99d728b5b1
commit
fddb4883f4
@ -1,8 +1,11 @@
|
||||
import time
|
||||
|
||||
from modules.api.models import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||
from modules.sd_samplers import all_samplers
|
||||
from modules.extras import run_pnginfo
|
||||
import modules.shared as shared
|
||||
from modules import devices
|
||||
import uvicorn
|
||||
from fastapi import Body, APIRouter, HTTPException
|
||||
from fastapi.responses import JSONResponse
|
||||
@ -25,6 +28,37 @@ class ImageToImageResponse(BaseModel):
|
||||
parameters: Json
|
||||
info: Json
|
||||
|
||||
class ProgressResponse(BaseModel):
|
||||
progress: float
|
||||
eta_relative: float
|
||||
state: Json
|
||||
|
||||
# copy from wrap_gradio_gpu_call of webui.py
|
||||
# because queue lock will be acquired in api handlers
|
||||
# and time start needs to be set
|
||||
# the function has been modified into two parts
|
||||
|
||||
def before_gpu_call():
|
||||
devices.torch_gc()
|
||||
|
||||
shared.state.sampling_step = 0
|
||||
shared.state.job_count = -1
|
||||
shared.state.job_no = 0
|
||||
shared.state.job_timestamp = shared.state.get_job_timestamp()
|
||||
shared.state.current_latent = None
|
||||
shared.state.current_image = None
|
||||
shared.state.current_image_sampling_step = 0
|
||||
shared.state.skipped = False
|
||||
shared.state.interrupted = False
|
||||
shared.state.textinfo = None
|
||||
shared.state.time_start = time.time()
|
||||
|
||||
|
||||
def after_gpu_call():
|
||||
shared.state.job = ""
|
||||
shared.state.job_count = 0
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
class Api:
|
||||
def __init__(self, app, queue_lock):
|
||||
@ -33,6 +67,7 @@ class Api:
|
||||
self.queue_lock = queue_lock
|
||||
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"])
|
||||
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"])
|
||||
self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"])
|
||||
|
||||
def __base64_to_image(self, base64_string):
|
||||
# if has a comma, deal with prefix
|
||||
@ -44,12 +79,12 @@ class Api:
|
||||
|
||||
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
|
||||
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
||||
|
||||
|
||||
if sampler_index is None:
|
||||
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||
|
||||
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||
|
||||
populate = txt2imgreq.copy(update={ # Override __init__ params
|
||||
"sd_model": shared.sd_model,
|
||||
"sd_model": shared.sd_model,
|
||||
"sampler_index": sampler_index[0],
|
||||
"do_not_save_samples": True,
|
||||
"do_not_save_grid": True
|
||||
@ -57,9 +92,11 @@ class Api:
|
||||
)
|
||||
p = StableDiffusionProcessingTxt2Img(**vars(populate))
|
||||
# Override object param
|
||||
before_gpu_call()
|
||||
with self.queue_lock:
|
||||
processed = process_images(p)
|
||||
|
||||
after_gpu_call()
|
||||
|
||||
b64images = []
|
||||
for i in processed.images:
|
||||
buffer = io.BytesIO()
|
||||
@ -67,30 +104,30 @@ class Api:
|
||||
b64images.append(base64.b64encode(buffer.getvalue()))
|
||||
|
||||
return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=processed.js())
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
|
||||
sampler_index = sampler_to_index(img2imgreq.sampler_index)
|
||||
|
||||
|
||||
if sampler_index is None:
|
||||
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||
|
||||
|
||||
init_images = img2imgreq.init_images
|
||||
if init_images is None:
|
||||
raise HTTPException(status_code=404, detail="Init image not found")
|
||||
raise HTTPException(status_code=404, detail="Init image not found")
|
||||
|
||||
mask = img2imgreq.mask
|
||||
if mask:
|
||||
mask = self.__base64_to_image(mask)
|
||||
|
||||
|
||||
|
||||
populate = img2imgreq.copy(update={ # Override __init__ params
|
||||
"sd_model": shared.sd_model,
|
||||
"sd_model": shared.sd_model,
|
||||
"sampler_index": sampler_index[0],
|
||||
"do_not_save_samples": True,
|
||||
"do_not_save_grid": True,
|
||||
"do_not_save_grid": True,
|
||||
"mask": mask
|
||||
}
|
||||
)
|
||||
@ -103,9 +140,11 @@ class Api:
|
||||
|
||||
p.init_images = imgs
|
||||
# Override object param
|
||||
before_gpu_call()
|
||||
with self.queue_lock:
|
||||
processed = process_images(p)
|
||||
|
||||
after_gpu_call()
|
||||
|
||||
b64images = []
|
||||
for i in processed.images:
|
||||
buffer = io.BytesIO()
|
||||
@ -118,6 +157,28 @@ class Api:
|
||||
|
||||
return ImageToImageResponse(images=b64images, parameters=json.dumps(vars(img2imgreq)), info=processed.js())
|
||||
|
||||
def progressapi(self):
|
||||
# copy from check_progress_call of ui.py
|
||||
|
||||
if shared.state.job_count == 0:
|
||||
return ProgressResponse(progress=0, eta_relative=0, state=shared.state.js())
|
||||
|
||||
# avoid dividing zero
|
||||
progress = 0.01
|
||||
|
||||
if shared.state.job_count > 0:
|
||||
progress += shared.state.job_no / shared.state.job_count
|
||||
if shared.state.sampling_steps > 0:
|
||||
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
|
||||
|
||||
time_since_start = time.time() - shared.state.time_start
|
||||
eta = (time_since_start/progress)
|
||||
eta_relative = eta-time_since_start
|
||||
|
||||
progress = min(progress, 1)
|
||||
|
||||
return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.js())
|
||||
|
||||
def extrasapi(self):
|
||||
raise NotImplementedError
|
||||
|
||||
|
@ -146,6 +146,19 @@ class State:
|
||||
def get_job_timestamp(self):
|
||||
return datetime.datetime.now().strftime("%Y%m%d%H%M%S") # shouldn't this return job_timestamp?
|
||||
|
||||
def js(self):
|
||||
obj = {
|
||||
"skipped": self.skipped,
|
||||
"interrupted": self.skipped,
|
||||
"job": self.job,
|
||||
"job_count": self.job_count,
|
||||
"job_no": self.job_no,
|
||||
"sampling_step": self.sampling_step,
|
||||
"sampling_steps": self.sampling_steps,
|
||||
}
|
||||
|
||||
return json.dumps(obj)
|
||||
|
||||
|
||||
state = State()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user