import torch from modules import errors # has_mps is only available in nightly pytorch (for now), `getattr` for compatibility has_mps = getattr(torch, 'has_mps', False) cpu = torch.device("cpu") def get_optimal_device(): if torch.cuda.is_available(): return torch.device("cuda") if has_mps: return torch.device("mps") return cpu def torch_gc(): if torch.cuda.is_available(): torch.cuda.empty_cache() torch.cuda.ipc_collect() def enable_tf32(): if torch.cuda.is_available(): torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True errors.run(enable_tf32, "Enabling TF32") device = device_gfpgan = device_esrgan = device_scunet = device_codeformer = get_optimal_device() dtype = torch.float16 def randn(seed, shape): # Pytorch currently doesn't handle setting randomness correctly when the metal backend is used. if device.type == 'mps': generator = torch.Generator(device=cpu) generator.manual_seed(seed) noise = torch.randn(shape, generator=generator, device=cpu).to(device) return noise torch.manual_seed(seed) return torch.randn(shape, device=device) def randn_without_seed(shape): # Pytorch currently doesn't handle setting randomness correctly when the metal backend is used. if device.type == 'mps': generator = torch.Generator(device=cpu) noise = torch.randn(shape, generator=generator, device=cpu).to(device) return noise return torch.randn(shape, device=device)