import glob import os import re import torch from typing import Union from modules import shared, devices, sd_models, errors metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20} re_digits = re.compile(r"\d+") re_x_proj = re.compile(r"(.*)_([qkv]_proj)$") re_compiled = {} suffix_conversion = { "attentions": {}, "resnets": { "conv1": "in_layers_2", "conv2": "out_layers_3", "time_emb_proj": "emb_layers_1", "conv_shortcut": "skip_connection", } } def convert_diffusers_name_to_compvis(key, is_sd2): def match(match_list, regex_text): regex = re_compiled.get(regex_text) if regex is None: regex = re.compile(regex_text) re_compiled[regex_text] = regex r = re.match(regex, key) if not r: return False match_list.clear() match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()]) return True m = [] if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"): suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2]) return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}" if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"): suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3]) return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}" if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"): return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op" if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"): return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv" if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"): if is_sd2: if 'mlp_fc1' in m[1]: return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}" elif 'mlp_fc2' in m[1]: return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}" else: return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}" return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}" return key class LoraOnDisk: def __init__(self, name, filename): self.name = name self.filename = filename self.metadata = {} _, ext = os.path.splitext(filename) if ext.lower() == ".safetensors": try: self.metadata = sd_models.read_metadata_from_safetensors(filename) except Exception as e: errors.display(e, f"reading lora {filename}") if self.metadata: m = {} for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)): m[k] = v self.metadata = m self.ssmd_cover_images = self.metadata.pop('ssmd_cover_images', None) # those are cover images and they are too big to display in UI as text self.alias = self.metadata.get('ss_output_name', self.name) class LoraModule: def __init__(self, name): self.name = name self.multiplier = 1.0 self.modules = {} self.mtime = None class LoraUpDownModule: def __init__(self): self.up = None self.down = None self.alpha = None def assign_lora_names_to_compvis_modules(sd_model): lora_layer_mapping = {} for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules(): lora_name = name.replace(".", "_") lora_layer_mapping[lora_name] = module module.lora_layer_name = lora_name for name, module in shared.sd_model.model.named_modules(): lora_name = name.replace(".", "_") lora_layer_mapping[lora_name] = module module.lora_layer_name = lora_name sd_model.lora_layer_mapping = lora_layer_mapping def load_lora(name, filename): lora = LoraModule(name) lora.mtime = os.path.getmtime(filename) sd = sd_models.read_state_dict(filename) keys_failed_to_match = {} is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping for key_diffusers, weight in sd.items(): key_diffusers_without_lora_parts, lora_key = key_diffusers.split(".", 1) key = convert_diffusers_name_to_compvis(key_diffusers_without_lora_parts, is_sd2) sd_module = shared.sd_model.lora_layer_mapping.get(key, None) if sd_module is None: m = re_x_proj.match(key) if m: sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None) if sd_module is None: keys_failed_to_match[key_diffusers] = key continue lora_module = lora.modules.get(key, None) if lora_module is None: lora_module = LoraUpDownModule() lora.modules[key] = lora_module if lora_key == "alpha": lora_module.alpha = weight.item() continue if type(sd_module) == torch.nn.Linear: module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear: module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) elif type(sd_module) == torch.nn.MultiheadAttention: module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False) elif type(sd_module) == torch.nn.Conv2d: module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False) else: print(f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}') continue assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}' with torch.no_grad(): module.weight.copy_(weight) module.to(device=devices.cpu, dtype=devices.dtype) if lora_key == "lora_up.weight": lora_module.up = module elif lora_key == "lora_down.weight": lora_module.down = module else: assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha' if len(keys_failed_to_match) > 0: print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}") return lora def load_loras(names, multipliers=None): already_loaded = {} for lora in loaded_loras: if lora.name in names: already_loaded[lora.name] = lora loaded_loras.clear() loras_on_disk = [available_lora_aliases.get(name, None) for name in names] if any([x is None for x in loras_on_disk]): list_available_loras() loras_on_disk = [available_lora_aliases.get(name, None) for name in names] for i, name in enumerate(names): lora = already_loaded.get(name, None) lora_on_disk = loras_on_disk[i] if lora_on_disk is not None: if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime: try: lora = load_lora(name, lora_on_disk.filename) except Exception as e: errors.display(e, f"loading Lora {lora_on_disk.filename}") continue if lora is None: print(f"Couldn't find Lora with name {name}") continue lora.multiplier = multipliers[i] if multipliers else 1.0 loaded_loras.append(lora) def lora_calc_updown(lora, module, target): with torch.no_grad(): up = module.up.weight.to(target.device, dtype=target.dtype) down = module.down.weight.to(target.device, dtype=target.dtype) if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1): updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3) else: updown = up @ down updown = updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0) return updown def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): """ Applies the currently selected set of Loras to the weights of torch layer self. If weights already have this particular set of loras applied, does nothing. If not, restores orginal weights from backup and alters weights according to loras. """ lora_layer_name = getattr(self, 'lora_layer_name', None) if lora_layer_name is None: return current_names = getattr(self, "lora_current_names", ()) wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras) weights_backup = getattr(self, "lora_weights_backup", None) if weights_backup is None: if isinstance(self, torch.nn.MultiheadAttention): weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True)) else: weights_backup = self.weight.to(devices.cpu, copy=True) self.lora_weights_backup = weights_backup if current_names != wanted_names: if weights_backup is not None: if isinstance(self, torch.nn.MultiheadAttention): self.in_proj_weight.copy_(weights_backup[0]) self.out_proj.weight.copy_(weights_backup[1]) else: self.weight.copy_(weights_backup) for lora in loaded_loras: module = lora.modules.get(lora_layer_name, None) if module is not None and hasattr(self, 'weight'): self.weight += lora_calc_updown(lora, module, self.weight) continue module_q = lora.modules.get(lora_layer_name + "_q_proj", None) module_k = lora.modules.get(lora_layer_name + "_k_proj", None) module_v = lora.modules.get(lora_layer_name + "_v_proj", None) module_out = lora.modules.get(lora_layer_name + "_out_proj", None) if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out: updown_q = lora_calc_updown(lora, module_q, self.in_proj_weight) updown_k = lora_calc_updown(lora, module_k, self.in_proj_weight) updown_v = lora_calc_updown(lora, module_v, self.in_proj_weight) updown_qkv = torch.vstack([updown_q, updown_k, updown_v]) self.in_proj_weight += updown_qkv self.out_proj.weight += lora_calc_updown(lora, module_out, self.out_proj.weight) continue if module is None: continue print(f'failed to calculate lora weights for layer {lora_layer_name}') setattr(self, "lora_current_names", wanted_names) def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]): setattr(self, "lora_current_names", ()) setattr(self, "lora_weights_backup", None) def lora_Linear_forward(self, input): lora_apply_weights(self) return torch.nn.Linear_forward_before_lora(self, input) def lora_Linear_load_state_dict(self, *args, **kwargs): lora_reset_cached_weight(self) return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs) def lora_Conv2d_forward(self, input): lora_apply_weights(self) return torch.nn.Conv2d_forward_before_lora(self, input) def lora_Conv2d_load_state_dict(self, *args, **kwargs): lora_reset_cached_weight(self) return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs) def lora_MultiheadAttention_forward(self, *args, **kwargs): lora_apply_weights(self) return torch.nn.MultiheadAttention_forward_before_lora(self, *args, **kwargs) def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs): lora_reset_cached_weight(self) return torch.nn.MultiheadAttention_load_state_dict_before_lora(self, *args, **kwargs) def list_available_loras(): available_loras.clear() available_lora_aliases.clear() os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True) candidates = \ glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.pt'), recursive=True) + \ glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.safetensors'), recursive=True) + \ glob.glob(os.path.join(shared.cmd_opts.lora_dir, '**/*.ckpt'), recursive=True) for filename in sorted(candidates, key=str.lower): if os.path.isdir(filename): continue name = os.path.splitext(os.path.basename(filename))[0] entry = LoraOnDisk(name, filename) available_loras[name] = entry available_lora_aliases[name] = entry available_lora_aliases[entry.alias] = entry available_loras = {} available_lora_aliases = {} loaded_loras = [] list_available_loras()