import ldm.modules.encoders.modules import open_clip import torch import transformers.utils.hub class DisableInitialization: """ When an object of this class enters a `with` block, it starts: - preventing torch's layer initialization functions from working - changes CLIP and OpenCLIP to not download model weights - changes CLIP to not make requests to check if there is a new version of a file you already have When it leaves the block, it reverts everything to how it was before. Use it like this: ``` with DisableInitialization(): do_things() ``` """ def __enter__(self): def do_nothing(*args, **kwargs): pass def create_model_and_transforms_without_pretrained(*args, pretrained=None, **kwargs): return self.create_model_and_transforms(*args, pretrained=None, **kwargs) def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs): return self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs) def transformers_modeling_utils_load_pretrained_model(*args, **kwargs): args = args[0:3] + ('/', ) + args[4:] # resolved_archive_file; must set it to something to prevent what seems to be a bug return self.transformers_modeling_utils_load_pretrained_model(*args, **kwargs) def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs): # this file is always 404, prevent making request if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json': raise transformers.utils.hub.EntryNotFoundError try: return original(url, *args, local_files_only=True, **kwargs) except Exception as e: return original(url, *args, local_files_only=False, **kwargs) def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs): return transformers_utils_hub_get_file_from_cache(self.transformers_utils_hub_get_from_cache, url, *args, **kwargs) def transformers_tokenization_utils_base_cached_file(url, *args, local_files_only=False, **kwargs): return transformers_utils_hub_get_file_from_cache(self.transformers_tokenization_utils_base_cached_file, url, *args, **kwargs) def transformers_configuration_utils_cached_file(url, *args, local_files_only=False, **kwargs): return transformers_utils_hub_get_file_from_cache(self.transformers_configuration_utils_cached_file, url, *args, **kwargs) self.init_kaiming_uniform = torch.nn.init.kaiming_uniform_ self.init_no_grad_normal = torch.nn.init._no_grad_normal_ self.init_no_grad_uniform_ = torch.nn.init._no_grad_uniform_ self.create_model_and_transforms = open_clip.create_model_and_transforms self.CLIPTextModel_from_pretrained = ldm.modules.encoders.modules.CLIPTextModel.from_pretrained self.transformers_modeling_utils_load_pretrained_model = getattr(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', None) self.transformers_tokenization_utils_base_cached_file = getattr(transformers.tokenization_utils_base, 'cached_file', None) self.transformers_configuration_utils_cached_file = getattr(transformers.configuration_utils, 'cached_file', None) self.transformers_utils_hub_get_from_cache = getattr(transformers.utils.hub, 'get_from_cache', None) torch.nn.init.kaiming_uniform_ = do_nothing torch.nn.init._no_grad_normal_ = do_nothing torch.nn.init._no_grad_uniform_ = do_nothing open_clip.create_model_and_transforms = create_model_and_transforms_without_pretrained ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = CLIPTextModel_from_pretrained if self.transformers_modeling_utils_load_pretrained_model is not None: transformers.modeling_utils.PreTrainedModel._load_pretrained_model = transformers_modeling_utils_load_pretrained_model if self.transformers_tokenization_utils_base_cached_file is not None: transformers.tokenization_utils_base.cached_file = transformers_tokenization_utils_base_cached_file if self.transformers_configuration_utils_cached_file is not None: transformers.configuration_utils.cached_file = transformers_configuration_utils_cached_file if self.transformers_utils_hub_get_from_cache is not None: transformers.utils.hub.get_from_cache = transformers_utils_hub_get_from_cache def __exit__(self, exc_type, exc_val, exc_tb): torch.nn.init.kaiming_uniform_ = self.init_kaiming_uniform torch.nn.init._no_grad_normal_ = self.init_no_grad_normal torch.nn.init._no_grad_uniform_ = self.init_no_grad_uniform_ open_clip.create_model_and_transforms = self.create_model_and_transforms ldm.modules.encoders.modules.CLIPTextModel.from_pretrained = self.CLIPTextModel_from_pretrained if self.transformers_modeling_utils_load_pretrained_model is not None: transformers.modeling_utils.PreTrainedModel._load_pretrained_model = self.transformers_modeling_utils_load_pretrained_model if self.transformers_tokenization_utils_base_cached_file is not None: transformers.utils.hub.cached_file = self.transformers_tokenization_utils_base_cached_file if self.transformers_configuration_utils_cached_file is not None: transformers.utils.hub.cached_file = self.transformers_configuration_utils_cached_file if self.transformers_utils_hub_get_from_cache is not None: transformers.utils.hub.get_from_cache = self.transformers_utils_hub_get_from_cache