mirror of
https://github.com/openvinotoolkit/stable-diffusion-webui.git
synced 2024-12-14 14:45:06 +03:00
1db7d21283
Improvements to handle VAE filenames in generated image filenames Body:. 1) Added new line 24 to import sd_vae module. 2) Added new method get_vae_filename at lines 340-349 to obtain the VAE filename to be used for image generation and further process it to extract only the filename by splitting it with a dot symbol. 3) Added a new lambda function 'vae_filename' at line 373 to handle VAE filenames. Reason:. A function was needed to get the VAE filename and handle it in the program. Test:. We tested whether we could use this new functionality to get the expected file names. The correct behaviour was confirmed for the following commonly distributed VAE files. vae-ft-mse-840000-ema-pruned.safetensors -> vae-ft-mse-840000-ema-pruned anything-v4.0.vae.pt -> anything-v4.0 ruff response:. There were no problems with the code I added. There was a minor configuration error in a line I did not modify, but I did not modify it as it was not relevant to this modification. Logged. images.py:426:56: F841 [*] Local variable `_` is assigned to but never used images.py:432:43: F841 [*] Local variable `_` is assigned to but never used Impact:. This change makes it easier to retrieve the VAE filename used for image generation and use it in the programme.
718 lines
28 KiB
Python
718 lines
28 KiB
Python
import datetime
|
|
import sys
|
|
import traceback
|
|
|
|
import pytz
|
|
import io
|
|
import math
|
|
import os
|
|
from collections import namedtuple
|
|
import re
|
|
|
|
import numpy as np
|
|
import piexif
|
|
import piexif.helper
|
|
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
|
|
from fonts.ttf import Roboto
|
|
import string
|
|
import json
|
|
import hashlib
|
|
|
|
from modules import sd_samplers, shared, script_callbacks, errors
|
|
from modules.shared import opts, cmd_opts
|
|
|
|
import modules.sd_vae as sd_vae
|
|
|
|
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
|
|
|
|
|
|
def image_grid(imgs, batch_size=1, rows=None):
|
|
if rows is None:
|
|
if opts.n_rows > 0:
|
|
rows = opts.n_rows
|
|
elif opts.n_rows == 0:
|
|
rows = batch_size
|
|
elif opts.grid_prevent_empty_spots:
|
|
rows = math.floor(math.sqrt(len(imgs)))
|
|
while len(imgs) % rows != 0:
|
|
rows -= 1
|
|
else:
|
|
rows = math.sqrt(len(imgs))
|
|
rows = round(rows)
|
|
if rows > len(imgs):
|
|
rows = len(imgs)
|
|
|
|
cols = math.ceil(len(imgs) / rows)
|
|
|
|
params = script_callbacks.ImageGridLoopParams(imgs, cols, rows)
|
|
script_callbacks.image_grid_callback(params)
|
|
|
|
w, h = imgs[0].size
|
|
grid = Image.new('RGB', size=(params.cols * w, params.rows * h), color='black')
|
|
|
|
for i, img in enumerate(params.imgs):
|
|
grid.paste(img, box=(i % params.cols * w, i // params.cols * h))
|
|
|
|
return grid
|
|
|
|
|
|
Grid = namedtuple("Grid", ["tiles", "tile_w", "tile_h", "image_w", "image_h", "overlap"])
|
|
|
|
|
|
def split_grid(image, tile_w=512, tile_h=512, overlap=64):
|
|
w = image.width
|
|
h = image.height
|
|
|
|
non_overlap_width = tile_w - overlap
|
|
non_overlap_height = tile_h - overlap
|
|
|
|
cols = math.ceil((w - overlap) / non_overlap_width)
|
|
rows = math.ceil((h - overlap) / non_overlap_height)
|
|
|
|
dx = (w - tile_w) / (cols - 1) if cols > 1 else 0
|
|
dy = (h - tile_h) / (rows - 1) if rows > 1 else 0
|
|
|
|
grid = Grid([], tile_w, tile_h, w, h, overlap)
|
|
for row in range(rows):
|
|
row_images = []
|
|
|
|
y = int(row * dy)
|
|
|
|
if y + tile_h >= h:
|
|
y = h - tile_h
|
|
|
|
for col in range(cols):
|
|
x = int(col * dx)
|
|
|
|
if x + tile_w >= w:
|
|
x = w - tile_w
|
|
|
|
tile = image.crop((x, y, x + tile_w, y + tile_h))
|
|
|
|
row_images.append([x, tile_w, tile])
|
|
|
|
grid.tiles.append([y, tile_h, row_images])
|
|
|
|
return grid
|
|
|
|
|
|
def combine_grid(grid):
|
|
def make_mask_image(r):
|
|
r = r * 255 / grid.overlap
|
|
r = r.astype(np.uint8)
|
|
return Image.fromarray(r, 'L')
|
|
|
|
mask_w = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((1, grid.overlap)).repeat(grid.tile_h, axis=0))
|
|
mask_h = make_mask_image(np.arange(grid.overlap, dtype=np.float32).reshape((grid.overlap, 1)).repeat(grid.image_w, axis=1))
|
|
|
|
combined_image = Image.new("RGB", (grid.image_w, grid.image_h))
|
|
for y, h, row in grid.tiles:
|
|
combined_row = Image.new("RGB", (grid.image_w, h))
|
|
for x, w, tile in row:
|
|
if x == 0:
|
|
combined_row.paste(tile, (0, 0))
|
|
continue
|
|
|
|
combined_row.paste(tile.crop((0, 0, grid.overlap, h)), (x, 0), mask=mask_w)
|
|
combined_row.paste(tile.crop((grid.overlap, 0, w, h)), (x + grid.overlap, 0))
|
|
|
|
if y == 0:
|
|
combined_image.paste(combined_row, (0, 0))
|
|
continue
|
|
|
|
combined_image.paste(combined_row.crop((0, 0, combined_row.width, grid.overlap)), (0, y), mask=mask_h)
|
|
combined_image.paste(combined_row.crop((0, grid.overlap, combined_row.width, h)), (0, y + grid.overlap))
|
|
|
|
return combined_image
|
|
|
|
|
|
class GridAnnotation:
|
|
def __init__(self, text='', is_active=True):
|
|
self.text = text
|
|
self.is_active = is_active
|
|
self.size = None
|
|
|
|
|
|
def draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin=0):
|
|
def wrap(drawing, text, font, line_length):
|
|
lines = ['']
|
|
for word in text.split():
|
|
line = f'{lines[-1]} {word}'.strip()
|
|
if drawing.textlength(line, font=font) <= line_length:
|
|
lines[-1] = line
|
|
else:
|
|
lines.append(word)
|
|
return lines
|
|
|
|
def get_font(fontsize):
|
|
try:
|
|
return ImageFont.truetype(opts.font or Roboto, fontsize)
|
|
except Exception:
|
|
return ImageFont.truetype(Roboto, fontsize)
|
|
|
|
def draw_texts(drawing, draw_x, draw_y, lines, initial_fnt, initial_fontsize):
|
|
for i, line in enumerate(lines):
|
|
fnt = initial_fnt
|
|
fontsize = initial_fontsize
|
|
while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0:
|
|
fontsize -= 1
|
|
fnt = get_font(fontsize)
|
|
drawing.multiline_text((draw_x, draw_y + line.size[1] / 2), line.text, font=fnt, fill=color_active if line.is_active else color_inactive, anchor="mm", align="center")
|
|
|
|
if not line.is_active:
|
|
drawing.line((draw_x - line.size[0] // 2, draw_y + line.size[1] // 2, draw_x + line.size[0] // 2, draw_y + line.size[1] // 2), fill=color_inactive, width=4)
|
|
|
|
draw_y += line.size[1] + line_spacing
|
|
|
|
fontsize = (width + height) // 25
|
|
line_spacing = fontsize // 2
|
|
|
|
fnt = get_font(fontsize)
|
|
|
|
color_active = (0, 0, 0)
|
|
color_inactive = (153, 153, 153)
|
|
|
|
pad_left = 0 if sum([sum([len(line.text) for line in lines]) for lines in ver_texts]) == 0 else width * 3 // 4
|
|
|
|
cols = im.width // width
|
|
rows = im.height // height
|
|
|
|
assert cols == len(hor_texts), f'bad number of horizontal texts: {len(hor_texts)}; must be {cols}'
|
|
assert rows == len(ver_texts), f'bad number of vertical texts: {len(ver_texts)}; must be {rows}'
|
|
|
|
calc_img = Image.new("RGB", (1, 1), "white")
|
|
calc_d = ImageDraw.Draw(calc_img)
|
|
|
|
for texts, allowed_width in zip(hor_texts + ver_texts, [width] * len(hor_texts) + [pad_left] * len(ver_texts)):
|
|
items = [] + texts
|
|
texts.clear()
|
|
|
|
for line in items:
|
|
wrapped = wrap(calc_d, line.text, fnt, allowed_width)
|
|
texts += [GridAnnotation(x, line.is_active) for x in wrapped]
|
|
|
|
for line in texts:
|
|
bbox = calc_d.multiline_textbbox((0, 0), line.text, font=fnt)
|
|
line.size = (bbox[2] - bbox[0], bbox[3] - bbox[1])
|
|
line.allowed_width = allowed_width
|
|
|
|
hor_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing for lines in hor_texts]
|
|
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in ver_texts]
|
|
|
|
pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2
|
|
|
|
result = Image.new("RGB", (im.width + pad_left + margin * (cols-1), im.height + pad_top + margin * (rows-1)), "white")
|
|
|
|
for row in range(rows):
|
|
for col in range(cols):
|
|
cell = im.crop((width * col, height * row, width * (col+1), height * (row+1)))
|
|
result.paste(cell, (pad_left + (width + margin) * col, pad_top + (height + margin) * row))
|
|
|
|
d = ImageDraw.Draw(result)
|
|
|
|
for col in range(cols):
|
|
x = pad_left + (width + margin) * col + width / 2
|
|
y = pad_top / 2 - hor_text_heights[col] / 2
|
|
|
|
draw_texts(d, x, y, hor_texts[col], fnt, fontsize)
|
|
|
|
for row in range(rows):
|
|
x = pad_left / 2
|
|
y = pad_top + (height + margin) * row + height / 2 - ver_text_heights[row] / 2
|
|
|
|
draw_texts(d, x, y, ver_texts[row], fnt, fontsize)
|
|
|
|
return result
|
|
|
|
|
|
def draw_prompt_matrix(im, width, height, all_prompts, margin=0):
|
|
prompts = all_prompts[1:]
|
|
boundary = math.ceil(len(prompts) / 2)
|
|
|
|
prompts_horiz = prompts[:boundary]
|
|
prompts_vert = prompts[boundary:]
|
|
|
|
hor_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_horiz)] for pos in range(1 << len(prompts_horiz))]
|
|
ver_texts = [[GridAnnotation(x, is_active=pos & (1 << i) != 0) for i, x in enumerate(prompts_vert)] for pos in range(1 << len(prompts_vert))]
|
|
|
|
return draw_grid_annotations(im, width, height, hor_texts, ver_texts, margin)
|
|
|
|
|
|
def resize_image(resize_mode, im, width, height, upscaler_name=None):
|
|
"""
|
|
Resizes an image with the specified resize_mode, width, and height.
|
|
|
|
Args:
|
|
resize_mode: The mode to use when resizing the image.
|
|
0: Resize the image to the specified width and height.
|
|
1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
|
|
2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
|
|
im: The image to resize.
|
|
width: The width to resize the image to.
|
|
height: The height to resize the image to.
|
|
upscaler_name: The name of the upscaler to use. If not provided, defaults to opts.upscaler_for_img2img.
|
|
"""
|
|
|
|
upscaler_name = upscaler_name or opts.upscaler_for_img2img
|
|
|
|
def resize(im, w, h):
|
|
if upscaler_name is None or upscaler_name == "None" or im.mode == 'L':
|
|
return im.resize((w, h), resample=LANCZOS)
|
|
|
|
scale = max(w / im.width, h / im.height)
|
|
|
|
if scale > 1.0:
|
|
upscalers = [x for x in shared.sd_upscalers if x.name == upscaler_name]
|
|
if len(upscalers) == 0:
|
|
upscaler = shared.sd_upscalers[0]
|
|
print(f"could not find upscaler named {upscaler_name or '<empty string>'}, using {upscaler.name} as a fallback")
|
|
else:
|
|
upscaler = upscalers[0]
|
|
|
|
im = upscaler.scaler.upscale(im, scale, upscaler.data_path)
|
|
|
|
if im.width != w or im.height != h:
|
|
im = im.resize((w, h), resample=LANCZOS)
|
|
|
|
return im
|
|
|
|
if resize_mode == 0:
|
|
res = resize(im, width, height)
|
|
|
|
elif resize_mode == 1:
|
|
ratio = width / height
|
|
src_ratio = im.width / im.height
|
|
|
|
src_w = width if ratio > src_ratio else im.width * height // im.height
|
|
src_h = height if ratio <= src_ratio else im.height * width // im.width
|
|
|
|
resized = resize(im, src_w, src_h)
|
|
res = Image.new("RGB", (width, height))
|
|
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
|
|
|
else:
|
|
ratio = width / height
|
|
src_ratio = im.width / im.height
|
|
|
|
src_w = width if ratio < src_ratio else im.width * height // im.height
|
|
src_h = height if ratio >= src_ratio else im.height * width // im.width
|
|
|
|
resized = resize(im, src_w, src_h)
|
|
res = Image.new("RGB", (width, height))
|
|
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
|
|
|
if ratio < src_ratio:
|
|
fill_height = height // 2 - src_h // 2
|
|
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
|
|
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h))
|
|
elif ratio > src_ratio:
|
|
fill_width = width // 2 - src_w // 2
|
|
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
|
|
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0))
|
|
|
|
return res
|
|
|
|
|
|
invalid_filename_chars = '<>:"/\\|?*\n'
|
|
invalid_filename_prefix = ' '
|
|
invalid_filename_postfix = ' .'
|
|
re_nonletters = re.compile(r'[\s' + string.punctuation + ']+')
|
|
re_pattern = re.compile(r"(.*?)(?:\[([^\[\]]+)\]|$)")
|
|
re_pattern_arg = re.compile(r"(.*)<([^>]*)>$")
|
|
max_filename_part_length = 128
|
|
NOTHING_AND_SKIP_PREVIOUS_TEXT = object()
|
|
|
|
|
|
def sanitize_filename_part(text, replace_spaces=True):
|
|
if text is None:
|
|
return None
|
|
|
|
if replace_spaces:
|
|
text = text.replace(' ', '_')
|
|
|
|
text = text.translate({ord(x): '_' for x in invalid_filename_chars})
|
|
text = text.lstrip(invalid_filename_prefix)[:max_filename_part_length]
|
|
text = text.rstrip(invalid_filename_postfix)
|
|
return text
|
|
|
|
|
|
class FilenameGenerator:
|
|
def get_vae_filename(self): #get the name of the VAE file.
|
|
if sd_vae.loaded_vae_file is None:
|
|
return "NoneType"
|
|
file_name = os.path.basename(sd_vae.loaded_vae_file)
|
|
split_file_name = file_name.split('.')
|
|
if len(split_file_name) > 1 and split_file_name[0] == '':
|
|
return split_file_name[1] # if the first character of the filename is "." then [1] is obtained.
|
|
else:
|
|
return split_file_name[0]
|
|
|
|
replacements = {
|
|
'seed': lambda self: self.seed if self.seed is not None else '',
|
|
'steps': lambda self: self.p and self.p.steps,
|
|
'cfg': lambda self: self.p and self.p.cfg_scale,
|
|
'width': lambda self: self.image.width,
|
|
'height': lambda self: self.image.height,
|
|
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
|
|
'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
|
|
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
|
|
'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.model_name, replace_spaces=False),
|
|
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
|
|
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
|
|
'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp),
|
|
'prompt_hash': lambda self: hashlib.sha256(self.prompt.encode()).hexdigest()[0:8],
|
|
'prompt': lambda self: sanitize_filename_part(self.prompt),
|
|
'prompt_no_styles': lambda self: self.prompt_no_style(),
|
|
'prompt_spaces': lambda self: sanitize_filename_part(self.prompt, replace_spaces=False),
|
|
'prompt_words': lambda self: self.prompt_words(),
|
|
'batch_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.batch_size == 1 else self.p.batch_index + 1,
|
|
'generation_number': lambda self: NOTHING_AND_SKIP_PREVIOUS_TEXT if self.p.n_iter == 1 and self.p.batch_size == 1 else self.p.iteration * self.p.batch_size + self.p.batch_index + 1,
|
|
'hasprompt': lambda self, *args: self.hasprompt(*args), # accepts formats:[hasprompt<prompt1|default><prompt2>..]
|
|
'clip_skip': lambda self: opts.data["CLIP_stop_at_last_layers"],
|
|
'denoising': lambda self: self.p.denoising_strength if self.p and self.p.denoising_strength else NOTHING_AND_SKIP_PREVIOUS_TEXT,
|
|
'vae_filename': lambda self: self.get_vae_filename(),
|
|
|
|
}
|
|
default_time_format = '%Y%m%d%H%M%S'
|
|
|
|
def __init__(self, p, seed, prompt, image):
|
|
self.p = p
|
|
self.seed = seed
|
|
self.prompt = prompt
|
|
self.image = image
|
|
|
|
def hasprompt(self, *args):
|
|
lower = self.prompt.lower()
|
|
if self.p is None or self.prompt is None:
|
|
return None
|
|
outres = ""
|
|
for arg in args:
|
|
if arg != "":
|
|
division = arg.split("|")
|
|
expected = division[0].lower()
|
|
default = division[1] if len(division) > 1 else ""
|
|
if lower.find(expected) >= 0:
|
|
outres = f'{outres}{expected}'
|
|
else:
|
|
outres = outres if default == "" else f'{outres}{default}'
|
|
return sanitize_filename_part(outres)
|
|
|
|
def prompt_no_style(self):
|
|
if self.p is None or self.prompt is None:
|
|
return None
|
|
|
|
prompt_no_style = self.prompt
|
|
for style in shared.prompt_styles.get_style_prompts(self.p.styles):
|
|
if len(style) > 0:
|
|
for part in style.split("{prompt}"):
|
|
prompt_no_style = prompt_no_style.replace(part, "").replace(", ,", ",").strip().strip(',')
|
|
|
|
prompt_no_style = prompt_no_style.replace(style, "").strip().strip(',').strip()
|
|
|
|
return sanitize_filename_part(prompt_no_style, replace_spaces=False)
|
|
|
|
def prompt_words(self):
|
|
words = [x for x in re_nonletters.split(self.prompt or "") if len(x) > 0]
|
|
if len(words) == 0:
|
|
words = ["empty"]
|
|
return sanitize_filename_part(" ".join(words[0:opts.directories_max_prompt_words]), replace_spaces=False)
|
|
|
|
def datetime(self, *args):
|
|
time_datetime = datetime.datetime.now()
|
|
|
|
time_format = args[0] if len(args) > 0 and args[0] != "" else self.default_time_format
|
|
try:
|
|
time_zone = pytz.timezone(args[1]) if len(args) > 1 else None
|
|
except pytz.exceptions.UnknownTimeZoneError as _:
|
|
time_zone = None
|
|
|
|
time_zone_time = time_datetime.astimezone(time_zone)
|
|
try:
|
|
formatted_time = time_zone_time.strftime(time_format)
|
|
except (ValueError, TypeError) as _:
|
|
formatted_time = time_zone_time.strftime(self.default_time_format)
|
|
|
|
return sanitize_filename_part(formatted_time, replace_spaces=False)
|
|
|
|
def apply(self, x):
|
|
res = ''
|
|
|
|
for m in re_pattern.finditer(x):
|
|
text, pattern = m.groups()
|
|
|
|
if pattern is None:
|
|
res += text
|
|
continue
|
|
|
|
pattern_args = []
|
|
while True:
|
|
m = re_pattern_arg.match(pattern)
|
|
if m is None:
|
|
break
|
|
|
|
pattern, arg = m.groups()
|
|
pattern_args.insert(0, arg)
|
|
|
|
fun = self.replacements.get(pattern.lower())
|
|
if fun is not None:
|
|
try:
|
|
replacement = fun(self, *pattern_args)
|
|
except Exception:
|
|
replacement = None
|
|
print(f"Error adding [{pattern}] to filename", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
|
|
if replacement == NOTHING_AND_SKIP_PREVIOUS_TEXT:
|
|
continue
|
|
elif replacement is not None:
|
|
res += text + str(replacement)
|
|
continue
|
|
|
|
res += f'{text}[{pattern}]'
|
|
|
|
return res
|
|
|
|
|
|
def get_next_sequence_number(path, basename):
|
|
"""
|
|
Determines and returns the next sequence number to use when saving an image in the specified directory.
|
|
|
|
The sequence starts at 0.
|
|
"""
|
|
result = -1
|
|
if basename != '':
|
|
basename = f"{basename}-"
|
|
|
|
prefix_length = len(basename)
|
|
for p in os.listdir(path):
|
|
if p.startswith(basename):
|
|
l = os.path.splitext(p[prefix_length:])[0].split('-') # splits the filename (removing the basename first if one is defined, so the sequence number is always the first element)
|
|
try:
|
|
result = max(int(l[0]), result)
|
|
except ValueError:
|
|
pass
|
|
|
|
return result + 1
|
|
|
|
|
|
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None):
|
|
"""Save an image.
|
|
|
|
Args:
|
|
image (`PIL.Image`):
|
|
The image to be saved.
|
|
path (`str`):
|
|
The directory to save the image. Note, the option `save_to_dirs` will make the image to be saved into a sub directory.
|
|
basename (`str`):
|
|
The base filename which will be applied to `filename pattern`.
|
|
seed, prompt, short_filename,
|
|
extension (`str`):
|
|
Image file extension, default is `png`.
|
|
pngsectionname (`str`):
|
|
Specify the name of the section which `info` will be saved in.
|
|
info (`str` or `PngImagePlugin.iTXt`):
|
|
PNG info chunks.
|
|
existing_info (`dict`):
|
|
Additional PNG info. `existing_info == {pngsectionname: info, ...}`
|
|
no_prompt:
|
|
TODO I don't know its meaning.
|
|
p (`StableDiffusionProcessing`)
|
|
forced_filename (`str`):
|
|
If specified, `basename` and filename pattern will be ignored.
|
|
save_to_dirs (bool):
|
|
If true, the image will be saved into a subdirectory of `path`.
|
|
|
|
Returns: (fullfn, txt_fullfn)
|
|
fullfn (`str`):
|
|
The full path of the saved imaged.
|
|
txt_fullfn (`str` or None):
|
|
If a text file is saved for this image, this will be its full path. Otherwise None.
|
|
"""
|
|
namegen = FilenameGenerator(p, seed, prompt, image)
|
|
|
|
if save_to_dirs is None:
|
|
save_to_dirs = (grid and opts.grid_save_to_dirs) or (not grid and opts.save_to_dirs and not no_prompt)
|
|
|
|
if save_to_dirs:
|
|
dirname = namegen.apply(opts.directories_filename_pattern or "[prompt_words]").lstrip(' ').rstrip('\\ /')
|
|
path = os.path.join(path, dirname)
|
|
|
|
os.makedirs(path, exist_ok=True)
|
|
|
|
if forced_filename is None:
|
|
if short_filename or seed is None:
|
|
file_decoration = ""
|
|
elif opts.save_to_dirs:
|
|
file_decoration = opts.samples_filename_pattern or "[seed]"
|
|
else:
|
|
file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]"
|
|
|
|
add_number = opts.save_images_add_number or file_decoration == ''
|
|
|
|
if file_decoration != "" and add_number:
|
|
file_decoration = f"-{file_decoration}"
|
|
|
|
file_decoration = namegen.apply(file_decoration) + suffix
|
|
|
|
if add_number:
|
|
basecount = get_next_sequence_number(path, basename)
|
|
fullfn = None
|
|
for i in range(500):
|
|
fn = f"{basecount + i:05}" if basename == '' else f"{basename}-{basecount + i:04}"
|
|
fullfn = os.path.join(path, f"{fn}{file_decoration}.{extension}")
|
|
if not os.path.exists(fullfn):
|
|
break
|
|
else:
|
|
fullfn = os.path.join(path, f"{file_decoration}.{extension}")
|
|
else:
|
|
fullfn = os.path.join(path, f"{forced_filename}.{extension}")
|
|
|
|
pnginfo = existing_info or {}
|
|
if info is not None:
|
|
pnginfo[pnginfo_section_name] = info
|
|
|
|
params = script_callbacks.ImageSaveParams(image, p, fullfn, pnginfo)
|
|
script_callbacks.before_image_saved_callback(params)
|
|
|
|
image = params.image
|
|
fullfn = params.filename
|
|
info = params.pnginfo.get(pnginfo_section_name, None)
|
|
|
|
def _atomically_save_image(image_to_save, filename_without_extension, extension):
|
|
# save image with .tmp extension to avoid race condition when another process detects new image in the directory
|
|
temp_file_path = f"{filename_without_extension}.tmp"
|
|
image_format = Image.registered_extensions()[extension]
|
|
|
|
if extension.lower() == '.png':
|
|
pnginfo_data = PngImagePlugin.PngInfo()
|
|
if opts.enable_pnginfo:
|
|
for k, v in params.pnginfo.items():
|
|
pnginfo_data.add_text(k, str(v))
|
|
|
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, pnginfo=pnginfo_data)
|
|
|
|
elif extension.lower() in (".jpg", ".jpeg", ".webp"):
|
|
if image_to_save.mode == 'RGBA':
|
|
image_to_save = image_to_save.convert("RGB")
|
|
elif image_to_save.mode == 'I;16':
|
|
image_to_save = image_to_save.point(lambda p: p * 0.0038910505836576).convert("RGB" if extension.lower() == ".webp" else "L")
|
|
|
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality, lossless=opts.webp_lossless)
|
|
|
|
if opts.enable_pnginfo and info is not None:
|
|
exif_bytes = piexif.dump({
|
|
"Exif": {
|
|
piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(info or "", encoding="unicode")
|
|
},
|
|
})
|
|
|
|
piexif.insert(exif_bytes, temp_file_path)
|
|
else:
|
|
image_to_save.save(temp_file_path, format=image_format, quality=opts.jpeg_quality)
|
|
|
|
# atomically rename the file with correct extension
|
|
os.replace(temp_file_path, filename_without_extension + extension)
|
|
|
|
fullfn_without_extension, extension = os.path.splitext(params.filename)
|
|
if hasattr(os, 'statvfs'):
|
|
max_name_len = os.statvfs(path).f_namemax
|
|
fullfn_without_extension = fullfn_without_extension[:max_name_len - max(4, len(extension))]
|
|
params.filename = fullfn_without_extension + extension
|
|
fullfn = params.filename
|
|
_atomically_save_image(image, fullfn_without_extension, extension)
|
|
|
|
image.already_saved_as = fullfn
|
|
|
|
oversize = image.width > opts.target_side_length or image.height > opts.target_side_length
|
|
if opts.export_for_4chan and (oversize or os.stat(fullfn).st_size > opts.img_downscale_threshold * 1024 * 1024):
|
|
ratio = image.width / image.height
|
|
|
|
if oversize and ratio > 1:
|
|
image = image.resize((round(opts.target_side_length), round(image.height * opts.target_side_length / image.width)), LANCZOS)
|
|
elif oversize:
|
|
image = image.resize((round(image.width * opts.target_side_length / image.height), round(opts.target_side_length)), LANCZOS)
|
|
|
|
try:
|
|
_atomically_save_image(image, fullfn_without_extension, ".jpg")
|
|
except Exception as e:
|
|
errors.display(e, "saving image as downscaled JPG")
|
|
|
|
if opts.save_txt and info is not None:
|
|
txt_fullfn = f"{fullfn_without_extension}.txt"
|
|
with open(txt_fullfn, "w", encoding="utf8") as file:
|
|
file.write(f"{info}\n")
|
|
else:
|
|
txt_fullfn = None
|
|
|
|
script_callbacks.image_saved_callback(params)
|
|
|
|
return fullfn, txt_fullfn
|
|
|
|
|
|
def read_info_from_image(image):
|
|
items = image.info or {}
|
|
|
|
geninfo = items.pop('parameters', None)
|
|
|
|
if "exif" in items:
|
|
exif = piexif.load(items["exif"])
|
|
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
|
|
try:
|
|
exif_comment = piexif.helper.UserComment.load(exif_comment)
|
|
except ValueError:
|
|
exif_comment = exif_comment.decode('utf8', errors="ignore")
|
|
|
|
if exif_comment:
|
|
items['exif comment'] = exif_comment
|
|
geninfo = exif_comment
|
|
|
|
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
|
|
'loop', 'background', 'timestamp', 'duration']:
|
|
items.pop(field, None)
|
|
|
|
if items.get("Software", None) == "NovelAI":
|
|
try:
|
|
json_info = json.loads(items["Comment"])
|
|
sampler = sd_samplers.samplers_map.get(json_info["sampler"], "Euler a")
|
|
|
|
geninfo = f"""{items["Description"]}
|
|
Negative prompt: {json_info["uc"]}
|
|
Steps: {json_info["steps"]}, Sampler: {sampler}, CFG scale: {json_info["scale"]}, Seed: {json_info["seed"]}, Size: {image.width}x{image.height}, Clip skip: 2, ENSD: 31337"""
|
|
except Exception:
|
|
print("Error parsing NovelAI image generation parameters:", file=sys.stderr)
|
|
print(traceback.format_exc(), file=sys.stderr)
|
|
|
|
return geninfo, items
|
|
|
|
|
|
def image_data(data):
|
|
import gradio as gr
|
|
|
|
try:
|
|
image = Image.open(io.BytesIO(data))
|
|
textinfo, _ = read_info_from_image(image)
|
|
return textinfo, None
|
|
except Exception:
|
|
pass
|
|
|
|
try:
|
|
text = data.decode('utf8')
|
|
assert len(text) < 10000
|
|
return text, None
|
|
|
|
except Exception:
|
|
pass
|
|
|
|
return gr.update(), None
|
|
|
|
|
|
def flatten(img, bgcolor):
|
|
"""replaces transparency with bgcolor (example: "#ffffff"), returning an RGB mode image with no transparency"""
|
|
|
|
if img.mode == "RGBA":
|
|
background = Image.new('RGBA', img.size, bgcolor)
|
|
background.paste(img, mask=img)
|
|
img = background
|
|
|
|
return img.convert('RGB')
|