stable-diffusion-webui/modules/api/api.py

225 lines
8.4 KiB
Python

# import time
# from modules.api.models import StableDiffusionTxt2ImgProcessingAPI, StableDiffusionImg2ImgProcessingAPI
# from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
# from modules.sd_samplers import all_samplers
# from modules.extras import run_pnginfo
# import modules.shared as shared
# from modules import devices
# import uvicorn
# from fastapi import Body, APIRouter, HTTPException
# from fastapi.responses import JSONResponse
# from pydantic import BaseModel, Field, Json
# from typing import List
# import json
# import io
# import base64
# from PIL import Image
# sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
# class TextToImageResponse(BaseModel):
# images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
# parameters: Json
# info: Json
# class ImageToImageResponse(BaseModel):
# images: List[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
# parameters: Json
# info: Json
import time
import uvicorn
from gradio.processing_utils import encode_pil_to_base64, decode_base64_to_file, decode_base64_to_image
from fastapi import APIRouter, HTTPException
import modules.shared as shared
from modules import devices
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.sd_samplers import all_samplers
from modules.extras import run_extras, run_pnginfo
# copy from wrap_gradio_gpu_call of webui.py
# because queue lock will be acquired in api handlers
# and time start needs to be set
# the function has been modified into two parts
def before_gpu_call():
devices.torch_gc()
shared.state.sampling_step = 0
shared.state.job_count = -1
shared.state.job_no = 0
shared.state.job_timestamp = shared.state.get_job_timestamp()
shared.state.current_latent = None
shared.state.current_image = None
shared.state.current_image_sampling_step = 0
shared.state.skipped = False
shared.state.interrupted = False
shared.state.textinfo = None
shared.state.time_start = time.time()
def after_gpu_call():
shared.state.job = ""
shared.state.job_count = 0
devices.torch_gc()
def upscaler_to_index(name: str):
try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
except:
raise HTTPException(status_code=400, detail=f"Invalid upscaler, needs to be on of these: {' , '.join([x.name for x in sd_upscalers])}")
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
def setUpscalers(req: dict):
reqDict = vars(req)
reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1)
reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2)
reqDict.pop('upscaler_1')
reqDict.pop('upscaler_2')
return reqDict
class Api:
def __init__(self, app, queue_lock):
self.router = APIRouter()
self.app = app
self.queue_lock = queue_lock
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=TextToImageResponse)
self.app.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=ImageToImageResponse)
self.app.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=ExtrasSingleImageResponse)
self.app.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=ExtrasBatchImagesResponse)
self.app.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=PNGInfoResponse)
self.app.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"])
def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI):
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
if sampler_index is None:
raise HTTPException(status_code=404, detail="Sampler not found")
populate = txt2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"do_not_save_samples": True,
"do_not_save_grid": True
}
)
p = StableDiffusionProcessingTxt2Img(**vars(populate))
# Override object param
before_gpu_call()
with self.queue_lock:
processed = process_images(p)
after_gpu_call()
b64images = list(map(encode_pil_to_base64, processed.images))
return TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
def img2imgapi(self, img2imgreq: StableDiffusionImg2ImgProcessingAPI):
sampler_index = sampler_to_index(img2imgreq.sampler_index)
if sampler_index is None:
raise HTTPException(status_code=404, detail="Sampler not found")
init_images = img2imgreq.init_images
if init_images is None:
raise HTTPException(status_code=404, detail="Init image not found")
mask = img2imgreq.mask
if mask:
mask = decode_base64_to_image(mask)
populate = img2imgreq.copy(update={ # Override __init__ params
"sd_model": shared.sd_model,
"sampler_index": sampler_index[0],
"do_not_save_samples": True,
"do_not_save_grid": True,
"mask": mask
}
)
p = StableDiffusionProcessingImg2Img(**vars(populate))
imgs = []
for img in init_images:
img = decode_base64_to_image(img)
imgs = [img] * p.batch_size
p.init_images = imgs
# Override object param
before_gpu_call()
with self.queue_lock:
processed = process_images(p)
after_gpu_call()
b64images = list(map(encode_pil_to_base64, processed.images))
if (not img2imgreq.include_init_images):
img2imgreq.init_images = None
img2imgreq.mask = None
return ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())
def extras_single_image_api(self, req: ExtrasSingleImageRequest):
reqDict = setUpscalers(req)
reqDict['image'] = decode_base64_to_image(reqDict['image'])
with self.queue_lock:
result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", **reqDict)
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
def extras_batch_images_api(self, req: ExtrasBatchImagesRequest):
reqDict = setUpscalers(req)
def prepareFiles(file):
file = decode_base64_to_file(file.data, file_path=file.name)
file.orig_name = file.name
return file
reqDict['image_folder'] = list(map(prepareFiles, reqDict['imageList']))
reqDict.pop('imageList')
with self.queue_lock:
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", **reqDict)
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
def pnginfoapi(self, req: PNGInfoRequest):
if(not req.image.strip()):
return PNGInfoResponse(info="")
result = run_pnginfo(decode_base64_to_image(req.image.strip()))
return PNGInfoResponse(info=result[1])
def progressapi(self):
# copy from check_progress_call of ui.py
if shared.state.job_count == 0:
return ProgressResponse(progress=0, eta_relative=0, state=shared.state.js())
# avoid dividing zero
progress = 0.01
if shared.state.job_count > 0:
progress += shared.state.job_no / shared.state.job_count
if shared.state.sampling_steps > 0:
progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps
time_since_start = time.time() - shared.state.time_start
eta = (time_since_start/progress)
eta_relative = eta-time_since_start
progress = min(progress, 1)
return ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.js())
def launch(self, server_name, port):
self.app.include_router(self.router)
uvicorn.run(self.app, host=server_name, port=port)