stable-diffusion-webui/modules/extras.py

258 lines
9.2 KiB
Python

import os
import re
import shutil
import torch
import tqdm
from modules import shared, images, sd_models, sd_vae
from modules.ui_common import plaintext_to_html
import gradio as gr
import safetensors.torch
def run_pnginfo(image):
if image is None:
return '', '', ''
geninfo, items = images.read_info_from_image(image)
items = {**{'parameters': geninfo}, **items}
info = ''
for key, text in items.items():
info += f"""
<div>
<p><b>{plaintext_to_html(str(key))}</b></p>
<p>{plaintext_to_html(str(text))}</p>
</div>
""".strip()+"\n"
if len(info) == 0:
message = "Nothing found in the image."
info = f"<div><p>{message}<p></div>"
return '', geninfo, info
def create_config(ckpt_result, config_source, a, b, c):
def config(x):
res = sd_models.find_checkpoint_config(x) if x else None
return res if res != shared.sd_default_config else None
if config_source == 0:
cfg = config(a) or config(b) or config(c)
elif config_source == 1:
cfg = config(b)
elif config_source == 2:
cfg = config(c)
else:
cfg = None
if cfg is None:
return
filename, _ = os.path.splitext(ckpt_result)
checkpoint_filename = filename + ".yaml"
print("Copying config:")
print(" from:", cfg)
print(" to:", checkpoint_filename)
shutil.copyfile(cfg, checkpoint_filename)
checkpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"]
def to_half(tensor, enable):
if enable and tensor.dtype == torch.float:
return tensor.half()
return tensor
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights):
shared.state.begin()
shared.state.job = 'model-merge'
def fail(message):
shared.state.textinfo = message
shared.state.end()
return [*[gr.update() for _ in range(4)], message]
def weighted_sum(theta0, theta1, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1)
def get_difference(theta1, theta2):
return theta1 - theta2
def add_difference(theta0, theta1_2_diff, alpha):
return theta0 + (alpha * theta1_2_diff)
def filename_weighted_sum():
a = primary_model_info.model_name
b = secondary_model_info.model_name
Ma = round(1 - multiplier, 2)
Mb = round(multiplier, 2)
return f"{Ma}({a}) + {Mb}({b})"
def filename_add_difference():
a = primary_model_info.model_name
b = secondary_model_info.model_name
c = tertiary_model_info.model_name
M = round(multiplier, 2)
return f"{a} + {M}({b} - {c})"
def filename_nothing():
return primary_model_info.model_name
theta_funcs = {
"Weighted sum": (filename_weighted_sum, None, weighted_sum),
"Add difference": (filename_add_difference, get_difference, add_difference),
"No interpolation": (filename_nothing, None, None),
}
filename_generator, theta_func1, theta_func2 = theta_funcs[interp_method]
shared.state.job_count = (1 if theta_func1 else 0) + (1 if theta_func2 else 0)
if not primary_model_name:
return fail("Failed: Merging requires a primary model.")
primary_model_info = sd_models.checkpoints_list[primary_model_name]
if theta_func2 and not secondary_model_name:
return fail("Failed: Merging requires a secondary model.")
secondary_model_info = sd_models.checkpoints_list[secondary_model_name] if theta_func2 else None
if theta_func1 and not tertiary_model_name:
return fail(f"Failed: Interpolation method ({interp_method}) requires a tertiary model.")
tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None
result_is_inpainting_model = False
result_is_pix2pix_model = False
if theta_func2:
shared.state.textinfo = f"Loading B"
print(f"Loading {secondary_model_info.filename}...")
theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
else:
theta_1 = None
if theta_func1:
shared.state.textinfo = f"Loading C"
print(f"Loading {tertiary_model_info.filename}...")
theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')
shared.state.textinfo = 'Merging B and C'
shared.state.sampling_steps = len(theta_1.keys())
for key in tqdm.tqdm(theta_1.keys()):
if key in checkpoint_dict_skip_on_merge:
continue
if 'model' in key:
if key in theta_2:
t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
theta_1[key] = theta_func1(theta_1[key], t2)
else:
theta_1[key] = torch.zeros_like(theta_1[key])
shared.state.sampling_step += 1
del theta_2
shared.state.nextjob()
shared.state.textinfo = f"Loading {primary_model_info.filename}..."
print(f"Loading {primary_model_info.filename}...")
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
print("Merging...")
shared.state.textinfo = 'Merging A and B'
shared.state.sampling_steps = len(theta_0.keys())
for key in tqdm.tqdm(theta_0.keys()):
if theta_1 and 'model' in key and key in theta_1:
if key in checkpoint_dict_skip_on_merge:
continue
a = theta_0[key]
b = theta_1[key]
# this enables merging an inpainting model (A) with another one (B);
# where normal model would have 4 channels, for latenst space, inpainting model would
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
if a.shape[1] == 4 and b.shape[1] == 9:
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
if a.shape[1] == 8 and b.shape[1] == 4:#If we have an InstructPix2Pix model...
print("Detected possible merge of instruct model with non-instruct model.")
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)#Merge only the vectors the models have in common. Otherwise we get an error due to dimension mismatch.
result_is_pix2pix_model = True
else:
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
result_is_inpainting_model = True
else:
theta_0[key] = theta_func2(a, b, multiplier)
theta_0[key] = to_half(theta_0[key], save_as_half)
shared.state.sampling_step += 1
del theta_1
bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None)
if bake_in_vae_filename is not None:
print(f"Baking in VAE from {bake_in_vae_filename}")
shared.state.textinfo = 'Baking in VAE'
vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu')
for key in vae_dict.keys():
theta_0_key = 'first_stage_model.' + key
if theta_0_key in theta_0:
theta_0[theta_0_key] = to_half(vae_dict[key], save_as_half)
del vae_dict
if save_as_half and not theta_func2:
for key in theta_0.keys():
theta_0[key] = to_half(theta_0[key], save_as_half)
if discard_weights:
regex = re.compile(discard_weights)
for key in list(theta_0):
if re.search(regex, key):
theta_0.pop(key, None)
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
filename = filename_generator() if custom_name == '' else custom_name
filename += ".inpainting" if result_is_inpainting_model else ""
filename += ".pix2pix" if result_is_pix2pix_model else ""
filename += "." + checkpoint_format
output_modelname = os.path.join(ckpt_dir, filename)
shared.state.nextjob()
shared.state.textinfo = "Saving"
print(f"Saving to {output_modelname}...")
_, extension = os.path.splitext(output_modelname)
if extension.lower() == ".safetensors":
safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"})
else:
torch.save(theta_0, output_modelname)
sd_models.list_models()
create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info)
print(f"Checkpoint saved to {output_modelname}.")
shared.state.textinfo = "Checkpoint saved"
shared.state.end()
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], "Checkpoint saved to " + output_modelname]