add python implementation of reverse

This adds an additional layer parameter and slightly changes the
queries to do more efficient lookups for large area features.
This commit is contained in:
Sarah Hoffmann 2023-03-22 00:07:17 +01:00
parent ebcf8c2b6b
commit 41da298b18
6 changed files with 650 additions and 7 deletions

View File

@ -21,12 +21,15 @@ from .types import (PlaceID as PlaceID,
OsmID as OsmID,
PlaceRef as PlaceRef,
Point as Point,
Bbox as Bbox,
GeometryFormat as GeometryFormat,
LookupDetails as LookupDetails)
LookupDetails as LookupDetails,
DataLayer as DataLayer)
from .results import (SourceTable as SourceTable,
AddressLine as AddressLine,
AddressLines as AddressLines,
WordInfo as WordInfo,
WordInfos as WordInfos,
DetailedResult as DetailedResult)
DetailedResult as DetailedResult,
ReverseResult as ReverseResult)
from .localization import (Locales as Locales)

View File

@ -21,8 +21,9 @@ from nominatim.config import Configuration
from nominatim.api.connection import SearchConnection
from nominatim.api.status import get_status, StatusResult
from nominatim.api.lookup import get_place_by_id
from nominatim.api.types import PlaceRef, LookupDetails
from nominatim.api.results import DetailedResult
from nominatim.api.reverse import reverse_lookup
from nominatim.api.types import PlaceRef, LookupDetails, AnyPoint, DataLayer
from nominatim.api.results import DetailedResult, ReverseResult
class NominatimAPIAsync:
@ -136,6 +137,29 @@ class NominatimAPIAsync:
return await get_place_by_id(conn, place, details or LookupDetails())
async def reverse(self, coord: AnyPoint, max_rank: Optional[int] = None,
layer: Optional[DataLayer] = None,
details: Optional[LookupDetails] = None) -> Optional[ReverseResult]:
""" Find a place by its coordinates. Also known as reverse geocoding.
Returns the closest result that can be found or None if
no place matches the given criteria.
"""
# The following negation handles NaN correctly. Don't change.
if not abs(coord[0]) <= 180 or not abs(coord[1]) <= 90:
# There are no results to be expected outside valid coordinates.
return None
if layer is None:
layer = DataLayer.ADDRESS | DataLayer.POI
max_rank = max(0, min(max_rank or 30, 30))
async with self.begin() as conn:
return await reverse_lookup(conn, coord, max_rank, layer,
details or LookupDetails())
class NominatimAPI:
""" API loader, synchronous version.
"""
@ -172,3 +196,15 @@ class NominatimAPI:
""" Get detailed information about a place in the database.
"""
return self._loop.run_until_complete(self._async_api.lookup(place, details))
def reverse(self, coord: AnyPoint, max_rank: Optional[int] = None,
layer: Optional[DataLayer] = None,
details: Optional[LookupDetails] = None) -> Optional[ReverseResult]:
""" Find a place by its coordinates. Also known as reverse geocoding.
Returns the closest result that can be found or None if
no place matches the given criteria.
"""
return self._loop.run_until_complete(
self._async_api.reverse(coord, max_rank, layer, details))

View File

@ -19,7 +19,7 @@ import datetime as dt
import sqlalchemy as sa
from nominatim.typing import SaSelect, SaRow
from nominatim.api.types import Point, LookupDetails
from nominatim.api.types import Point, Bbox, LookupDetails
from nominatim.api.connection import SearchConnection
from nominatim.api.logging import log
@ -46,6 +46,8 @@ class AddressLine:
names: Dict[str, str]
extratags: Optional[Dict[str, str]]
local_name: Optional[str] = None
admin_level: Optional[int]
fromarea: bool
isaddress: bool
@ -136,6 +138,14 @@ class DetailedResult(BaseResult):
indexed_date: Optional[dt.datetime] = None
@dataclasses.dataclass
class ReverseResult(BaseResult):
""" A search result for reverse geocoding.
"""
distance: Optional[float] = None
bbox: Optional[Bbox] = None
def _filter_geometries(row: SaRow) -> Dict[str, str]:
return {k[9:]: v for k, v in row._mapping.items() # pylint: disable=W0212
if k.startswith('geometry_')}

509
nominatim/api/reverse.py Normal file
View File

@ -0,0 +1,509 @@
# SPDX-License-Identifier: GPL-3.0-or-later
#
# This file is part of Nominatim. (https://nominatim.org)
#
# Copyright (C) 2023 by the Nominatim developer community.
# For a full list of authors see the git log.
"""
Implementation of reverse geocoding.
"""
from typing import Optional
import sqlalchemy as sa
from geoalchemy2 import WKTElement
from geoalchemy2.types import Geometry
from nominatim.typing import SaColumn, SaSelect, SaTable, SaLabel, SaClause
from nominatim.api.connection import SearchConnection
import nominatim.api.results as nres
from nominatim.api.logging import log
from nominatim.api.types import AnyPoint, DataLayer, LookupDetails, GeometryFormat
def _select_from_placex(t: SaTable, wkt: Optional[str] = None) -> SaSelect:
""" Create a select statement with the columns relevant for reverse
results.
"""
if wkt is None:
distance = t.c.distance
else:
distance = t.c.geometry.ST_Distance(wkt)
return sa.select(t.c.place_id, t.c.osm_type, t.c.osm_id, t.c.name,
t.c.class_, t.c.type,
t.c.address, t.c.extratags,
t.c.housenumber, t.c.postcode, t.c.country_code,
t.c.importance, t.c.wikipedia,
t.c.parent_place_id, t.c.rank_address, t.c.rank_search,
t.c.centroid,
distance.label('distance'),
t.c.geometry.ST_Expand(0).label('bbox'))
def _interpolated_housenumber(table: SaTable) -> SaLabel:
# Entries with startnumber = endnumber are legacy from version < 4.1
return sa.cast(table.c.startnumber
+ sa.func.round(((table.c.endnumber - table.c.startnumber) * table.c.position)
/ table.c.step) * table.c.step,
sa.Integer).label('housenumber')
def _is_address_point(table: SaTable) -> SaClause:
return sa.and_(table.c.rank_address == 30,
sa.or_(table.c.housenumber != None,
table.c.name.has_key('housename')))
class ReverseGeocoder:
""" Class implementing the logic for looking up a place from a
coordinate.
"""
def __init__(self, conn: SearchConnection, max_rank: int, layer: DataLayer,
details: LookupDetails) -> None:
self.conn = conn
self.max_rank = max_rank
self.layer = layer
self.details = details
def _add_geometry_columns(self, sql: SaSelect, col: SaColumn) -> SaSelect:
if not self.details.geometry_output:
return sql
out = []
if self.details.geometry_simplification > 0.0:
col = col.ST_SimplifyPreserveTopology(self.details.geometry_simplification)
if self.details.geometry_output & GeometryFormat.GEOJSON:
out.append(col.ST_AsGeoJSON().label('geometry_geojson'))
if self.details.geometry_output & GeometryFormat.TEXT:
out.append(col.ST_AsText().label('geometry_text'))
if self.details.geometry_output & GeometryFormat.KML:
out.append(col.ST_AsKML().label('geometry_kml'))
if self.details.geometry_output & GeometryFormat.SVG:
out.append(col.ST_AsSVG().label('geometry_svg'))
return sql.add_columns(*out)
def _filter_by_layer(self, table: SaTable) -> SaColumn:
if self.layer & DataLayer.MANMADE:
exclude = []
if not (self.layer & DataLayer.RAILWAY):
exclude.append('railway')
if not (self.layer & DataLayer.NATURAL):
exclude.extend(('natural', 'water', 'waterway'))
return table.c.class_.not_in(tuple(exclude))
include = []
if self.layer & DataLayer.RAILWAY:
include.append('railway')
if not (self.layer & DataLayer.NATURAL):
include.extend(('natural', 'water', 'waterway'))
return table.c.class_.in_(tuple(include))
async def _find_closest_street_or_poi(self, wkt: WKTElement) -> SaRow:
""" Look up the clostest rank 26+ place in the database.
"""
t = self.conn.t.placex
sql = _select_from_placex(t, wkt)\
.where(t.c.geometry.ST_DWithin(wkt, distance))\
.where(t.c.indexed_status == 0)\
.where(t.c.linked_place_id == None)\
.where(sa.or_(t.c.geometry.ST_GeometryType().not_in(('ST_Polygon', 'ST_MultiPolygon')),
t.c.centroid.ST_Distance(wkt) < distance))\
.order_by('distance')\
.limit(1)
sql = self._add_geometry_columns(sql, t.c.geometry)
restrict = []
if self.layer & DataLayer.ADDRESS:
restrict.append(sa.and_(t.c.rank_address >= 26,
t.c.rank_address <= self.max_rank))
if self.max_rank == 30:
restrict.append(_is_address_point(t))
if self.layer & DataLayer.POI and max_rank == 30:
restrict.append(sa.and_(t.c.rank_search == 30,
t.c.class_.not_in(('place', 'building')),
t.c.geometry.ST_GeometryType() != 'ST_LineString'))
if self.layer & (DataLayer.RAILWAY | DataLayer.MANMADE | DataLayer.NATURAL):
restrict.append(sa.and_(t.c.rank_search >= 26,
tc.rank_search <= self.max_rank,
self._filter_by_layer(t)))
if restrict:
sql = sql.where(sa.or_(*restrict))
return (await self.conn.execute(sql)).one_or_none()
async def _find_housenumber_for_street(self, parent_place_id: int,
wkt: WKTElement) -> Optional[SaRow]:
t = conn.t.placex
sql = _select_from_placex(t, wkt)\
.where(t.c.geometry.ST_DWithin(wkt, 0.001))\
.where(t.c.parent_place_id == parent_place_id)\
.where(_is_address_point(t))\
.where(t.c.indexed_status == 0)\
.where(t.c.linked_place_id == None)\
.order_by('distance')\
.limit(1)
sql = self._add_geometry_columns(sql, t.c.geometry)
return (await self.conn.execute(sql)).one_or_none()
async def _find_interpolation_for_street(self, parent_place_id: Optional[int],
wkt: WKTElement) -> Optional[SaRow]:
t = self.conn.t.osmline
inner = sa.select(t,
t.c.linegeo.ST_Distance(wkt).label('distance'),
t.c.linegeo.ST_LineLocatePoint(wkt).label('position'))\
.where(t.c.linegeo.ST_DWithin(wkt, distance))\
.order_by('distance')\
.limit(1)
if parent_place_id is not None:
inner = inner.where(t.c.parent_place_id == parent_place_id)
inner = inner.subquery()
sql = sa.select(inner.c.place_id, inner.c.osm_id,
inner.c.parent_place_id, inner.c.address,
_interpolated_housenumber(inner),
inner.c.postcode, inner.c.country_code,
inner.c.linegeo.ST_LineInterpolatePoint(inner.c.position).label('centroid'),
inner.c.distance)
if self.details.geometry_output:
sub = sql.subquery()
sql = self._add_geometry_columns(sql, sub.c.centroid)
return (await self.conn.execute(sql)).one_or_none()
async def _find_tiger_number_for_street(self, parent_place_id: int,
wkt: WKTElement) -> Optional[SaRow]:
t = self.conn.t.tiger
inner = sa.select(t,
t.c.linegeo.ST_Distance(wkt).label('distance'),
sa.func.ST_LineLocatePoint(t.c.linegeo, wkt).label('position'))\
.where(t.c.linegeo.ST_DWithin(wkt, 0.001))\
.where(t.c.parent_place_id == parent_place_id)\
.order_by('distance')\
.limit(1)\
.subquery()
sql = sa.select(inner.c.place_id,
inner.c.parent_place_id,
_interpolated_housenumber(inner),
inner.c.postcode,
inner.c.linegeo.ST_LineInterpolatePoint(inner.c.position).label('centroid'),
inner.c.distance)
if self.details.geometry_output:
sub = sql.subquery()
sql = self._add_geometry_columns(sql, sub.c.centroid)
return (await conn.execute(sql)).one_or_none()
async def lookup_street_poi(self, wkt: WKTElement) -> Optional[nres.ReverseResult]:
""" Find a street or POI/address for the given WKT point.
"""
log().section('Reverse lookup on street/address level')
result = None
distance = 0.006
parent_place_id = None
row = await self._find_closest_street_or_poi(wkt)
log().var_dump('Result (street/building)', row)
# If the closest result was a street, but an address was requested,
# check for a housenumber nearby which is part of the street.
if row is not None:
if self.max_rank > 27 \
and self.layer & DataLayer.ADDRESS \
and row.rank_address <= 27:
distance = 0.001
parent_place_id = row.place_id
log().comment('Find housenumber for street')
addr_row = await self._find_housenumber_for_street(parent_place_id, wkt)
log().var_dump('Result (street housenumber)', addr_row)
if addr_row is not None:
row = addr_row
distance = addr_row.distance
elif row.country_code == 'us' and parent_place_id is not None:
log().comment('Find TIGER housenumber for street')
addr_row = await self._find_tiger_number_for_street(parent_place_id, wkt)
log().var_dump('Result (street Tiger housenumber)', addr_row)
if addr_row is not None:
result = nres.create_from_tiger_row(addr_row)
else:
distance = row.distance
# Check for an interpolation that is either closer than our result
# or belongs to a close street found.
if self.max_rank > 27 and self.layer & DataLayer.ADDRESS:
log().comment('Find interpolation for street')
addr_row = await self._find_interpolation_for_street(parent_place_id, wkt)
log().var_dump('Result (street interpolation)', addr_row)
if addr_row is not None:
result = nres.create_from_osmline_row(addr_row)
return result or nres.create_from_placex_row(row)
async def _lookup_area_address(self, wkt: WKTElement) -> Optional[SaRow]:
""" Lookup large addressable areas for the given WKT point.
"""
log().comment('Reverse lookup by larger address area features')
t = self.conn.t.placex
# The inner SQL brings results in the right order, so that
# later only a minimum of results needs to be checked with ST_Contains.
inner = sa.select(t, sa.literal(0.0).label('distance'))\
.where(t.c.rank_search.between(5, self.max_rank))\
.where(t.c.rank_address.between(5, 25))\
.where(t.c.geometry.ST_GeometryType().in_(('ST_Polygon', 'ST_MultiPolygon')))\
.where(t.c.geometry.intersects(wkt))\
.where(t.c.name != None)\
.where(t.c.indexed_status == 0)\
.where(t.c.linked_place_id == None)\
.where(t.c.type != 'postcode')\
.order_by(sa.desc(t.c.rank_search))\
.limit(50)\
.subquery()
sql = _select_from_placex(inner)\
.where(inner.c.geometry.ST_Contains(wkt))\
.order_by(sa.desc(inner.c.rank_search))\
.limit(1)
sql = self._add_geometry_columns(sql, inner.c.geometry)
address_row = (await self.conn.execute(sql)).one_or_none()
log().var_dump('Result (area)', address_row)
if address_row is not None and address_row.rank_search < max_rank:
log().comment('Search for better matching place nodes inside the area')
inner = sa.select(t,
t.c.geometry.ST_Distance(wkt).label('distance'))\
.where(t.c.osm_type == 'N')\
.where(t.c.rank_search > address_row.rank_search)\
.where(t.c.rank_search <= max_rank)\
.where(t.c.rank_address.between(5, 25))\
.where(t.c.name != None)\
.where(t.c.indexed_status == 0)\
.where(t.c.linked_place_id == None)\
.where(t.c.type != 'postcode')\
.where(t.c.geometry
.ST_Buffer(sa.func.reverse_place_diameter(t.c.rank_search))
.intersects(wkt))\
.order_by(sa.desc(t.c.rank_search))\
.limit(50)\
.subquery()
touter = conn.t.placex.alias('outer')
sql = _select_from_placex(inner)\
.where(touter.c.place_id == address_row.place_id)\
.where(touter.c.geometry.ST_Contains(inner.c.geometry))\
.where(inner.c.distance < sa.func.reverse_place_diameter(inner.c.rank_search))\
.order_by(sa.desc(inner.c.rank_search), inner.c.distance)\
.limit(1)
sql = self._add_geometry_columns(sql, inner.c.geometry)
place_address_row = (await self.conn.execute(sql)).one_or_none()
log().var_dump('Result (place node)', place_address_row)
if place_address_row is not None:
return place_address_row
return address_row
async def _lookup_area_others(self, wkt: WKTElement) -> Optional[SaRow]:
t = conn.t.placex
inner = sa.select(t, t.c.geometry.ST_Distance(wkt).label('distance'))\
.where(t.c.rank_address == 0)\
.where(t.c.rank_search.between(5, self.max_rank))\
.where(t.c.name != None)\
.where(t.c.indexed_status == 0)\
.where(t.c.linked_place_id == None)\
.where(self._filter_by_layer(t))\
.where(sa.func.reverse_buffered_extent(t.c.geometry, type_=Geometry)
.intersects(wkt))\
.order_by(sa.desc(t.c.rank_search))\
.limit(50)
sql = _select_from_placex(inner)\
.where(sa._or(inner.c.geometry.ST_GeometryType().not_in(('ST_Polygon', 'ST_MultiPolygon')),
inner.c.geometry.ST_Contains(wkt)))\
.order_by(sa.desc(inner.c.rank_search), inner.c.distance)\
.limit(1)
sql = self._add_geometry_columns(sql, inner.c.geometry)
row = (await self.conn.execute(sql)).one_or_none()
log().var_dump('Result (non-address feature)', row)
return row
async def lookup_area(self, wkt: WKTElement) -> Optional[nres.ReverseResult]:
""" Lookup large areas for the given WKT point.
"""
log().section('Reverse lookup by larger area features')
t = self.conn.t.placex
if self.layer & DataLayer.ADDRESS:
address_row = await self._lookup_area_address(wkt)
address_distance = address_row.distance
else:
address_row = None
address_distance = 1000
if self.layer & (~DataLayer.ADDRESS & ~DataLayer.POI):
other_row = await self._lookup_area_others(wkt)
other_distance = other_row.distance
else:
other_row = None
other_distance = 1000
result = address_row if address_distance <= other_distance else other_row
return nres.create_from_placex_row(result)
async def lookup_country(self, wkt: WKTElement) -> Optional[nres.ReverseResult]:
""" Lookup the country for the given WKT point.
"""
log().section('Reverse lookup by country code')
t = self.conn.t.country_grid
sql = sa.select(t.c.country_code).distinct()\
.where(t.c.geometry.ST_Contains(wkt))
ccodes = tuple((r[0] for r in await self.conn.execute(sql)))
log().var_dump('Country codes', ccodes)
if not ccodes:
return None
if self.layer & DataLayer.ADDRESS and self.max_rank > 4:
log().comment('Search for place nodes in country')
t = conn.t.placex
inner = sa.select(t,
t.c.geometry.ST_Distance(wkt).label('distance'))\
.where(t.c.osm_type == 'N')\
.where(t.c.rank_search > 4)\
.where(t.c.rank_search <= self.max_rank)\
.where(t.c.rank_address.between(5, 25))\
.where(t.c.name != None)\
.where(t.c.indexed_status == 0)\
.where(t.c.linked_place_id == None)\
.where(t.c.type != 'postcode')\
.where(t.c.country_code.in_(ccodes))\
.where(t.c.geometry
.ST_Buffer(sa.func.reverse_place_diameter(t.c.rank_search))
.intersects(wkt))\
.order_by(sa.desc(t.c.rank_search))\
.limit(50)\
.subquery()
sql = _select_from_placex(inner)\
.where(inner.c.distance < sa.func.reverse_place_diameter(inner.c.rank_search))\
.order_by(sa.desc(inner.c.rank_search), inner.c.distance)\
.limit(1)
sql = self._add_geometry_columns(sql, inner.c.geometry)
address_row = (await self.conn.execute(sql)).one_or_none()
log().var_dump('Result (addressable place node)', address_row)
else:
address_row = None
if layer & (~DataLayer.ADDRESS & ~DataLayer.POI) and self.max_rank > 4:
log().comment('Search for non-address features inside country')
t = conn.t.placex
inner = sa.select(t, t.c.geometry.ST_Distance(wkt).label('distance'))\
.where(t.c.rank_address == 0)\
.where(t.c.rank_search.between(5, self.max_rank))\
.where(t.c.name != None)\
.where(t.c.indexed_status == 0)\
.where(t.c.linked_place_id == None)\
.where(self._filter_by_layer(t))\
.where(t.c.country_code.in_(ccode))\
.where(sa.func.reverse_buffered_extent(t.c.geometry, type_=Geometry)
.intersects(wkt))\
.order_by(sa.desc(t.c.rank_search))\
.limit(50)\
.subquery()
sql = _select_from_placex(inner)\
.where(sa._or(inner.c.geometry.ST_GeometryType().not_in(('ST_Polygon', 'ST_MultiPolygon')),
inner.c.geometry.ST_Contains(wkt)))\
.order_by(sa.desc(inner.c.rank_search), inner.c.distance)\
.limit(1)
sql = self._add_geometry_columns(sql, inner.c.geometry)
other_row = (await self.conn.execute(sql)).one_or_none()
log().var_dump('Result (non-address feature)', other_row)
else:
other_row = None
if layer & DataLayer.ADDRESS and address_row is None and other_row is None:
# Still nothing, then return a country with the appropriate country code.
t = conn.t.placex
sql = _select_from_placex(t, wkt)\
.where(t.c.country_code.in_(ccodes))\
.where(t.c.rank_address == 4)\
.where(t.c.rank_search == 4)\
.where(t.c.linked_place_id == None)\
.order_by('distance')
sql = self._add_geometry_columns(sql, inner.c.geometry)
address_row = (await self.conn.execute(sql)).one_or_none()
return nres.create_from_placex_row(_get_closest_row(address_row, other_row))
async def lookup(self, coord: AnyPoint) -> Optional[nres.ReverseResult]:
""" Look up a single coordinate. Returns the place information,
if a place was found near the coordinates or None otherwise.
"""
log().function('reverse_lookup',
coord=coord, max_rank=self.max_rank,
layer=self.layer, details=self.details)
wkt = WKTElement(f'POINT({coord[0]} {coord[1]})', srid=4326)
result: Optional[ReverseResult] = None
if max_rank >= 26:
result = await self.lookup_street_poi(wkt)
if result is None and max_rank > 4:
result = await self.lookup_area(wkt)
if result is None:
result = await self.lookup_country(wkt)
if result is not None:
await nres.add_result_details(self.conn, result, self.details)
return result

View File

@ -7,7 +7,7 @@
"""
Complex datatypes used by the Nominatim API.
"""
from typing import Optional, Union, NamedTuple
from typing import Optional, Union, Tuple, NamedTuple
import dataclasses
import enum
from struct import unpack
@ -83,6 +83,74 @@ class Point(NamedTuple):
return Point(x, y)
AnyPoint = Union[Point, Tuple[float, float]]
class Bbox:
""" A bounding box in WSG84 projection.
The coordinates are available as an array in the 'coord'
property in the order (minx, miny, maxx, maxy).
"""
def __init__(self, minx: float, miny: float, maxx: float, maxy: float) -> None:
self.coords = (minx, miny, maxx, maxy)
@property
def minlat(self) -> float:
""" Southern-most latitude, corresponding to the minimum y coordinate.
"""
return self.coords[1]
@property
def maxlat(self) -> float:
""" Northern-most latitude, corresponding to the maximum y coordinate.
"""
return self.coords[3]
@property
def minlon(self) -> float:
""" Western-most longitude, corresponding to the minimum x coordinate.
"""
return self.coords[0]
@property
def maxlon(self) -> float:
""" Eastern-most longitude, corresponding to the maximum x coordinate.
"""
return self.coords[2]
@staticmethod
def from_wkb(wkb: Optional[bytes]) -> 'Optional[Bbox]':
""" Create a Bbox from a bounding box polygon as returned by
the database. Return s None if the input value is None.
"""
if wkb is None:
return None
if len(wkb) != 97:
raise ValueError("WKB must be a bounding box polygon")
if wkb.startswith(b'\x01\x03\x00\x00\x20\xE6\x10\x00\x00\x01\x00\x00\x00\x05\x00\x00\x00'):
x1, y1, _, _, x2, y2 = unpack('<dddddd', wkb[17:65])
elif wkb.startswith(b'\x00\x20\x00\x00\x03\x00\x00\x10\xe6\x00\x00\x00\x01\x00\x00\x00\x05'):
x1, y1, _, _, x2, y2 = unpack('>dddddd', wkb[17:65])
else:
raise ValueError("WKB has wrong header")
return Bbox(min(x1, x2), min(y1, y2), max(x1, x2), max(y1, y2))
def from_point(pt: Point, buffer: float) -> 'Bbox':
""" Return a Bbox around the point with the buffer added to all sides.
"""
return Bbox(pt[0] - buffer, pt[1] - buffer,
pt[0] + buffer, pt[1] + buffer)
class GeometryFormat(enum.Flag):
""" Geometry output formats supported by Nominatim.
"""
@ -117,3 +185,18 @@ class LookupDetails:
keywords: bool = False
""" Add information about the search terms used for this place.
"""
geometry_simplification: float = 0.0
""" Simplification factor for a geometry in degrees WGS. A factor of
0.0 means the original geometry is kept. The higher the value, the
more the geometry gets simplified.
"""
class DataLayer(enum.Flag):
""" Layer types that can be selected for reverse and forward search.
"""
POI = enum.auto()
ADDRESS = enum.auto()
RAILWAY = enum.auto()
MANMADE = enum.auto()
NATURAL = enum.auto()

View File

@ -53,7 +53,7 @@ else:
# SQLAlchemy introduced generic types in version 2.0 making typing
# inclompatiple with older versions. Add wrappers here so we don't have
# incompatible with older versions. Add wrappers here so we don't have
# to litter the code with bare-string types.
if TYPE_CHECKING:
@ -66,3 +66,5 @@ SaSelect: TypeAlias = 'sa.Select[Any]'
SaRow: TypeAlias = 'sa.Row[Any]'
SaColumn: TypeAlias = 'sa.Column[Any]'
SaLabel: TypeAlias = 'sa.Label[Any]'
SaTable: TypeAlias = 'sa.Table[Any]'
SaClause: TypeAlias = 'sa.ClauseElement[Any]'