mirror of
https://github.com/osm-search/Nominatim.git
synced 2024-11-22 21:28:10 +03:00
Merge pull request #3383 from lonvia/window-searches
Reorganize SQL for place search using window functions
This commit is contained in:
commit
657aae5f1b
@ -13,6 +13,6 @@ ignored-classes=NominatimArgs,closing
|
||||
# 'too-many-ancestors' is triggered already by deriving from UserDict
|
||||
# 'not-context-manager' disabled because it causes false positives once
|
||||
# typed Python is enabled. See also https://github.com/PyCQA/pylint/issues/5273
|
||||
disable=too-few-public-methods,duplicate-code,too-many-ancestors,bad-option-value,no-self-use,not-context-manager,use-dict-literal,chained-comparison,attribute-defined-outside-init
|
||||
disable=too-few-public-methods,duplicate-code,too-many-ancestors,bad-option-value,no-self-use,not-context-manager,use-dict-literal,chained-comparison,attribute-defined-outside-init,too-many-boolean-expressions
|
||||
|
||||
good-names=i,j,x,y,m,t,fd,db,cc,x1,x2,y1,y2,pt,k,v,nr
|
||||
|
@ -227,8 +227,6 @@ class SearchBuilder:
|
||||
name_fulls = self.query.get_tokens(name, TokenType.WORD)
|
||||
if name_fulls:
|
||||
fulls_count = sum(t.count for t in name_fulls)
|
||||
if len(name_partials) == 1:
|
||||
penalty += min(0.5, max(0, (exp_count - 50 * fulls_count) / (2000 * fulls_count)))
|
||||
if partials_indexed:
|
||||
penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)
|
||||
|
||||
|
@ -645,97 +645,145 @@ class PlaceSearch(AbstractSearch):
|
||||
self.expected_count = expected_count
|
||||
|
||||
|
||||
def _inner_search_name_cte(self, conn: SearchConnection,
|
||||
details: SearchDetails) -> 'sa.CTE':
|
||||
""" Create a subquery that preselects the rows in the search_name
|
||||
table.
|
||||
"""
|
||||
t = conn.t.search_name
|
||||
|
||||
penalty: SaExpression = sa.literal(self.penalty)
|
||||
for ranking in self.rankings:
|
||||
penalty += ranking.sql_penalty(t)
|
||||
|
||||
sql = sa.select(t.c.place_id, t.c.search_rank, t.c.address_rank,
|
||||
t.c.country_code, t.c.centroid,
|
||||
t.c.name_vector, t.c.nameaddress_vector,
|
||||
sa.case((t.c.importance > 0, t.c.importance),
|
||||
else_=0.40001-(sa.cast(t.c.search_rank, sa.Float())/75))
|
||||
.label('importance'),
|
||||
penalty.label('penalty'))
|
||||
|
||||
for lookup in self.lookups:
|
||||
sql = sql.where(lookup.sql_condition(t))
|
||||
|
||||
if self.countries:
|
||||
sql = sql.where(t.c.country_code.in_(self.countries.values))
|
||||
|
||||
if self.postcodes:
|
||||
# if a postcode is given, don't search for state or country level objects
|
||||
sql = sql.where(t.c.address_rank > 9)
|
||||
if self.expected_count > 10000:
|
||||
# Many results expected. Restrict by postcode.
|
||||
tpc = conn.t.postcode
|
||||
sql = sql.where(sa.select(tpc.c.postcode)
|
||||
.where(tpc.c.postcode.in_(self.postcodes.values))
|
||||
.where(t.c.centroid.within_distance(tpc.c.geometry, 0.4))
|
||||
.exists())
|
||||
|
||||
if details.viewbox is not None:
|
||||
if details.bounded_viewbox:
|
||||
sql = sql.where(t.c.centroid
|
||||
.intersects(VIEWBOX_PARAM,
|
||||
use_index=details.viewbox.area < 0.2))
|
||||
elif not self.postcodes and not self.housenumbers and self.expected_count >= 10000:
|
||||
sql = sql.where(t.c.centroid
|
||||
.intersects(VIEWBOX2_PARAM,
|
||||
use_index=details.viewbox.area < 0.5))
|
||||
|
||||
if details.near is not None and details.near_radius is not None:
|
||||
if details.near_radius < 0.1:
|
||||
sql = sql.where(t.c.centroid.within_distance(NEAR_PARAM,
|
||||
NEAR_RADIUS_PARAM))
|
||||
else:
|
||||
sql = sql.where(t.c.centroid
|
||||
.ST_Distance(NEAR_PARAM) < NEAR_RADIUS_PARAM)
|
||||
|
||||
if self.housenumbers:
|
||||
sql = sql.where(t.c.address_rank.between(16, 30))
|
||||
else:
|
||||
if details.excluded:
|
||||
sql = sql.where(_exclude_places(t))
|
||||
if details.min_rank > 0:
|
||||
sql = sql.where(sa.or_(t.c.address_rank >= MIN_RANK_PARAM,
|
||||
t.c.search_rank >= MIN_RANK_PARAM))
|
||||
if details.max_rank < 30:
|
||||
sql = sql.where(sa.or_(t.c.address_rank <= MAX_RANK_PARAM,
|
||||
t.c.search_rank <= MAX_RANK_PARAM))
|
||||
|
||||
inner = sql.limit(10000).order_by(sa.desc(sa.text('importance'))).subquery()
|
||||
|
||||
sql = sa.select(inner.c.place_id, inner.c.search_rank, inner.c.address_rank,
|
||||
inner.c.country_code, inner.c.centroid, inner.c.importance,
|
||||
inner.c.penalty)
|
||||
|
||||
# If the query is not an address search or has a geographic preference,
|
||||
# preselect most important items to restrict the number of places
|
||||
# that need to be looked up in placex.
|
||||
if not self.housenumbers\
|
||||
and (details.viewbox is None or details.bounded_viewbox)\
|
||||
and (details.near is None or details.near_radius is not None)\
|
||||
and not self.qualifiers:
|
||||
sql = sql.add_columns(sa.func.first_value(inner.c.penalty - inner.c.importance)
|
||||
.over(order_by=inner.c.penalty - inner.c.importance)
|
||||
.label('min_penalty'))
|
||||
|
||||
inner = sql.subquery()
|
||||
|
||||
sql = sa.select(inner.c.place_id, inner.c.search_rank, inner.c.address_rank,
|
||||
inner.c.country_code, inner.c.centroid, inner.c.importance,
|
||||
inner.c.penalty)\
|
||||
.where(inner.c.penalty - inner.c.importance < inner.c.min_penalty + 0.5)
|
||||
|
||||
return sql.cte('searches')
|
||||
|
||||
|
||||
async def lookup(self, conn: SearchConnection,
|
||||
details: SearchDetails) -> nres.SearchResults:
|
||||
""" Find results for the search in the database.
|
||||
"""
|
||||
t = conn.t.placex
|
||||
tsearch = conn.t.search_name
|
||||
|
||||
sql: SaLambdaSelect = sa.lambda_stmt(lambda:
|
||||
_select_placex(t).where(t.c.place_id == tsearch.c.place_id))
|
||||
tsearch = self._inner_search_name_cte(conn, details)
|
||||
|
||||
sql = _select_placex(t).join(tsearch, t.c.place_id == tsearch.c.place_id)
|
||||
|
||||
if details.geometry_output:
|
||||
sql = _add_geometry_columns(sql, t.c.geometry, details)
|
||||
|
||||
penalty: SaExpression = sa.literal(self.penalty)
|
||||
for ranking in self.rankings:
|
||||
penalty += ranking.sql_penalty(tsearch)
|
||||
|
||||
for lookup in self.lookups:
|
||||
sql = sql.where(lookup.sql_condition(tsearch))
|
||||
|
||||
if self.countries:
|
||||
sql = sql.where(tsearch.c.country_code.in_(self.countries.values))
|
||||
penalty: SaExpression = tsearch.c.penalty
|
||||
|
||||
if self.postcodes:
|
||||
# if a postcode is given, don't search for state or country level objects
|
||||
sql = sql.where(tsearch.c.address_rank > 9)
|
||||
tpc = conn.t.postcode
|
||||
pcs = self.postcodes.values
|
||||
if self.expected_count > 5000:
|
||||
# Many results expected. Restrict by postcode.
|
||||
sql = sql.where(sa.select(tpc.c.postcode)
|
||||
.where(tpc.c.postcode.in_(pcs))
|
||||
.where(tsearch.c.centroid.within_distance(tpc.c.geometry, 0.12))
|
||||
.exists())
|
||||
|
||||
# Less results, only have a preference for close postcodes
|
||||
pc_near = sa.select(sa.func.min(tpc.c.geometry.ST_Distance(tsearch.c.centroid)))\
|
||||
pc_near = sa.select(sa.func.min(tpc.c.geometry.ST_Distance(t.c.centroid)))\
|
||||
.where(tpc.c.postcode.in_(pcs))\
|
||||
.scalar_subquery()
|
||||
penalty += sa.case((t.c.postcode.in_(pcs), 0.0),
|
||||
else_=sa.func.coalesce(pc_near, cast(SaColumn, 2.0)))
|
||||
|
||||
if details.viewbox is not None:
|
||||
if details.bounded_viewbox:
|
||||
sql = sql.where(tsearch.c.centroid
|
||||
.intersects(VIEWBOX_PARAM,
|
||||
use_index=details.viewbox.area < 0.2))
|
||||
elif not self.postcodes and not self.housenumbers and self.expected_count >= 10000:
|
||||
sql = sql.where(tsearch.c.centroid
|
||||
.intersects(VIEWBOX2_PARAM,
|
||||
use_index=details.viewbox.area < 0.5))
|
||||
else:
|
||||
penalty += sa.case((t.c.geometry.intersects(VIEWBOX_PARAM, use_index=False), 0.0),
|
||||
(t.c.geometry.intersects(VIEWBOX2_PARAM, use_index=False), 0.5),
|
||||
else_=1.0)
|
||||
if details.viewbox is not None and not details.bounded_viewbox:
|
||||
penalty += sa.case((t.c.geometry.intersects(VIEWBOX_PARAM, use_index=False), 0.0),
|
||||
(t.c.geometry.intersects(VIEWBOX2_PARAM, use_index=False), 0.5),
|
||||
else_=1.0)
|
||||
|
||||
if details.near is not None:
|
||||
if details.near_radius is not None:
|
||||
if details.near_radius < 0.1:
|
||||
sql = sql.where(tsearch.c.centroid.within_distance(NEAR_PARAM,
|
||||
NEAR_RADIUS_PARAM))
|
||||
else:
|
||||
sql = sql.where(tsearch.c.centroid
|
||||
.ST_Distance(NEAR_PARAM) < NEAR_RADIUS_PARAM)
|
||||
sql = sql.add_columns((-tsearch.c.centroid.ST_Distance(NEAR_PARAM))
|
||||
.label('importance'))
|
||||
sql = sql.order_by(sa.desc(sa.text('importance')))
|
||||
else:
|
||||
if self.expected_count < 10000\
|
||||
or (details.viewbox is not None and details.viewbox.area < 0.5):
|
||||
sql = sql.order_by(
|
||||
penalty - sa.case((tsearch.c.importance > 0, tsearch.c.importance),
|
||||
else_=0.40001-(sa.cast(tsearch.c.search_rank, sa.Float())/75)))
|
||||
sql = sql.add_columns(t.c.importance)
|
||||
sql = sql.order_by(penalty - tsearch.c.importance)
|
||||
sql = sql.add_columns(tsearch.c.importance)
|
||||
|
||||
|
||||
sql = sql.add_columns(penalty.label('accuracy'))
|
||||
|
||||
if self.expected_count < 10000:
|
||||
sql = sql.order_by(sa.text('accuracy'))
|
||||
sql = sql.add_columns(penalty.label('accuracy'))\
|
||||
.order_by(sa.text('accuracy'))
|
||||
|
||||
if self.housenumbers:
|
||||
hnr_list = '|'.join(self.housenumbers.values)
|
||||
sql = sql.where(tsearch.c.address_rank.between(16, 30))\
|
||||
.where(sa.or_(tsearch.c.address_rank < 30,
|
||||
sa.func.RegexpWord(hnr_list, t.c.housenumber)))
|
||||
|
||||
# Cross check for housenumbers, need to do that on a rather large
|
||||
# set. Worst case there are 40.000 main streets in OSM.
|
||||
inner = sql.limit(10000).subquery()
|
||||
inner = sql.where(sa.or_(tsearch.c.address_rank < 30,
|
||||
sa.func.RegexpWord(hnr_list, t.c.housenumber)))\
|
||||
.subquery()
|
||||
|
||||
# Housenumbers from placex
|
||||
thnr = conn.t.placex.alias('hnr')
|
||||
@ -783,14 +831,6 @@ class PlaceSearch(AbstractSearch):
|
||||
.where(t.c.indexed_status == 0)
|
||||
if self.qualifiers:
|
||||
sql = sql.where(self.qualifiers.sql_restrict(t))
|
||||
if details.excluded:
|
||||
sql = sql.where(_exclude_places(tsearch))
|
||||
if details.min_rank > 0:
|
||||
sql = sql.where(sa.or_(tsearch.c.address_rank >= MIN_RANK_PARAM,
|
||||
tsearch.c.search_rank >= MIN_RANK_PARAM))
|
||||
if details.max_rank < 30:
|
||||
sql = sql.where(sa.or_(tsearch.c.address_rank <= MAX_RANK_PARAM,
|
||||
tsearch.c.search_rank <= MAX_RANK_PARAM))
|
||||
if details.layers is not None:
|
||||
sql = sql.where(_filter_by_layer(t, details.layers))
|
||||
|
||||
|
@ -225,13 +225,14 @@ class _TokenSequence:
|
||||
|
||||
|
||||
def _adapt_penalty_from_priors(self, priors: int, new_dir: int) -> bool:
|
||||
if priors == 2:
|
||||
self.penalty += 1.0
|
||||
elif priors > 2:
|
||||
if priors >= 2:
|
||||
if self.direction == 0:
|
||||
self.direction = new_dir
|
||||
else:
|
||||
return False
|
||||
if priors == 2:
|
||||
self.penalty += 0.8
|
||||
else:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
@ -68,7 +68,7 @@ class TestNameOnlySearches:
|
||||
([20], [101, 100])])
|
||||
def test_lookup_all_match(self, apiobj, frontend, lookup_type, rank, res):
|
||||
lookup = FieldLookup('name_vector', [1,2], lookup_type)
|
||||
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, rank)])
|
||||
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, rank)])
|
||||
|
||||
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking])
|
||||
|
||||
@ -78,7 +78,7 @@ class TestNameOnlySearches:
|
||||
@pytest.mark.parametrize('lookup_type', [LookupAll, Restrict])
|
||||
def test_lookup_all_partial_match(self, apiobj, frontend, lookup_type):
|
||||
lookup = FieldLookup('name_vector', [1,20], lookup_type)
|
||||
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [21])])
|
||||
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [21])])
|
||||
|
||||
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking])
|
||||
|
||||
@ -89,7 +89,7 @@ class TestNameOnlySearches:
|
||||
([20], [101, 100])])
|
||||
def test_lookup_any_match(self, apiobj, frontend, rank, res):
|
||||
lookup = FieldLookup('name_vector', [11,21], LookupAny)
|
||||
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, rank)])
|
||||
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, rank)])
|
||||
|
||||
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking])
|
||||
|
||||
@ -98,7 +98,7 @@ class TestNameOnlySearches:
|
||||
|
||||
def test_lookup_any_partial_match(self, apiobj, frontend):
|
||||
lookup = FieldLookup('name_vector', [20], LookupAll)
|
||||
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [21])])
|
||||
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [21])])
|
||||
|
||||
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking])
|
||||
|
||||
@ -109,7 +109,7 @@ class TestNameOnlySearches:
|
||||
@pytest.mark.parametrize('cc,res', [('us', 100), ('mx', 101)])
|
||||
def test_lookup_restrict_country(self, apiobj, frontend, cc, res):
|
||||
lookup = FieldLookup('name_vector', [1,2], LookupAll)
|
||||
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [10])])
|
||||
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [10])])
|
||||
|
||||
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking], ccodes=[cc])
|
||||
|
||||
@ -118,7 +118,7 @@ class TestNameOnlySearches:
|
||||
|
||||
def test_lookup_restrict_placeid(self, apiobj, frontend):
|
||||
lookup = FieldLookup('name_vector', [1,2], LookupAll)
|
||||
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [10])])
|
||||
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [10])])
|
||||
|
||||
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking],
|
||||
details=SearchDetails(excluded=[101]))
|
||||
@ -132,7 +132,7 @@ class TestNameOnlySearches:
|
||||
napi.GeometryFormat.TEXT])
|
||||
def test_return_geometries(self, apiobj, frontend, geom):
|
||||
lookup = FieldLookup('name_vector', [20], LookupAll)
|
||||
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [21])])
|
||||
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [21])])
|
||||
|
||||
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking],
|
||||
details=SearchDetails(geometry_output=geom))
|
||||
@ -149,7 +149,7 @@ class TestNameOnlySearches:
|
||||
centroid=(5.6, 4.3))
|
||||
|
||||
lookup = FieldLookup('name_vector', [55], LookupAll)
|
||||
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [21])])
|
||||
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [21])])
|
||||
|
||||
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking],
|
||||
details=SearchDetails(geometry_output=napi.GeometryFormat.GEOJSON,
|
||||
@ -191,7 +191,7 @@ class TestNameOnlySearches:
|
||||
|
||||
def test_prefer_near(self, apiobj, frontend):
|
||||
lookup = FieldLookup('name_vector', [1, 2], LookupAll)
|
||||
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [21])])
|
||||
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [21])])
|
||||
|
||||
api = frontend(apiobj, options=APIOPTIONS)
|
||||
results = run_search(api, None, 0.1, [lookup], [ranking])
|
||||
@ -368,9 +368,9 @@ def test_name_and_postcode(apiobj, frontend, wcount, rids):
|
||||
apiobj.add_placex(place_id=991, class_='highway', type='service',
|
||||
rank_search=27, rank_address=27,
|
||||
postcode='11221',
|
||||
centroid=(10.1, 10.1),
|
||||
geometry='LINESTRING(9.995 10.1, 10.005 10.1)')
|
||||
apiobj.add_search_name(991, names=[111], centroid=(10.1, 10.1),
|
||||
centroid=(10.3, 10.3),
|
||||
geometry='LINESTRING(9.995 10.3, 10.005 10.3)')
|
||||
apiobj.add_search_name(991, names=[111], centroid=(10.3, 10.3),
|
||||
search_rank=27, address_rank=27)
|
||||
apiobj.add_postcode(place_id=100, country_code='ch', postcode='11225',
|
||||
geometry='POINT(10 10)')
|
||||
|
Loading…
Reference in New Issue
Block a user