Merge pull request #3383 from lonvia/window-searches

Reorganize SQL for place search using window functions
This commit is contained in:
Sarah Hoffmann 2024-04-03 10:55:10 +02:00 committed by GitHub
commit 657aae5f1b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 126 additions and 87 deletions

View File

@ -13,6 +13,6 @@ ignored-classes=NominatimArgs,closing
# 'too-many-ancestors' is triggered already by deriving from UserDict
# 'not-context-manager' disabled because it causes false positives once
# typed Python is enabled. See also https://github.com/PyCQA/pylint/issues/5273
disable=too-few-public-methods,duplicate-code,too-many-ancestors,bad-option-value,no-self-use,not-context-manager,use-dict-literal,chained-comparison,attribute-defined-outside-init
disable=too-few-public-methods,duplicate-code,too-many-ancestors,bad-option-value,no-self-use,not-context-manager,use-dict-literal,chained-comparison,attribute-defined-outside-init,too-many-boolean-expressions
good-names=i,j,x,y,m,t,fd,db,cc,x1,x2,y1,y2,pt,k,v,nr

View File

@ -227,8 +227,6 @@ class SearchBuilder:
name_fulls = self.query.get_tokens(name, TokenType.WORD)
if name_fulls:
fulls_count = sum(t.count for t in name_fulls)
if len(name_partials) == 1:
penalty += min(0.5, max(0, (exp_count - 50 * fulls_count) / (2000 * fulls_count)))
if partials_indexed:
penalty += 1.2 * sum(t.penalty for t in addr_partials if not t.is_indexed)

View File

@ -645,97 +645,145 @@ class PlaceSearch(AbstractSearch):
self.expected_count = expected_count
def _inner_search_name_cte(self, conn: SearchConnection,
details: SearchDetails) -> 'sa.CTE':
""" Create a subquery that preselects the rows in the search_name
table.
"""
t = conn.t.search_name
penalty: SaExpression = sa.literal(self.penalty)
for ranking in self.rankings:
penalty += ranking.sql_penalty(t)
sql = sa.select(t.c.place_id, t.c.search_rank, t.c.address_rank,
t.c.country_code, t.c.centroid,
t.c.name_vector, t.c.nameaddress_vector,
sa.case((t.c.importance > 0, t.c.importance),
else_=0.40001-(sa.cast(t.c.search_rank, sa.Float())/75))
.label('importance'),
penalty.label('penalty'))
for lookup in self.lookups:
sql = sql.where(lookup.sql_condition(t))
if self.countries:
sql = sql.where(t.c.country_code.in_(self.countries.values))
if self.postcodes:
# if a postcode is given, don't search for state or country level objects
sql = sql.where(t.c.address_rank > 9)
if self.expected_count > 10000:
# Many results expected. Restrict by postcode.
tpc = conn.t.postcode
sql = sql.where(sa.select(tpc.c.postcode)
.where(tpc.c.postcode.in_(self.postcodes.values))
.where(t.c.centroid.within_distance(tpc.c.geometry, 0.4))
.exists())
if details.viewbox is not None:
if details.bounded_viewbox:
sql = sql.where(t.c.centroid
.intersects(VIEWBOX_PARAM,
use_index=details.viewbox.area < 0.2))
elif not self.postcodes and not self.housenumbers and self.expected_count >= 10000:
sql = sql.where(t.c.centroid
.intersects(VIEWBOX2_PARAM,
use_index=details.viewbox.area < 0.5))
if details.near is not None and details.near_radius is not None:
if details.near_radius < 0.1:
sql = sql.where(t.c.centroid.within_distance(NEAR_PARAM,
NEAR_RADIUS_PARAM))
else:
sql = sql.where(t.c.centroid
.ST_Distance(NEAR_PARAM) < NEAR_RADIUS_PARAM)
if self.housenumbers:
sql = sql.where(t.c.address_rank.between(16, 30))
else:
if details.excluded:
sql = sql.where(_exclude_places(t))
if details.min_rank > 0:
sql = sql.where(sa.or_(t.c.address_rank >= MIN_RANK_PARAM,
t.c.search_rank >= MIN_RANK_PARAM))
if details.max_rank < 30:
sql = sql.where(sa.or_(t.c.address_rank <= MAX_RANK_PARAM,
t.c.search_rank <= MAX_RANK_PARAM))
inner = sql.limit(10000).order_by(sa.desc(sa.text('importance'))).subquery()
sql = sa.select(inner.c.place_id, inner.c.search_rank, inner.c.address_rank,
inner.c.country_code, inner.c.centroid, inner.c.importance,
inner.c.penalty)
# If the query is not an address search or has a geographic preference,
# preselect most important items to restrict the number of places
# that need to be looked up in placex.
if not self.housenumbers\
and (details.viewbox is None or details.bounded_viewbox)\
and (details.near is None or details.near_radius is not None)\
and not self.qualifiers:
sql = sql.add_columns(sa.func.first_value(inner.c.penalty - inner.c.importance)
.over(order_by=inner.c.penalty - inner.c.importance)
.label('min_penalty'))
inner = sql.subquery()
sql = sa.select(inner.c.place_id, inner.c.search_rank, inner.c.address_rank,
inner.c.country_code, inner.c.centroid, inner.c.importance,
inner.c.penalty)\
.where(inner.c.penalty - inner.c.importance < inner.c.min_penalty + 0.5)
return sql.cte('searches')
async def lookup(self, conn: SearchConnection,
details: SearchDetails) -> nres.SearchResults:
""" Find results for the search in the database.
"""
t = conn.t.placex
tsearch = conn.t.search_name
sql: SaLambdaSelect = sa.lambda_stmt(lambda:
_select_placex(t).where(t.c.place_id == tsearch.c.place_id))
tsearch = self._inner_search_name_cte(conn, details)
sql = _select_placex(t).join(tsearch, t.c.place_id == tsearch.c.place_id)
if details.geometry_output:
sql = _add_geometry_columns(sql, t.c.geometry, details)
penalty: SaExpression = sa.literal(self.penalty)
for ranking in self.rankings:
penalty += ranking.sql_penalty(tsearch)
for lookup in self.lookups:
sql = sql.where(lookup.sql_condition(tsearch))
if self.countries:
sql = sql.where(tsearch.c.country_code.in_(self.countries.values))
penalty: SaExpression = tsearch.c.penalty
if self.postcodes:
# if a postcode is given, don't search for state or country level objects
sql = sql.where(tsearch.c.address_rank > 9)
tpc = conn.t.postcode
pcs = self.postcodes.values
if self.expected_count > 5000:
# Many results expected. Restrict by postcode.
sql = sql.where(sa.select(tpc.c.postcode)
.where(tpc.c.postcode.in_(pcs))
.where(tsearch.c.centroid.within_distance(tpc.c.geometry, 0.12))
.exists())
# Less results, only have a preference for close postcodes
pc_near = sa.select(sa.func.min(tpc.c.geometry.ST_Distance(tsearch.c.centroid)))\
pc_near = sa.select(sa.func.min(tpc.c.geometry.ST_Distance(t.c.centroid)))\
.where(tpc.c.postcode.in_(pcs))\
.scalar_subquery()
penalty += sa.case((t.c.postcode.in_(pcs), 0.0),
else_=sa.func.coalesce(pc_near, cast(SaColumn, 2.0)))
if details.viewbox is not None:
if details.bounded_viewbox:
sql = sql.where(tsearch.c.centroid
.intersects(VIEWBOX_PARAM,
use_index=details.viewbox.area < 0.2))
elif not self.postcodes and not self.housenumbers and self.expected_count >= 10000:
sql = sql.where(tsearch.c.centroid
.intersects(VIEWBOX2_PARAM,
use_index=details.viewbox.area < 0.5))
else:
penalty += sa.case((t.c.geometry.intersects(VIEWBOX_PARAM, use_index=False), 0.0),
(t.c.geometry.intersects(VIEWBOX2_PARAM, use_index=False), 0.5),
else_=1.0)
if details.viewbox is not None and not details.bounded_viewbox:
penalty += sa.case((t.c.geometry.intersects(VIEWBOX_PARAM, use_index=False), 0.0),
(t.c.geometry.intersects(VIEWBOX2_PARAM, use_index=False), 0.5),
else_=1.0)
if details.near is not None:
if details.near_radius is not None:
if details.near_radius < 0.1:
sql = sql.where(tsearch.c.centroid.within_distance(NEAR_PARAM,
NEAR_RADIUS_PARAM))
else:
sql = sql.where(tsearch.c.centroid
.ST_Distance(NEAR_PARAM) < NEAR_RADIUS_PARAM)
sql = sql.add_columns((-tsearch.c.centroid.ST_Distance(NEAR_PARAM))
.label('importance'))
sql = sql.order_by(sa.desc(sa.text('importance')))
else:
if self.expected_count < 10000\
or (details.viewbox is not None and details.viewbox.area < 0.5):
sql = sql.order_by(
penalty - sa.case((tsearch.c.importance > 0, tsearch.c.importance),
else_=0.40001-(sa.cast(tsearch.c.search_rank, sa.Float())/75)))
sql = sql.add_columns(t.c.importance)
sql = sql.order_by(penalty - tsearch.c.importance)
sql = sql.add_columns(tsearch.c.importance)
sql = sql.add_columns(penalty.label('accuracy'))
if self.expected_count < 10000:
sql = sql.order_by(sa.text('accuracy'))
sql = sql.add_columns(penalty.label('accuracy'))\
.order_by(sa.text('accuracy'))
if self.housenumbers:
hnr_list = '|'.join(self.housenumbers.values)
sql = sql.where(tsearch.c.address_rank.between(16, 30))\
.where(sa.or_(tsearch.c.address_rank < 30,
sa.func.RegexpWord(hnr_list, t.c.housenumber)))
# Cross check for housenumbers, need to do that on a rather large
# set. Worst case there are 40.000 main streets in OSM.
inner = sql.limit(10000).subquery()
inner = sql.where(sa.or_(tsearch.c.address_rank < 30,
sa.func.RegexpWord(hnr_list, t.c.housenumber)))\
.subquery()
# Housenumbers from placex
thnr = conn.t.placex.alias('hnr')
@ -783,14 +831,6 @@ class PlaceSearch(AbstractSearch):
.where(t.c.indexed_status == 0)
if self.qualifiers:
sql = sql.where(self.qualifiers.sql_restrict(t))
if details.excluded:
sql = sql.where(_exclude_places(tsearch))
if details.min_rank > 0:
sql = sql.where(sa.or_(tsearch.c.address_rank >= MIN_RANK_PARAM,
tsearch.c.search_rank >= MIN_RANK_PARAM))
if details.max_rank < 30:
sql = sql.where(sa.or_(tsearch.c.address_rank <= MAX_RANK_PARAM,
tsearch.c.search_rank <= MAX_RANK_PARAM))
if details.layers is not None:
sql = sql.where(_filter_by_layer(t, details.layers))

View File

@ -225,13 +225,14 @@ class _TokenSequence:
def _adapt_penalty_from_priors(self, priors: int, new_dir: int) -> bool:
if priors == 2:
self.penalty += 1.0
elif priors > 2:
if priors >= 2:
if self.direction == 0:
self.direction = new_dir
else:
return False
if priors == 2:
self.penalty += 0.8
else:
return False
return True

View File

@ -68,7 +68,7 @@ class TestNameOnlySearches:
([20], [101, 100])])
def test_lookup_all_match(self, apiobj, frontend, lookup_type, rank, res):
lookup = FieldLookup('name_vector', [1,2], lookup_type)
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, rank)])
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, rank)])
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking])
@ -78,7 +78,7 @@ class TestNameOnlySearches:
@pytest.mark.parametrize('lookup_type', [LookupAll, Restrict])
def test_lookup_all_partial_match(self, apiobj, frontend, lookup_type):
lookup = FieldLookup('name_vector', [1,20], lookup_type)
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [21])])
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [21])])
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking])
@ -89,7 +89,7 @@ class TestNameOnlySearches:
([20], [101, 100])])
def test_lookup_any_match(self, apiobj, frontend, rank, res):
lookup = FieldLookup('name_vector', [11,21], LookupAny)
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, rank)])
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, rank)])
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking])
@ -98,7 +98,7 @@ class TestNameOnlySearches:
def test_lookup_any_partial_match(self, apiobj, frontend):
lookup = FieldLookup('name_vector', [20], LookupAll)
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [21])])
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [21])])
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking])
@ -109,7 +109,7 @@ class TestNameOnlySearches:
@pytest.mark.parametrize('cc,res', [('us', 100), ('mx', 101)])
def test_lookup_restrict_country(self, apiobj, frontend, cc, res):
lookup = FieldLookup('name_vector', [1,2], LookupAll)
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [10])])
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [10])])
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking], ccodes=[cc])
@ -118,7 +118,7 @@ class TestNameOnlySearches:
def test_lookup_restrict_placeid(self, apiobj, frontend):
lookup = FieldLookup('name_vector', [1,2], LookupAll)
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [10])])
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [10])])
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking],
details=SearchDetails(excluded=[101]))
@ -132,7 +132,7 @@ class TestNameOnlySearches:
napi.GeometryFormat.TEXT])
def test_return_geometries(self, apiobj, frontend, geom):
lookup = FieldLookup('name_vector', [20], LookupAll)
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [21])])
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [21])])
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking],
details=SearchDetails(geometry_output=geom))
@ -149,7 +149,7 @@ class TestNameOnlySearches:
centroid=(5.6, 4.3))
lookup = FieldLookup('name_vector', [55], LookupAll)
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [21])])
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [21])])
results = run_search(apiobj, frontend, 0.1, [lookup], [ranking],
details=SearchDetails(geometry_output=napi.GeometryFormat.GEOJSON,
@ -191,7 +191,7 @@ class TestNameOnlySearches:
def test_prefer_near(self, apiobj, frontend):
lookup = FieldLookup('name_vector', [1, 2], LookupAll)
ranking = FieldRanking('name_vector', 0.9, [RankedTokens(0.0, [21])])
ranking = FieldRanking('name_vector', 0.4, [RankedTokens(0.0, [21])])
api = frontend(apiobj, options=APIOPTIONS)
results = run_search(api, None, 0.1, [lookup], [ranking])
@ -368,9 +368,9 @@ def test_name_and_postcode(apiobj, frontend, wcount, rids):
apiobj.add_placex(place_id=991, class_='highway', type='service',
rank_search=27, rank_address=27,
postcode='11221',
centroid=(10.1, 10.1),
geometry='LINESTRING(9.995 10.1, 10.005 10.1)')
apiobj.add_search_name(991, names=[111], centroid=(10.1, 10.1),
centroid=(10.3, 10.3),
geometry='LINESTRING(9.995 10.3, 10.005 10.3)')
apiobj.add_search_name(991, names=[111], centroid=(10.3, 10.3),
search_rank=27, address_rank=27)
apiobj.add_postcode(place_id=100, country_code='ch', postcode='11225',
geometry='POINT(10 10)')