Implements per-name choice of analyzer. If a non-default
analyzer is choosen, then the 'word' identifier is extended
with the name of the ana;yzer, so that we still have unique
items.
Adds a mandatory section 'analyzer' to the token-analysis entries
which define, which analyser to use. Currently there is exactly
one, generic, which implements the former ICUNameProcessor.
Adds parsing of multiple variant lists from the configuration.
Every entry except one must have a unique 'id' paramter to
distinguish the entries. The entry without id is considered
the default. Currently only the list without an id is used
for analysis.
Sanatizer functions allow to transform name and address tags before
they are handed to the tokenizer. Theses transformations are visible
only for the tokenizer and thus only have an influence on the
search terms and address match terms for a place.
Currently two sanitizers are implemented which are responsible for
splitting names with multiple values and removing bracket additions.
Both was previously hard-coded in the tokenizer.
There is no need for the additional layer of indirection that
the ICUNameProcessorRules class adds. The ICURuleLoader can
fill the database properties directly.
Adds class, type, country and rank to the exported information
and removes the rather odd hack for countries. Whether a place
represents a country boundary can now be computed by the tokenizer.
When matching address parts from addr:* tags against place names,
the address names where so far converted to full names and compared
those to the place names. This can become problematic with the new
ICU tokenizer once we introduce creation of different variants
depending on the place name context. It wouldn't be clear which
variant to produce to get a match, so we would have to create all of
them. To work around this issue, switch to using the partial terms
for matching. This introduces a larger fuzziness between matches but
that shouldn't be a problem because matching is always geographically
restricted.
The search terms created for address parts have a different problem:
they are already created before we even know if they are going to be
used. This can lead to spurious entries in the word table, which slows
down searching. This problem can also be circumvented by using only
partial terms for the search terms. In terms of searching that means
that the address terms would not get the full-word boost, but given
that the case where an address part does not exist as an OSM object
should be the exception, this is likely acceptable.
A boolean check for dynamic changes of address parts is not
sufficient. The order of choice should be:
1. an addr:* part matches the name
2. the address part surrounds the object
3. the address part was declared as isaddress
The implementation uses a slightly different ordering
to avoid geometry checks unless strictly necessary (isaddress
is false and no matching address).
See #2446.
Adds a function to the Configuration class to load a YAML
file. This means that searching for the file is generalised
and works the same now for all configuration files. Changes
the search logic, so that it is always possible to have a
custom version of the configuration file in the project
directory.
Move ICU tokenizer to use new load function.
Linked places may bring in extra names. These names need to be
processed by the tokenizer. That means that the linking needs
to be done before the data is handed to the tokenizer. Move finding
the linked place into the preparation stage and update the name
fields. Everything else is still done in the indexing stage.
The new icu tokenizer is now no longer compatible with the old
legacy tokenizer in terms of data structures. Therefore there
is also no longer a need to refer to the legacy tokenizer in the
name.
This separates the logic of creating word sets from the Phrase
class. A tokenizer may now derived the word sets any way they
like. The SimpleWordList class provides a standard implementation
for splitting phrases on spaces.
Postgresql is very bad at creating statistics for jsonb
columns. The result is that the query planer tends to
use JIT for queries with a where over 'info' even when
there is an index.
The BDD tests cannot make assumptions about the structure of the
word table anymore because it depends on the tokenizer. Use more
abstract descriptions instead that ask for specific kinds of
tokens.
Requires a second wrapper class for the word table with the new
layout. This class is interface-compatible, so that later when
the ICU tokenizer becomes the default, all tests that depend on
behaviour of the default tokenizer can be switched to the other
wrapper.
Two replacement words directly following each other did not
work as expected because each expects a space at the
beginning/end while there was only one space available.
Also forbit composing a word after a space was added in the
end by a previous replacement.
The new format combines compound splitting and abbreviation.
It also allows to restrict rules to additional conditions
(like language or region). This latter ability is not used
yet.
Compound decomposition now creates a full name variant on
import just like abbreviations. This simplifies query time
normalization and opens a path for changing abbreviation
and compund decomposition lists for an existing database.
This adds precomputation of abbreviated terms for names and removes
abbreviation of terms in the query. Basic import works but still
needs some thorough testing as well as speed improvements during
import.
New dependency for python library datrie.
We've previously added searching through rank 30 in a house
number search to enable searches for house number+name.
This had the unintended side effect that rank 30 objects
are also returned in s search that dropped the house number
from the query. This is wrong because POIs cannot function
as a parent to a house number.
This fix drops all rank 30 objects from the results for a
house number search if they do not match the requested house
number.