""" Tokenizer implementing normalisation as used before Nominatim 4. """ from collections import OrderedDict import logging import re import shutil from textwrap import dedent from icu import Transliterator import psycopg2 import psycopg2.extras from nominatim.db.connection import connect from nominatim.db import properties from nominatim.db import utils as db_utils from nominatim.db.sql_preprocessor import SQLPreprocessor from nominatim.errors import UsageError DBCFG_NORMALIZATION = "tokenizer_normalization" DBCFG_MAXWORDFREQ = "tokenizer_maxwordfreq" LOG = logging.getLogger() def create(dsn, data_dir): """ Create a new instance of the tokenizer provided by this module. """ return LegacyTokenizer(dsn, data_dir) def _install_module(config_module_path, src_dir, module_dir): """ Copies the PostgreSQL normalisation module into the project directory if necessary. For historical reasons the module is saved in the '/module' subdirectory and not with the other tokenizer data. The function detects when the installation is run from the build directory. It doesn't touch the module in that case. """ # Custom module locations are simply used as is. if config_module_path: LOG.info("Using custom path for database module at '%s'", config_module_path) return config_module_path # Compatibility mode for builddir installations. if module_dir.exists() and src_dir.samefile(module_dir): LOG.info('Running from build directory. Leaving database module as is.') return module_dir # In any other case install the module in the project directory. if not module_dir.exists(): module_dir.mkdir() destfile = module_dir / 'nominatim.so' shutil.copy(str(src_dir / 'nominatim.so'), str(destfile)) destfile.chmod(0o755) LOG.info('Database module installed at %s', str(destfile)) return module_dir def _check_module(module_dir, conn): """ Try to use the PostgreSQL module to confirm that it is correctly installed and accessible from PostgreSQL. """ with conn.cursor() as cur: try: cur.execute("""CREATE FUNCTION nominatim_test_import_func(text) RETURNS text AS '{}/nominatim.so', 'transliteration' LANGUAGE c IMMUTABLE STRICT; DROP FUNCTION nominatim_test_import_func(text) """.format(module_dir)) except psycopg2.DatabaseError as err: LOG.fatal("Error accessing database module: %s", err) raise UsageError("Database module cannot be accessed.") from err class LegacyTokenizer: """ The legacy tokenizer uses a special PostgreSQL module to normalize names and queries. The tokenizer thus implements normalization through calls to the database. """ def __init__(self, dsn, data_dir): self.dsn = dsn self.data_dir = data_dir self.normalization = None def init_new_db(self, config, init_db=True): """ Set up a new tokenizer for the database. This copies all necessary data in the project directory to make sure the tokenizer remains stable even over updates. """ module_dir = _install_module(config.DATABASE_MODULE_PATH, config.lib_dir.module, config.project_dir / 'module') self.normalization = config.TERM_NORMALIZATION self._install_php(config) with connect(self.dsn) as conn: _check_module(module_dir, conn) self._save_config(conn, config) conn.commit() if init_db: self.update_sql_functions(config) self._init_db_tables(config) def init_from_project(self): """ Initialise the tokenizer from the project directory. """ with connect(self.dsn) as conn: self.normalization = properties.get_property(conn, DBCFG_NORMALIZATION) def finalize_import(self, config): """ Do any required postprocessing to make the tokenizer data ready for use. """ with connect(self.dsn) as conn: sqlp = SQLPreprocessor(conn, config) sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer_indices.sql') def update_sql_functions(self, config): """ Reimport the SQL functions for this tokenizer. """ with connect(self.dsn) as conn: max_word_freq = properties.get_property(conn, DBCFG_MAXWORDFREQ) modulepath = config.DATABASE_MODULE_PATH or \ str((config.project_dir / 'module').resolve()) sqlp = SQLPreprocessor(conn, config) sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer.sql', max_word_freq=max_word_freq, modulepath=modulepath) def check_database(self): """ Check that the tokenizer is set up correctly. """ hint = """\ The Postgresql extension nominatim.so was not correctly loaded. Error: {error} Hints: * Check the output of the CMmake/make installation step * Does nominatim.so exist? * Does nominatim.so exist on the database server? * Can nominatim.so be accessed by the database user? """ with connect(self.dsn) as conn: with conn.cursor() as cur: try: out = cur.scalar("SELECT make_standard_name('a')") except psycopg2.Error as err: return hint.format(error=str(err)) if out != 'a': return hint.format(error='Unexpected result for make_standard_name()') return None def migrate_database(self, config): """ Initialise the project directory of an existing database for use with this tokenizer. This is a special migration function for updating existing databases to new software versions. """ self.normalization = config.TERM_NORMALIZATION module_dir = _install_module(config.DATABASE_MODULE_PATH, config.lib_dir.module, config.project_dir / 'module') with connect(self.dsn) as conn: _check_module(module_dir, conn) self._save_config(conn, config) def name_analyzer(self): """ Create a new analyzer for tokenizing names and queries using this tokinzer. Analyzers are context managers and should be used accordingly: ``` with tokenizer.name_analyzer() as analyzer: analyser.tokenize() ``` When used outside the with construct, the caller must ensure to call the close() function before destructing the analyzer. Analyzers are not thread-safe. You need to instantiate one per thread. """ normalizer = Transliterator.createFromRules("phrase normalizer", self.normalization) return LegacyNameAnalyzer(self.dsn, normalizer) def _install_php(self, config): """ Install the php script for the tokenizer. """ php_file = self.data_dir / "tokenizer.php" php_file.write_text(dedent("""\ 1: simple_list = list(set(simple_list)) with conn.cursor() as cur: cur.execute("SELECT (create_housenumbers(%s)).* ", (simple_list, )) self.data['hnr_tokens'], self.data['hnr'] = cur.fetchone() def add_street(self, conn, street): """ Add addr:street match terms. """ def _get_street(name): with conn.cursor() as cur: return cur.scalar("SELECT word_ids_from_name(%s)::text", (name, )) self.data['street'] = self.cache.streets.get(street, _get_street) def add_place(self, conn, place): """ Add addr:place search and match terms. """ def _get_place(name): with conn.cursor() as cur: cur.execute("""SELECT (addr_ids_from_name(%s) || getorcreate_name_id(make_standard_name(%s), ''))::text, word_ids_from_name(%s)::text""", (name, name, name)) return cur.fetchone() self.data['place_search'], self.data['place_match'] = \ self.cache.places.get(place, _get_place) def add_address_terms(self, conn, terms): """ Add additional address terms. """ def _get_address_term(name): with conn.cursor() as cur: cur.execute("""SELECT addr_ids_from_name(%s)::text, word_ids_from_name(%s)::text""", (name, name)) return cur.fetchone() tokens = {} for key, value in terms: tokens[key] = self.cache.address_terms.get(value, _get_address_term) self.data['addr'] = tokens class _LRU: """ Least recently used cache that accepts a generator function to produce the item when there is a cache miss. """ def __init__(self, maxsize=128, init_data=None): self.data = init_data or OrderedDict() self.maxsize = maxsize if init_data is not None and len(init_data) > maxsize: self.maxsize = len(init_data) def get(self, key, generator): """ Get the item with the given key from the cache. If nothing is found in the cache, generate the value through the generator function and store it in the cache. """ value = self.data.get(key) if value is not None: self.data.move_to_end(key) else: value = generator(key) if len(self.data) >= self.maxsize: self.data.popitem(last=False) self.data[key] = value return value class _TokenCache: """ Cache for token information to avoid repeated database queries. This cache is not thread-safe and needs to be instantiated per analyzer. """ def __init__(self, conn): # various LRU caches self.streets = _LRU(maxsize=256) self.places = _LRU(maxsize=128) self.address_terms = _LRU(maxsize=1024) # Lookup houseunumbers up to 100 and cache them with conn.cursor() as cur: cur.execute("""SELECT i, ARRAY[getorcreate_housenumber_id(i::text)]::text FROM generate_series(1, 100) as i""") self._cached_housenumbers = {str(r[0]) : r[1] for r in cur} # Get postcodes that are already saved postcodes = OrderedDict() with conn.cursor() as cur: cur.execute("""SELECT word FROM word WHERE class ='place' and type = 'postcode'""") for row in cur: postcodes[row[0]] = None self.postcodes = _LRU(maxsize=32, init_data=postcodes) def get_housenumber(self, number): """ Get a housenumber token from the cache. """ return self._cached_housenumbers.get(number)