mirror of
https://github.com/osm-search/Nominatim.git
synced 2024-12-26 22:44:44 +03:00
234 lines
7.8 KiB
Python
234 lines
7.8 KiB
Python
# SPDX-License-Identifier: GPL-2.0-only
|
|
#
|
|
# This file is part of Nominatim. (https://nominatim.org)
|
|
#
|
|
# Copyright (C) 2022 by the Nominatim developer community.
|
|
# For a full list of authors see the git log.
|
|
"""
|
|
Main work horse for indexing (computing addresses) the database.
|
|
"""
|
|
import logging
|
|
import time
|
|
|
|
import psycopg2.extras
|
|
|
|
from nominatim.indexer.progress import ProgressLogger
|
|
from nominatim.indexer import runners
|
|
from nominatim.db.async_connection import DBConnection, WorkerPool
|
|
from nominatim.db.connection import connect
|
|
|
|
LOG = logging.getLogger()
|
|
|
|
|
|
class PlaceFetcher:
|
|
""" Asynchronous connection that fetches place details for processing.
|
|
"""
|
|
def __init__(self, dsn, setup_conn):
|
|
self.wait_time = 0
|
|
self.current_ids = None
|
|
self.conn = DBConnection(dsn, cursor_factory=psycopg2.extras.DictCursor)
|
|
|
|
with setup_conn.cursor() as cur:
|
|
# need to fetch those manually because register_hstore cannot
|
|
# fetch them on an asynchronous connection below.
|
|
hstore_oid = cur.scalar("SELECT 'hstore'::regtype::oid")
|
|
hstore_array_oid = cur.scalar("SELECT 'hstore[]'::regtype::oid")
|
|
|
|
psycopg2.extras.register_hstore(self.conn.conn, oid=hstore_oid,
|
|
array_oid=hstore_array_oid)
|
|
|
|
def close(self):
|
|
""" Close the underlying asynchronous connection.
|
|
"""
|
|
if self.conn:
|
|
self.conn.close()
|
|
self.conn = None
|
|
|
|
|
|
def fetch_next_batch(self, cur, runner):
|
|
""" Send a request for the next batch of places.
|
|
If details for the places are required, they will be fetched
|
|
asynchronously.
|
|
|
|
Returns true if there is still data available.
|
|
"""
|
|
ids = cur.fetchmany(100)
|
|
|
|
if not ids:
|
|
self.current_ids = None
|
|
return False
|
|
|
|
if hasattr(runner, 'get_place_details'):
|
|
runner.get_place_details(self.conn, ids)
|
|
self.current_ids = []
|
|
else:
|
|
self.current_ids = ids
|
|
|
|
return True
|
|
|
|
def get_batch(self):
|
|
""" Get the next batch of data, previously requested with
|
|
`fetch_next_batch`.
|
|
"""
|
|
if self.current_ids is not None and not self.current_ids:
|
|
tstart = time.time()
|
|
self.conn.wait()
|
|
self.wait_time += time.time() - tstart
|
|
self.current_ids = self.conn.cursor.fetchall()
|
|
|
|
return self.current_ids
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
self.conn.wait()
|
|
self.close()
|
|
|
|
|
|
class Indexer:
|
|
""" Main indexing routine.
|
|
"""
|
|
|
|
def __init__(self, dsn, tokenizer, num_threads):
|
|
self.dsn = dsn
|
|
self.tokenizer = tokenizer
|
|
self.num_threads = num_threads
|
|
|
|
|
|
def has_pending(self):
|
|
""" Check if any data still needs indexing.
|
|
This function must only be used after the import has finished.
|
|
Otherwise it will be very expensive.
|
|
"""
|
|
with connect(self.dsn) as conn:
|
|
with conn.cursor() as cur:
|
|
cur.execute("SELECT 'a' FROM placex WHERE indexed_status > 0 LIMIT 1")
|
|
return cur.rowcount > 0
|
|
|
|
|
|
def index_full(self, analyse=True):
|
|
""" Index the complete database. This will first index boundaries
|
|
followed by all other objects. When `analyse` is True, then the
|
|
database will be analysed at the appropriate places to
|
|
ensure that database statistics are updated.
|
|
"""
|
|
with connect(self.dsn) as conn:
|
|
conn.autocommit = True
|
|
|
|
def _analyze():
|
|
if analyse:
|
|
with conn.cursor() as cur:
|
|
cur.execute('ANALYZE')
|
|
|
|
self.index_by_rank(0, 4)
|
|
_analyze()
|
|
|
|
self.index_boundaries(0, 30)
|
|
_analyze()
|
|
|
|
self.index_by_rank(5, 25)
|
|
_analyze()
|
|
|
|
self.index_by_rank(26, 30)
|
|
_analyze()
|
|
|
|
self.index_postcodes()
|
|
_analyze()
|
|
|
|
|
|
def index_boundaries(self, minrank, maxrank):
|
|
""" Index only administrative boundaries within the given rank range.
|
|
"""
|
|
LOG.warning("Starting indexing boundaries using %s threads",
|
|
self.num_threads)
|
|
|
|
with self.tokenizer.name_analyzer() as analyzer:
|
|
for rank in range(max(minrank, 4), min(maxrank, 26)):
|
|
self._index(runners.BoundaryRunner(rank, analyzer))
|
|
|
|
def index_by_rank(self, minrank, maxrank):
|
|
""" Index all entries of placex in the given rank range (inclusive)
|
|
in order of their address rank.
|
|
|
|
When rank 30 is requested then also interpolations and
|
|
places with address rank 0 will be indexed.
|
|
"""
|
|
maxrank = min(maxrank, 30)
|
|
LOG.warning("Starting indexing rank (%i to %i) using %i threads",
|
|
minrank, maxrank, self.num_threads)
|
|
|
|
with self.tokenizer.name_analyzer() as analyzer:
|
|
for rank in range(max(1, minrank), maxrank):
|
|
self._index(runners.RankRunner(rank, analyzer))
|
|
|
|
if maxrank == 30:
|
|
self._index(runners.RankRunner(0, analyzer))
|
|
self._index(runners.InterpolationRunner(analyzer), 20)
|
|
self._index(runners.RankRunner(30, analyzer), 20)
|
|
else:
|
|
self._index(runners.RankRunner(maxrank, analyzer))
|
|
|
|
|
|
def index_postcodes(self):
|
|
"""Index the entries ofthe location_postcode table.
|
|
"""
|
|
LOG.warning("Starting indexing postcodes using %s threads", self.num_threads)
|
|
|
|
self._index(runners.PostcodeRunner(), 20)
|
|
|
|
|
|
def update_status_table(self):
|
|
""" Update the status in the status table to 'indexed'.
|
|
"""
|
|
with connect(self.dsn) as conn:
|
|
with conn.cursor() as cur:
|
|
cur.execute('UPDATE import_status SET indexed = true')
|
|
|
|
conn.commit()
|
|
|
|
def _index(self, runner, batch=1):
|
|
""" Index a single rank or table. `runner` describes the SQL to use
|
|
for indexing. `batch` describes the number of objects that
|
|
should be processed with a single SQL statement
|
|
"""
|
|
LOG.warning("Starting %s (using batch size %s)", runner.name(), batch)
|
|
|
|
with connect(self.dsn) as conn:
|
|
psycopg2.extras.register_hstore(conn)
|
|
with conn.cursor() as cur:
|
|
total_tuples = cur.scalar(runner.sql_count_objects())
|
|
LOG.debug("Total number of rows: %i", total_tuples)
|
|
|
|
conn.commit()
|
|
|
|
progress = ProgressLogger(runner.name(), total_tuples)
|
|
|
|
if total_tuples > 0:
|
|
with conn.cursor(name='places') as cur:
|
|
cur.execute(runner.sql_get_objects())
|
|
|
|
with PlaceFetcher(self.dsn, conn) as fetcher:
|
|
with WorkerPool(self.dsn, self.num_threads) as pool:
|
|
has_more = fetcher.fetch_next_batch(cur, runner)
|
|
while has_more:
|
|
places = fetcher.get_batch()
|
|
|
|
# asynchronously get the next batch
|
|
has_more = fetcher.fetch_next_batch(cur, runner)
|
|
|
|
# And insert the curent batch
|
|
for idx in range(0, len(places), batch):
|
|
part = places[idx:idx + batch]
|
|
LOG.debug("Processing places: %s", str(part))
|
|
runner.index_places(pool.next_free_worker(), part)
|
|
progress.add(len(part))
|
|
|
|
LOG.info("Wait time: fetcher: %.2fs, pool: %.2fs",
|
|
fetcher.wait_time, pool.wait_time)
|
|
|
|
conn.commit()
|
|
|
|
progress.done()
|