Nominatim/utils/tigerAddressImport.py
2017-10-28 00:08:59 +02:00

621 lines
24 KiB
Python
Executable File

#!/usr/bin/python
# Tiger road data to OSM conversion script
# Creates Karlsruhe-style address ways beside the main way
# based on the Massachusetts GIS script by christopher schmidt
#BUGS:
# On very tight curves, a loop may be generated in the address way.
# It would be nice if the ends of the address ways were not pulled back from dead ends
# Ways that include these mtfccs should not be uploaded
# H1100 Connector
# H3010 Stream/River
# H3013 Braided Stream
# H3020 Canal, Ditch or Aqueduct
# L4130 Point-to-Point Line
# L4140 Property/Parcel Line (Including PLSS)
# P0001 Nonvisible Linear Legal/Statistical Boundary
# P0002 Perennial Shoreline
# P0003 Intermittent Shoreline
# P0004 Other non-visible bounding Edge (e.g., Census water boundary, boundary of an areal feature)
ignoremtfcc = [ "H1100", "H3010", "H3013", "H3020", "L4130", "L4140", "P0001", "P0002", "P0003", "P0004" ]
# Sets the distance that the address ways should be from the main way, in feet.
address_distance = 30
# Sets the distance that the ends of the address ways should be pulled back from the ends of the main way, in feet
address_pullback = 45
import sys, os.path, json
try:
from osgeo import ogr
from osgeo import osr
except:
import ogr
import osr
# https://www.census.gov/geo/reference/codes/cou.html
# tiger_county_fips.json was generated from the following:
# wget https://www2.census.gov/geo/docs/reference/codes/files/national_county.txt
# cat national_county.txt | perl -F, -naE'($F[0] ne 'AS') && $F[3] =~ s/ ((city|City|County|District|Borough|City and Borough|Municipio|Municipality|Parish|Island|Census Area)(?:, |\Z))+//; say qq( "$F[1]$F[2]": "$F[3], $F[0]",)'
json_fh = open(os.path.dirname(sys.argv[0]) + "/tiger_county_fips.json")
county_fips_data = json.load(json_fh)
def parse_shp_for_geom_and_tags( filename ):
#ogr.RegisterAll()
dr = ogr.GetDriverByName("ESRI Shapefile")
poDS = dr.Open( filename )
if poDS == None:
raise "Open failed."
poLayer = poDS.GetLayer( 0 )
fieldNameList = []
layerDefinition = poLayer.GetLayerDefn()
for i in range(layerDefinition.GetFieldCount()):
fieldNameList.append(layerDefinition.GetFieldDefn(i).GetName())
# sys.stderr.write(",".join(fieldNameList))
poLayer.ResetReading()
ret = []
poFeature = poLayer.GetNextFeature()
while poFeature:
tags = {}
# WAY ID
tags["tiger:way_id"] = int( poFeature.GetField("TLID") )
# FEATURE IDENTIFICATION
mtfcc = poFeature.GetField("MTFCC");
if mtfcc != None:
if mtfcc == "L4010": #Pipeline
tags["man_made"] = "pipeline"
if mtfcc == "L4020": #Powerline
tags["power"] = "line"
if mtfcc == "L4031": #Aerial Tramway/Ski Lift
tags["aerialway"] = "cable_car"
if mtfcc == "L4110": #Fence Line
tags["barrier"] = "fence"
if mtfcc == "L4125": #Cliff/Escarpment
tags["natural"] = "cliff"
if mtfcc == "L4165": #Ferry Crossing
tags["route"] = "ferry"
if mtfcc == "R1011": #Railroad Feature (Main, Spur, or Yard)
tags["railway"] = "rail"
ttyp = poFeature.GetField("TTYP")
if ttyp != None:
if ttyp == "S":
tags["service"] = "spur"
if ttyp == "Y":
tags["service"] = "yard"
tags["tiger:ttyp"] = ttyp
if mtfcc == "R1051": #Carline, Streetcar Track, Monorail, Other Mass Transit Rail)
tags["railway"] = "light_rail"
if mtfcc == "R1052": #Cog Rail Line, Incline Rail Line, Tram
tags["railway"] = "incline"
if mtfcc == "S1100":
tags["highway"] = "primary"
if mtfcc == "S1200":
tags["highway"] = "secondary"
if mtfcc == "S1400":
tags["highway"] = "residential"
if mtfcc == "S1500":
tags["highway"] = "track"
if mtfcc == "S1630": #Ramp
tags["highway"] = "motorway_link"
if mtfcc == "S1640": #Service Drive usually along a limited access highway
tags["highway"] = "service"
if mtfcc == "S1710": #Walkway/Pedestrian Trail
tags["highway"] = "path"
if mtfcc == "S1720":
tags["highway"] = "steps"
if mtfcc == "S1730": #Alley
tags["highway"] = "service"
tags["service"] = "alley"
if mtfcc == "S1740": #Private Road for service vehicles (logging, oil, fields, ranches, etc.)
tags["highway"] = "service"
tags["access"] = "private"
if mtfcc == "S1750": #Private Driveway
tags["highway"] = "service"
tags["access"] = "private"
tags["service"] = "driveway"
if mtfcc == "S1780": #Parking Lot Road
tags["highway"] = "service"
tags["service"] = "parking_aisle"
if mtfcc == "S1820": #Bike Path or Trail
tags["highway"] = "cycleway"
if mtfcc == "S1830": #Bridle Path
tags["highway"] = "bridleway"
tags["tiger:mtfcc"] = mtfcc
# FEATURE NAME
if poFeature.GetField("FULLNAME"):
#capitalizes the first letter of each word
name = poFeature.GetField( "FULLNAME" )
tags["name"] = name
#Attempt to guess highway grade
if name[0:2] == "I-":
tags["highway"] = "motorway"
if name[0:3] == "US ":
tags["highway"] = "primary"
if name[0:3] == "US-":
tags["highway"] = "primary"
if name[0:3] == "Hwy":
if tags["highway"] != "primary":
tags["highway"] = "secondary"
# TIGER 2017 no longer contains this field
if 'DIVROAD' in fieldNameList:
divroad = poFeature.GetField("DIVROAD")
if divroad != None:
if divroad == "Y" and "highway" in tags and tags["highway"] == "residential":
tags["highway"] = "tertiary"
tags["tiger:separated"] = divroad
statefp = poFeature.GetField("STATEFP")
countyfp = poFeature.GetField("COUNTYFP")
if (statefp != None) and (countyfp != None):
county_name = county_fips_data.get(statefp + '' + countyfp)
if county_name:
tags["tiger:county"] = county_name.encode("utf-8")
# tlid = poFeature.GetField("TLID")
# if tlid != None:
# tags["tiger:tlid"] = tlid
lfromadd = poFeature.GetField("LFROMADD")
if lfromadd != None:
tags["tiger:lfromadd"] = lfromadd
rfromadd = poFeature.GetField("RFROMADD")
if rfromadd != None:
tags["tiger:rfromadd"] = rfromadd
ltoadd = poFeature.GetField("LTOADD")
if ltoadd != None:
tags["tiger:ltoadd"] = ltoadd
rtoadd = poFeature.GetField("RTOADD")
if rtoadd != None:
tags["tiger:rtoadd"] = rtoadd
zipl = poFeature.GetField("ZIPL")
if zipl != None:
tags["tiger:zip_left"] = zipl
zipr = poFeature.GetField("ZIPR")
if zipr != None:
tags["tiger:zip_right"] = zipr
if mtfcc not in ignoremtfcc:
# COPY DOWN THE GEOMETRY
geom = []
rawgeom = poFeature.GetGeometryRef()
for i in range( rawgeom.GetPointCount() ):
geom.append( (rawgeom.GetX(i), rawgeom.GetY(i)) )
ret.append( (geom, tags) )
poFeature = poLayer.GetNextFeature()
return ret
# ====================================
# to do read .prj file for this data
# Change the Projcs_wkt to match your datas prj file.
# ====================================
projcs_wkt = \
"""GEOGCS["GCS_North_American_1983",
DATUM["D_North_American_1983",
SPHEROID["GRS_1980",6378137,298.257222101]],
PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]]"""
from_proj = osr.SpatialReference()
from_proj.ImportFromWkt( projcs_wkt )
# output to WGS84
to_proj = osr.SpatialReference()
to_proj.SetWellKnownGeogCS( "EPSG:4326" )
tr = osr.CoordinateTransformation( from_proj, to_proj )
import math
def length(segment, nodelist):
'''Returns the length (in feet) of a segment'''
first = True
distance = 0
lat_feet = 364613 #The approximate number of feet in one degree of latitude
for point in segment:
pointid, (lat, lon) = nodelist[ round_point( point ) ]
if first:
first = False
else:
#The approximate number of feet in one degree of longitute
lrad = math.radians(lat)
lon_feet = 365527.822 * math.cos(lrad) - 306.75853 * math.cos(3 * lrad) + 0.3937 * math.cos(5 * lrad)
distance += math.sqrt(((lat - previous[0])*lat_feet)**2 + ((lon - previous[1])*lon_feet)**2)
previous = (lat, lon)
return distance
def addressways(waylist, nodelist, first_id):
id = first_id
lat_feet = 364613 #The approximate number of feet in one degree of latitude
distance = float(address_distance)
ret = []
for waykey, segments in waylist.items():
waykey = dict(waykey)
rsegments = []
lsegments = []
for segment in segments:
lsegment = []
rsegment = []
lastpoint = None
# Don't pull back the ends of very short ways too much
seglength = length(segment, nodelist)
if seglength < float(address_pullback) * 3.0:
pullback = seglength / 3.0
else:
pullback = float(address_pullback)
if "tiger:lfromadd" in waykey:
lfromadd = waykey["tiger:lfromadd"]
else:
lfromadd = None
if "tiger:ltoadd" in waykey:
ltoadd = waykey["tiger:ltoadd"]
else:
ltoadd = None
if "tiger:rfromadd" in waykey:
rfromadd = waykey["tiger:rfromadd"]
else:
rfromadd = None
if "tiger:rtoadd" in waykey:
rtoadd = waykey["tiger:rtoadd"]
else:
rtoadd = None
if rfromadd != None and rtoadd != None:
right = True
else:
right = False
if lfromadd != None and ltoadd != None:
left = True
else:
left = False
if left or right:
first = True
firstpointid, firstpoint = nodelist[ round_point( segment[0] ) ]
finalpointid, finalpoint = nodelist[ round_point( segment[len(segment) - 1] ) ]
for point in segment:
pointid, (lat, lon) = nodelist[ round_point( point ) ]
#The approximate number of feet in one degree of longitute
lrad = math.radians(lat)
lon_feet = 365527.822 * math.cos(lrad) - 306.75853 * math.cos(3 * lrad) + 0.3937 * math.cos(5 * lrad)
#Calculate the points of the offset ways
if lastpoint != None:
#Skip points too close to start
if math.sqrt((lat * lat_feet - firstpoint[0] * lat_feet)**2 + (lon * lon_feet - firstpoint[1] * lon_feet)**2) < pullback:
#Preserve very short ways (but will be rendered backwards)
if pointid != finalpointid:
continue
#Skip points too close to end
if math.sqrt((lat * lat_feet - finalpoint[0] * lat_feet)**2 + (lon * lon_feet - finalpoint[1] * lon_feet)**2) < pullback:
#Preserve very short ways (but will be rendered backwards)
if (pointid != firstpointid) and (pointid != finalpointid):
continue
X = (lon - lastpoint[1]) * lon_feet
Y = (lat - lastpoint[0]) * lat_feet
if Y != 0:
theta = math.pi/2 - math.atan( X / Y)
Xp = math.sin(theta) * distance
Yp = math.cos(theta) * distance
else:
Xp = 0
if X > 0:
Yp = -distance
else:
Yp = distance
if Y > 0:
Xp = -Xp
else:
Yp = -Yp
if first:
first = False
dX = - (Yp * (pullback / distance)) / lon_feet #Pull back the first point
dY = (Xp * (pullback / distance)) / lat_feet
if left:
lpoint = (lastpoint[0] + (Yp / lat_feet) - dY, lastpoint[1] + (Xp / lon_feet) - dX)
lsegment.append( (id, lpoint) )
id += 1
if right:
rpoint = (lastpoint[0] - (Yp / lat_feet) - dY, lastpoint[1] - (Xp / lon_feet) - dX)
rsegment.append( (id, rpoint) )
id += 1
else:
#round the curves
if delta[1] != 0:
theta = abs(math.atan(delta[0] / delta[1]))
else:
theta = math.pi / 2
if Xp != 0:
theta = theta - abs(math.atan(Yp / Xp))
else: theta = theta - math.pi / 2
r = 1 + abs(math.tan(theta/2))
if left:
lpoint = (lastpoint[0] + (Yp + delta[0]) * r / (lat_feet * 2), lastpoint[1] + (Xp + delta[1]) * r / (lon_feet * 2))
lsegment.append( (id, lpoint) )
id += 1
if right:
rpoint = (lastpoint[0] - (Yp + delta[0]) * r / (lat_feet * 2), lastpoint[1] - (Xp + delta[1]) * r / (lon_feet * 2))
rsegment.append( (id, rpoint) )
id += 1
delta = (Yp, Xp)
lastpoint = (lat, lon)
#Add in the last node
dX = - (Yp * (pullback / distance)) / lon_feet
dY = (Xp * (pullback / distance)) / lat_feet
if left:
lpoint = (lastpoint[0] + (Yp + delta[0]) / (lat_feet * 2) + dY, lastpoint[1] + (Xp + delta[1]) / (lon_feet * 2) + dX )
lsegment.append( (id, lpoint) )
id += 1
if right:
rpoint = (lastpoint[0] - Yp / lat_feet + dY, lastpoint[1] - Xp / lon_feet + dX)
rsegment.append( (id, rpoint) )
id += 1
#Generate the tags for ways and nodes
zipr = ''
zipl = ''
name = ''
county = ''
if "tiger:zip_right" in waykey:
zipr = waykey["tiger:zip_right"]
if "tiger:zip_left" in waykey:
zipl = waykey["tiger:zip_left"]
if "name" in waykey:
name = waykey["name"]
if "tiger:county" in waykey:
county = waykey["tiger:county"]
if "tiger:separated" in waykey: # No longer set in Tiger-2017
separated = waykey["tiger:separated"]
else:
separated = "N"
#Write the nodes of the offset ways
if right:
rlinestring = [];
for i, point in rsegment:
rlinestring.append( "%f %f" % (point[1], point[0]) )
if left:
llinestring = [];
for i, point in lsegment:
llinestring.append( "%f %f" % (point[1], point[0]) )
if right:
rsegments.append( rsegment )
if left:
lsegments.append( lsegment )
rtofromint = right #Do the addresses convert to integers?
ltofromint = left #Do the addresses convert to integers?
if right:
try: rfromint = int(rfromadd)
except:
print("Non integer address: %s" % rfromadd)
rtofromint = False
try: rtoint = int(rtoadd)
except:
print("Non integer address: %s" % rtoadd)
rtofromint = False
if left:
try: lfromint = int(lfromadd)
except:
print("Non integer address: %s" % lfromadd)
ltofromint = False
try: ltoint = int(ltoadd)
except:
print("Non integer address: %s" % ltoadd)
ltofromint = False
if right:
id += 1
interpolationtype = "all";
if rtofromint:
if (rfromint % 2) == 0 and (rtoint % 2) == 0:
if separated == "Y": #Doesn't matter if there is another side
interpolationtype = "even";
elif ltofromint and (lfromint % 2) == 1 and (ltoint % 2) == 1:
interpolationtype = "even";
elif (rfromint % 2) == 1 and (rtoint % 2) == 1:
if separated == "Y": #Doesn't matter if there is another side
interpolationtype = "odd";
elif ltofromint and (lfromint % 2) == 0 and (ltoint % 2) == 0:
interpolationtype = "odd";
ret.append( "SELECT tiger_line_import(ST_GeomFromText('LINESTRING(%s)',4326), %s, %s, %s, %s, %s, %s);" %
( ",".join(rlinestring), sql_quote(rfromadd), sql_quote(rtoadd), sql_quote(interpolationtype), sql_quote(name), sql_quote(county), sql_quote(zipr) ) )
if left:
id += 1
interpolationtype = "all";
if ltofromint:
if (lfromint % 2) == 0 and (ltoint % 2) == 0:
if separated == "Y":
interpolationtype = "even";
elif rtofromint and (rfromint % 2) == 1 and (rtoint % 2) == 1:
interpolationtype = "even";
elif (lfromint % 2) == 1 and (ltoint % 2) == 1:
if separated == "Y":
interpolationtype = "odd";
elif rtofromint and (rfromint %2 ) == 0 and (rtoint % 2) == 0:
interpolationtype = "odd";
ret.append( "SELECT tiger_line_import(ST_GeomFromText('LINESTRING(%s)',4326), %s, %s, %s, %s, %s, %s);" %
( ",".join(llinestring), sql_quote(lfromadd), sql_quote(ltoadd), sql_quote(interpolationtype), sql_quote(name), sql_quote(county), sql_quote(zipl) ) )
return ret
def sql_quote( string ):
return "'" + string.replace("'", "''") + "'"
def unproject( point ):
pt = tr.TransformPoint( point[0], point[1] )
return (pt[1], pt[0])
def round_point( point, accuracy=8 ):
return tuple( [ round(x,accuracy) for x in point ] )
def compile_nodelist( parsed_gisdata, first_id=1 ):
nodelist = {}
i = first_id
for geom, tags in parsed_gisdata:
if len( geom )==0:
continue
for point in geom:
r_point = round_point( point )
if r_point not in nodelist:
nodelist[ r_point ] = (i, unproject( point ))
i += 1
return (i, nodelist)
def adjacent( left, right ):
left_left = round_point(left[0])
left_right = round_point(left[-1])
right_left = round_point(right[0])
right_right = round_point(right[-1])
return ( left_left == right_left or
left_left == right_right or
left_right == right_left or
left_right == right_right )
def glom( left, right ):
left = list( left )
right = list( right )
left_left = round_point(left[0])
left_right = round_point(left[-1])
right_left = round_point(right[0])
right_right = round_point(right[-1])
if left_left == right_left:
left.reverse()
return left[0:-1] + right
if left_left == right_right:
return right[0:-1] + left
if left_right == right_left:
return left[0:-1] + right
if left_right == right_right:
right.reverse()
return left[0:-1] + right
raise 'segments are not adjacent'
def glom_once( segments ):
if len(segments)==0:
return segments
unsorted = list( segments )
x = unsorted.pop(0)
while len( unsorted ) > 0:
n = len( unsorted )
for i in range(0, n):
y = unsorted[i]
if adjacent( x, y ):
y = unsorted.pop(i)
x = glom( x, y )
break
# Sorted and unsorted lists have no adjacent segments
if len( unsorted ) == n:
break
return x, unsorted
def glom_all( segments ):
unsorted = segments
chunks = []
while unsorted != []:
chunk, unsorted = glom_once( unsorted )
chunks.append( chunk )
return chunks
def compile_waylist( parsed_gisdata ):
waylist = {}
#Group by tiger:way_id
for geom, tags in parsed_gisdata:
way_key = tags.copy()
way_key = ( way_key['tiger:way_id'], tuple( [(k,v) for k,v in way_key.items()] ) )
if way_key not in waylist:
waylist[way_key] = []
waylist[way_key].append( geom )
ret = {}
for (way_id, way_key), segments in waylist.items():
ret[way_key] = glom_all( segments )
return ret
def shape_to_sql( shp_filename, sql_filename ):
print("parsing shpfile %s" % shp_filename)
parsed_features = parse_shp_for_geom_and_tags( shp_filename )
print("compiling nodelist")
i, nodelist = compile_nodelist( parsed_features )
print("compiling waylist")
waylist = compile_waylist( parsed_features )
print("preparing address ways")
sql_lines = addressways(waylist, nodelist, i)
print("writing %s" % sql_filename)
fp = open( sql_filename, "w" )
fp.write( "\n".join( sql_lines ) )
fp.close()
if __name__ == '__main__':
import sys, os.path
if len(sys.argv) < 3:
print("%s input.shp output.sql" % sys.argv[0])
sys.exit()
shp_filename = sys.argv[1]
sql_filename = sys.argv[2]
shape_to_sql(shp_filename, sql_filename)