Nominatim/nominatim/tokenizer/icu_tokenizer.py
Sarah Hoffmann 8f3845660f add full tokens to addresses
This is now needed to weigh results.
2024-05-02 11:47:35 +02:00

953 lines
38 KiB
Python

# SPDX-License-Identifier: GPL-2.0-only
#
# This file is part of Nominatim. (https://nominatim.org)
#
# Copyright (C) 2022 by the Nominatim developer community.
# For a full list of authors see the git log.
"""
Tokenizer implementing normalisation as used before Nominatim 4 but using
libICU instead of the PostgreSQL module.
"""
from typing import Optional, Sequence, List, Tuple, Mapping, Any, cast, \
Dict, Set, Iterable
import itertools
import json
import logging
from pathlib import Path
from textwrap import dedent
from nominatim.db.connection import connect, Connection, Cursor
from nominatim.config import Configuration
from nominatim.db.utils import CopyBuffer
from nominatim.db.sql_preprocessor import SQLPreprocessor
from nominatim.data.place_info import PlaceInfo
from nominatim.tokenizer.icu_rule_loader import ICURuleLoader
from nominatim.tokenizer.place_sanitizer import PlaceSanitizer
from nominatim.data.place_name import PlaceName
from nominatim.tokenizer.icu_token_analysis import ICUTokenAnalysis
from nominatim.tokenizer.base import AbstractAnalyzer, AbstractTokenizer
DBCFG_TERM_NORMALIZATION = "tokenizer_term_normalization"
LOG = logging.getLogger()
WORD_TYPES =(('country_names', 'C'),
('postcodes', 'P'),
('full_word', 'W'),
('housenumbers', 'H'))
def create(dsn: str, data_dir: Path) -> 'ICUTokenizer':
""" Create a new instance of the tokenizer provided by this module.
"""
return ICUTokenizer(dsn, data_dir)
class ICUTokenizer(AbstractTokenizer):
""" This tokenizer uses libICU to convert names and queries to ASCII.
Otherwise it uses the same algorithms and data structures as the
normalization routines in Nominatim 3.
"""
def __init__(self, dsn: str, data_dir: Path) -> None:
self.dsn = dsn
self.data_dir = data_dir
self.loader: Optional[ICURuleLoader] = None
def init_new_db(self, config: Configuration, init_db: bool = True) -> None:
""" Set up a new tokenizer for the database.
This copies all necessary data in the project directory to make
sure the tokenizer remains stable even over updates.
"""
self.loader = ICURuleLoader(config)
self._install_php(config.lib_dir.php, overwrite=True)
self._save_config()
if init_db:
self.update_sql_functions(config)
self._setup_db_tables(config)
self._create_base_indices(config, 'word')
def init_from_project(self, config: Configuration) -> None:
""" Initialise the tokenizer from the project directory.
"""
self.loader = ICURuleLoader(config)
with connect(self.dsn) as conn:
self.loader.load_config_from_db(conn)
self._install_php(config.lib_dir.php, overwrite=False)
def finalize_import(self, config: Configuration) -> None:
""" Do any required postprocessing to make the tokenizer data ready
for use.
"""
self._create_lookup_indices(config, 'word')
def update_sql_functions(self, config: Configuration) -> None:
""" Reimport the SQL functions for this tokenizer.
"""
with connect(self.dsn) as conn:
sqlp = SQLPreprocessor(conn, config)
sqlp.run_sql_file(conn, 'tokenizer/icu_tokenizer.sql')
def check_database(self, config: Configuration) -> None:
""" Check that the tokenizer is set up correctly.
"""
# Will throw an error if there is an issue.
self.init_from_project(config)
def update_statistics(self, config: Configuration, threads: int = 2) -> None:
""" Recompute frequencies for all name words.
"""
with connect(self.dsn) as conn:
if not conn.table_exists('search_name'):
return
with conn.cursor() as cur:
cur.execute('ANALYSE search_name')
if threads > 1:
cur.execute('SET max_parallel_workers_per_gather TO %s',
(min(threads, 6),))
if conn.server_version_tuple() < (12, 0):
LOG.info('Computing word frequencies')
cur.drop_table('word_frequencies')
cur.drop_table('addressword_frequencies')
cur.execute("""CREATE TEMP TABLE word_frequencies AS
SELECT unnest(name_vector) as id, count(*)
FROM search_name GROUP BY id""")
cur.execute('CREATE INDEX ON word_frequencies(id)')
cur.execute("""CREATE TEMP TABLE addressword_frequencies AS
SELECT unnest(nameaddress_vector) as id, count(*)
FROM search_name GROUP BY id""")
cur.execute('CREATE INDEX ON addressword_frequencies(id)')
cur.execute("""CREATE OR REPLACE FUNCTION word_freq_update(wid INTEGER,
INOUT info JSONB)
AS $$
DECLARE rec RECORD;
BEGIN
IF info is null THEN
info = '{}'::jsonb;
END IF;
FOR rec IN SELECT count FROM word_frequencies WHERE id = wid
LOOP
info = info || jsonb_build_object('count', rec.count);
END LOOP;
FOR rec IN SELECT count FROM addressword_frequencies WHERE id = wid
LOOP
info = info || jsonb_build_object('addr_count', rec.count);
END LOOP;
IF info = '{}'::jsonb THEN
info = null;
END IF;
END;
$$ LANGUAGE plpgsql IMMUTABLE;
""")
LOG.info('Update word table with recomputed frequencies')
cur.drop_table('tmp_word')
cur.execute("""CREATE TABLE tmp_word AS
SELECT word_id, word_token, type, word,
word_freq_update(word_id, info) as info
FROM word
""")
cur.drop_table('word_frequencies')
cur.drop_table('addressword_frequencies')
else:
LOG.info('Computing word frequencies')
cur.drop_table('word_frequencies')
cur.execute("""
CREATE TEMP TABLE word_frequencies AS
WITH word_freq AS MATERIALIZED (
SELECT unnest(name_vector) as id, count(*)
FROM search_name GROUP BY id),
addr_freq AS MATERIALIZED (
SELECT unnest(nameaddress_vector) as id, count(*)
FROM search_name GROUP BY id)
SELECT coalesce(a.id, w.id) as id,
(CASE WHEN w.count is null THEN '{}'::JSONB
ELSE jsonb_build_object('count', w.count) END
||
CASE WHEN a.count is null THEN '{}'::JSONB
ELSE jsonb_build_object('addr_count', a.count) END) as info
FROM word_freq w FULL JOIN addr_freq a ON a.id = w.id;
""")
cur.execute('CREATE UNIQUE INDEX ON word_frequencies(id) INCLUDE(info)')
cur.execute('ANALYSE word_frequencies')
LOG.info('Update word table with recomputed frequencies')
cur.drop_table('tmp_word')
cur.execute("""CREATE TABLE tmp_word AS
SELECT word_id, word_token, type, word,
(CASE WHEN wf.info is null THEN word.info
ELSE coalesce(word.info, '{}'::jsonb) || wf.info
END) as info
FROM word LEFT JOIN word_frequencies wf
ON word.word_id = wf.id
""")
cur.drop_table('word_frequencies')
with conn.cursor() as cur:
cur.execute('SET max_parallel_workers_per_gather TO 0')
sqlp = SQLPreprocessor(conn, config)
sqlp.run_string(conn,
'GRANT SELECT ON tmp_word TO "{{config.DATABASE_WEBUSER}}"')
conn.commit()
self._create_base_indices(config, 'tmp_word')
self._create_lookup_indices(config, 'tmp_word')
self._move_temporary_word_table('tmp_word')
def _cleanup_housenumbers(self) -> None:
""" Remove unused house numbers.
"""
with connect(self.dsn) as conn:
if not conn.table_exists('search_name'):
return
with conn.cursor(name="hnr_counter") as cur:
cur.execute("""SELECT DISTINCT word_id, coalesce(info->>'lookup', word_token)
FROM word
WHERE type = 'H'
AND NOT EXISTS(SELECT * FROM search_name
WHERE ARRAY[word.word_id] && name_vector)
AND (char_length(coalesce(word, word_token)) > 6
OR coalesce(word, word_token) not similar to '\\d+')
""")
candidates = {token: wid for wid, token in cur}
with conn.cursor(name="hnr_counter") as cur:
cur.execute("""SELECT housenumber FROM placex
WHERE housenumber is not null
AND (char_length(housenumber) > 6
OR housenumber not similar to '\\d+')
""")
for row in cur:
for hnr in row[0].split(';'):
candidates.pop(hnr, None)
LOG.info("There are %s outdated housenumbers.", len(candidates))
LOG.debug("Outdated housenumbers: %s", candidates.keys())
if candidates:
with conn.cursor() as cur:
cur.execute("""DELETE FROM word WHERE word_id = any(%s)""",
(list(candidates.values()), ))
conn.commit()
def update_word_tokens(self) -> None:
""" Remove unused tokens.
"""
LOG.warning("Cleaning up housenumber tokens.")
self._cleanup_housenumbers()
LOG.warning("Tokenizer house-keeping done.")
def name_analyzer(self) -> 'ICUNameAnalyzer':
""" Create a new analyzer for tokenizing names and queries
using this tokinzer. Analyzers are context managers and should
be used accordingly:
```
with tokenizer.name_analyzer() as analyzer:
analyser.tokenize()
```
When used outside the with construct, the caller must ensure to
call the close() function before destructing the analyzer.
Analyzers are not thread-safe. You need to instantiate one per thread.
"""
assert self.loader is not None
return ICUNameAnalyzer(self.dsn, self.loader.make_sanitizer(),
self.loader.make_token_analysis())
def most_frequent_words(self, conn: Connection, num: int) -> List[str]:
""" Return a list of the `num` most frequent full words
in the database.
"""
with conn.cursor() as cur:
cur.execute("""SELECT word, sum((info->>'count')::int) as count
FROM word WHERE type = 'W'
GROUP BY word
ORDER BY count DESC LIMIT %s""", (num,))
return list(s[0].split('@')[0] for s in cur)
def _install_php(self, phpdir: Optional[Path], overwrite: bool = True) -> None:
""" Install the php script for the tokenizer.
"""
if phpdir is not None:
assert self.loader is not None
php_file = self.data_dir / "tokenizer.php"
if not php_file.exists() or overwrite:
php_file.write_text(dedent(f"""\
<?php
@define('CONST_Max_Word_Frequency', 10000000);
@define('CONST_Term_Normalization_Rules', "{self.loader.normalization_rules}");
@define('CONST_Transliteration', "{self.loader.get_search_rules()}");
require_once('{phpdir}/tokenizer/icu_tokenizer.php');"""), encoding='utf-8')
def _save_config(self) -> None:
""" Save the configuration that needs to remain stable for the given
database as database properties.
"""
assert self.loader is not None
with connect(self.dsn) as conn:
self.loader.save_config_to_db(conn)
def _setup_db_tables(self, config: Configuration) -> None:
""" Set up the word table and fill it with pre-computed word
frequencies.
"""
with connect(self.dsn) as conn:
with conn.cursor() as cur:
cur.drop_table('word')
sqlp = SQLPreprocessor(conn, config)
sqlp.run_string(conn, """
CREATE TABLE word (
word_id INTEGER,
word_token text NOT NULL,
type text NOT NULL,
word text,
info jsonb
) {{db.tablespace.search_data}};
GRANT SELECT ON word TO "{{config.DATABASE_WEBUSER}}";
DROP SEQUENCE IF EXISTS seq_word;
CREATE SEQUENCE seq_word start 1;
GRANT SELECT ON seq_word to "{{config.DATABASE_WEBUSER}}";
""")
conn.commit()
def _create_base_indices(self, config: Configuration, table_name: str) -> None:
""" Set up the word table and fill it with pre-computed word
frequencies.
"""
with connect(self.dsn) as conn:
sqlp = SQLPreprocessor(conn, config)
sqlp.run_string(conn,
"""CREATE INDEX idx_{{table_name}}_word_token ON {{table_name}}
USING BTREE (word_token) {{db.tablespace.search_index}}""",
table_name=table_name)
for name, ctype in WORD_TYPES:
sqlp.run_string(conn,
"""CREATE INDEX idx_{{table_name}}_{{idx_name}} ON {{table_name}}
USING BTREE (word) {{db.tablespace.address_index}}
WHERE type = '{{column_type}}'
""",
table_name=table_name, idx_name=name,
column_type=ctype)
conn.commit()
def _create_lookup_indices(self, config: Configuration, table_name: str) -> None:
""" Create additional indexes used when running the API.
"""
with connect(self.dsn) as conn:
sqlp = SQLPreprocessor(conn, config)
# Index required for details lookup.
sqlp.run_string(conn, """
CREATE INDEX IF NOT EXISTS idx_{{table_name}}_word_id
ON {{table_name}} USING BTREE (word_id) {{db.tablespace.search_index}}
""",
table_name=table_name)
conn.commit()
def _move_temporary_word_table(self, old: str) -> None:
""" Rename all tables and indexes used by the tokenizer.
"""
with connect(self.dsn) as conn:
with conn.cursor() as cur:
cur.drop_table('word')
cur.execute(f"ALTER TABLE {old} RENAME TO word")
for idx in ('word_token', 'word_id'):
cur.execute(f"""ALTER INDEX idx_{old}_{idx}
RENAME TO idx_word_{idx}""")
for name, _ in WORD_TYPES:
cur.execute(f"""ALTER INDEX idx_{old}_{name}
RENAME TO idx_word_{name}""")
conn.commit()
class ICUNameAnalyzer(AbstractAnalyzer):
""" The ICU analyzer uses the ICU library for splitting names.
Each instance opens a connection to the database to request the
normalization.
"""
def __init__(self, dsn: str, sanitizer: PlaceSanitizer,
token_analysis: ICUTokenAnalysis) -> None:
self.conn: Optional[Connection] = connect(dsn).connection
self.conn.autocommit = True
self.sanitizer = sanitizer
self.token_analysis = token_analysis
self._cache = _TokenCache()
def close(self) -> None:
""" Free all resources used by the analyzer.
"""
if self.conn:
self.conn.close()
self.conn = None
def _search_normalized(self, name: str) -> str:
""" Return the search token transliteration of the given name.
"""
return cast(str, self.token_analysis.search.transliterate(name)).strip()
def _normalized(self, name: str) -> str:
""" Return the normalized version of the given name with all
non-relevant information removed.
"""
return cast(str, self.token_analysis.normalizer.transliterate(name)).strip()
def get_word_token_info(self, words: Sequence[str]) -> List[Tuple[str, str, int]]:
""" Return token information for the given list of words.
If a word starts with # it is assumed to be a full name
otherwise is a partial name.
The function returns a list of tuples with
(original word, word token, word id).
The function is used for testing and debugging only
and not necessarily efficient.
"""
assert self.conn is not None
full_tokens = {}
partial_tokens = {}
for word in words:
if word.startswith('#'):
full_tokens[word] = self._search_normalized(word[1:])
else:
partial_tokens[word] = self._search_normalized(word)
with self.conn.cursor() as cur:
cur.execute("""SELECT word_token, word_id
FROM word WHERE word_token = ANY(%s) and type = 'W'
""", (list(full_tokens.values()),))
full_ids = {r[0]: r[1] for r in cur}
cur.execute("""SELECT word_token, word_id
FROM word WHERE word_token = ANY(%s) and type = 'w'""",
(list(partial_tokens.values()),))
part_ids = {r[0]: r[1] for r in cur}
return [(k, v, full_ids.get(v, None)) for k, v in full_tokens.items()] \
+ [(k, v, part_ids.get(v, None)) for k, v in partial_tokens.items()]
def normalize_postcode(self, postcode: str) -> str:
""" Convert the postcode to a standardized form.
This function must yield exactly the same result as the SQL function
'token_normalized_postcode()'.
"""
return postcode.strip().upper()
def update_postcodes_from_db(self) -> None:
""" Update postcode tokens in the word table from the location_postcode
table.
"""
assert self.conn is not None
analyzer = self.token_analysis.analysis.get('@postcode')
with self.conn.cursor() as cur:
# First get all postcode names currently in the word table.
cur.execute("SELECT DISTINCT word FROM word WHERE type = 'P'")
word_entries = set((entry[0] for entry in cur))
# Then compute the required postcode names from the postcode table.
needed_entries = set()
cur.execute("SELECT country_code, postcode FROM location_postcode")
for cc, postcode in cur:
info = PlaceInfo({'country_code': cc,
'class': 'place', 'type': 'postcode',
'address': {'postcode': postcode}})
address = self.sanitizer.process_names(info)[1]
for place in address:
if place.kind == 'postcode':
if analyzer is None:
postcode_name = place.name.strip().upper()
variant_base = None
else:
postcode_name = analyzer.get_canonical_id(place)
variant_base = place.get_attr("variant")
if variant_base:
needed_entries.add(f'{postcode_name}@{variant_base}')
else:
needed_entries.add(postcode_name)
break
# Now update the word table.
self._delete_unused_postcode_words(word_entries - needed_entries)
self._add_missing_postcode_words(needed_entries - word_entries)
def _delete_unused_postcode_words(self, tokens: Iterable[str]) -> None:
assert self.conn is not None
if tokens:
with self.conn.cursor() as cur:
cur.execute("DELETE FROM word WHERE type = 'P' and word = any(%s)",
(list(tokens), ))
def _add_missing_postcode_words(self, tokens: Iterable[str]) -> None:
assert self.conn is not None
if not tokens:
return
analyzer = self.token_analysis.analysis.get('@postcode')
terms = []
for postcode_name in tokens:
if '@' in postcode_name:
term, variant = postcode_name.split('@', 2)
term = self._search_normalized(term)
if analyzer is None:
variants = [term]
else:
variants = analyzer.compute_variants(variant)
if term not in variants:
variants.append(term)
else:
variants = [self._search_normalized(postcode_name)]
terms.append((postcode_name, variants))
if terms:
with self.conn.cursor() as cur:
cur.execute_values("""SELECT create_postcode_word(pc, var)
FROM (VALUES %s) AS v(pc, var)""",
terms)
def update_special_phrases(self, phrases: Iterable[Tuple[str, str, str, str]],
should_replace: bool) -> None:
""" Replace the search index for special phrases with the new phrases.
If `should_replace` is True, then the previous set of will be
completely replaced. Otherwise the phrases are added to the
already existing ones.
"""
assert self.conn is not None
norm_phrases = set(((self._normalized(p[0]), p[1], p[2], p[3])
for p in phrases))
with self.conn.cursor() as cur:
# Get the old phrases.
existing_phrases = set()
cur.execute("SELECT word, info FROM word WHERE type = 'S'")
for word, info in cur:
existing_phrases.add((word, info['class'], info['type'],
info.get('op') or '-'))
added = self._add_special_phrases(cur, norm_phrases, existing_phrases)
if should_replace:
deleted = self._remove_special_phrases(cur, norm_phrases,
existing_phrases)
else:
deleted = 0
LOG.info("Total phrases: %s. Added: %s. Deleted: %s",
len(norm_phrases), added, deleted)
def _add_special_phrases(self, cursor: Cursor,
new_phrases: Set[Tuple[str, str, str, str]],
existing_phrases: Set[Tuple[str, str, str, str]]) -> int:
""" Add all phrases to the database that are not yet there.
"""
to_add = new_phrases - existing_phrases
added = 0
with CopyBuffer() as copystr:
for word, cls, typ, oper in to_add:
term = self._search_normalized(word)
if term:
copystr.add(term, 'S', word,
json.dumps({'class': cls, 'type': typ,
'op': oper if oper in ('in', 'near') else None}))
added += 1
copystr.copy_out(cursor, 'word',
columns=['word_token', 'type', 'word', 'info'])
return added
def _remove_special_phrases(self, cursor: Cursor,
new_phrases: Set[Tuple[str, str, str, str]],
existing_phrases: Set[Tuple[str, str, str, str]]) -> int:
""" Remove all phrases from the database that are no longer in the
new phrase list.
"""
to_delete = existing_phrases - new_phrases
if to_delete:
cursor.execute_values(
""" DELETE FROM word USING (VALUES %s) as v(name, in_class, in_type, op)
WHERE type = 'S' and word = name
and info->>'class' = in_class and info->>'type' = in_type
and ((op = '-' and info->>'op' is null) or op = info->>'op')
""", to_delete)
return len(to_delete)
def add_country_names(self, country_code: str, names: Mapping[str, str]) -> None:
""" Add default names for the given country to the search index.
"""
# Make sure any name preprocessing for country names applies.
info = PlaceInfo({'name': names, 'country_code': country_code,
'rank_address': 4, 'class': 'boundary',
'type': 'administrative'})
self._add_country_full_names(country_code,
self.sanitizer.process_names(info)[0],
internal=True)
def _add_country_full_names(self, country_code: str, names: Sequence[PlaceName],
internal: bool = False) -> None:
""" Add names for the given country from an already sanitized
name list.
"""
assert self.conn is not None
word_tokens = set()
for name in names:
norm_name = self._search_normalized(name.name)
if norm_name:
word_tokens.add(norm_name)
with self.conn.cursor() as cur:
# Get existing names
cur.execute("""SELECT word_token, coalesce(info ? 'internal', false) as is_internal
FROM word
WHERE type = 'C' and word = %s""",
(country_code, ))
# internal/external names
existing_tokens: Dict[bool, Set[str]] = {True: set(), False: set()}
for word in cur:
existing_tokens[word[1]].add(word[0])
# Delete names that no longer exist.
gone_tokens = existing_tokens[internal] - word_tokens
if internal:
gone_tokens.update(existing_tokens[False] & word_tokens)
if gone_tokens:
cur.execute("""DELETE FROM word
USING unnest(%s) as token
WHERE type = 'C' and word = %s
and word_token = token""",
(list(gone_tokens), country_code))
# Only add those names that are not yet in the list.
new_tokens = word_tokens - existing_tokens[True]
if not internal:
new_tokens -= existing_tokens[False]
if new_tokens:
if internal:
sql = """INSERT INTO word (word_token, type, word, info)
(SELECT token, 'C', %s, '{"internal": "yes"}'
FROM unnest(%s) as token)
"""
else:
sql = """INSERT INTO word (word_token, type, word)
(SELECT token, 'C', %s
FROM unnest(%s) as token)
"""
cur.execute(sql, (country_code, list(new_tokens)))
def process_place(self, place: PlaceInfo) -> Mapping[str, Any]:
""" Determine tokenizer information about the given place.
Returns a JSON-serializable structure that will be handed into
the database via the token_info field.
"""
token_info = _TokenInfo()
names, address = self.sanitizer.process_names(place)
if names:
token_info.set_names(*self._compute_name_tokens(names))
if place.is_country():
assert place.country_code is not None
self._add_country_full_names(place.country_code, names)
if address:
self._process_place_address(token_info, address)
return token_info.to_dict()
def _process_place_address(self, token_info: '_TokenInfo',
address: Sequence[PlaceName]) -> None:
for item in address:
if item.kind == 'postcode':
token_info.set_postcode(self._add_postcode(item))
elif item.kind == 'housenumber':
token_info.add_housenumber(*self._compute_housenumber_token(item))
elif item.kind == 'street':
token_info.add_street(self._retrieve_full_tokens(item.name))
elif item.kind == 'place':
if not item.suffix:
token_info.add_place(itertools.chain(*self._compute_name_tokens([item])))
elif not item.kind.startswith('_') and not item.suffix and \
item.kind not in ('country', 'full', 'inclusion'):
token_info.add_address_term(item.kind,
itertools.chain(*self._compute_name_tokens([item])))
def _compute_housenumber_token(self, hnr: PlaceName) -> Tuple[Optional[int], Optional[str]]:
""" Normalize the housenumber and return the word token and the
canonical form.
"""
assert self.conn is not None
analyzer = self.token_analysis.analysis.get('@housenumber')
result: Tuple[Optional[int], Optional[str]] = (None, None)
if analyzer is None:
# When no custom analyzer is set, simply normalize and transliterate
norm_name = self._search_normalized(hnr.name)
if norm_name:
result = self._cache.housenumbers.get(norm_name, result)
if result[0] is None:
with self.conn.cursor() as cur:
hid = cur.scalar("SELECT getorcreate_hnr_id(%s)", (norm_name, ))
result = hid, norm_name
self._cache.housenumbers[norm_name] = result
else:
# Otherwise use the analyzer to determine the canonical name.
# Per convention we use the first variant as the 'lookup name', the
# name that gets saved in the housenumber field of the place.
word_id = analyzer.get_canonical_id(hnr)
if word_id:
result = self._cache.housenumbers.get(word_id, result)
if result[0] is None:
variants = analyzer.compute_variants(word_id)
if variants:
with self.conn.cursor() as cur:
hid = cur.scalar("SELECT create_analyzed_hnr_id(%s, %s)",
(word_id, list(variants)))
result = hid, variants[0]
self._cache.housenumbers[word_id] = result
return result
def _retrieve_full_tokens(self, name: str) -> List[int]:
""" Get the full name token for the given name, if it exists.
The name is only retrieved for the standard analyser.
"""
assert self.conn is not None
norm_name = self._search_normalized(name)
# return cached if possible
if norm_name in self._cache.fulls:
return self._cache.fulls[norm_name]
with self.conn.cursor() as cur:
cur.execute("SELECT word_id FROM word WHERE word_token = %s and type = 'W'",
(norm_name, ))
full = [row[0] for row in cur]
self._cache.fulls[norm_name] = full
return full
def _compute_name_tokens(self, names: Sequence[PlaceName]) -> Tuple[Set[int], Set[int]]:
""" Computes the full name and partial name tokens for the given
dictionary of names.
"""
assert self.conn is not None
full_tokens: Set[int] = set()
partial_tokens: Set[int] = set()
for name in names:
analyzer_id = name.get_attr('analyzer')
analyzer = self.token_analysis.get_analyzer(analyzer_id)
word_id = analyzer.get_canonical_id(name)
if analyzer_id is None:
token_id = word_id
else:
token_id = f'{word_id}@{analyzer_id}'
full, part = self._cache.names.get(token_id, (None, None))
if full is None:
variants = analyzer.compute_variants(word_id)
if not variants:
continue
with self.conn.cursor() as cur:
cur.execute("SELECT * FROM getorcreate_full_word(%s, %s)",
(token_id, variants))
full, part = cast(Tuple[int, List[int]], cur.fetchone())
self._cache.names[token_id] = (full, part)
assert part is not None
full_tokens.add(full)
partial_tokens.update(part)
return full_tokens, partial_tokens
def _add_postcode(self, item: PlaceName) -> Optional[str]:
""" Make sure the normalized postcode is present in the word table.
"""
assert self.conn is not None
analyzer = self.token_analysis.analysis.get('@postcode')
if analyzer is None:
postcode_name = item.name.strip().upper()
variant_base = None
else:
postcode_name = analyzer.get_canonical_id(item)
variant_base = item.get_attr("variant")
if variant_base:
postcode = f'{postcode_name}@{variant_base}'
else:
postcode = postcode_name
if postcode not in self._cache.postcodes:
term = self._search_normalized(postcode_name)
if not term:
return None
variants = {term}
if analyzer is not None and variant_base:
variants.update(analyzer.compute_variants(variant_base))
with self.conn.cursor() as cur:
cur.execute("SELECT create_postcode_word(%s, %s)",
(postcode, list(variants)))
self._cache.postcodes.add(postcode)
return postcode_name
class _TokenInfo:
""" Collect token information to be sent back to the database.
"""
def __init__(self) -> None:
self.names: Optional[str] = None
self.housenumbers: Set[str] = set()
self.housenumber_tokens: Set[int] = set()
self.street_tokens: Optional[Set[int]] = None
self.place_tokens: Set[int] = set()
self.address_tokens: Dict[str, str] = {}
self.postcode: Optional[str] = None
def _mk_array(self, tokens: Iterable[Any]) -> str:
return f"{{{','.join((str(s) for s in tokens))}}}"
def to_dict(self) -> Dict[str, Any]:
""" Return the token information in database importable format.
"""
out: Dict[str, Any] = {}
if self.names:
out['names'] = self.names
if self.housenumbers:
out['hnr'] = ';'.join(self.housenumbers)
out['hnr_tokens'] = self._mk_array(self.housenumber_tokens)
if self.street_tokens is not None:
out['street'] = self._mk_array(self.street_tokens)
if self.place_tokens:
out['place'] = self._mk_array(self.place_tokens)
if self.address_tokens:
out['addr'] = self.address_tokens
if self.postcode:
out['postcode'] = self.postcode
return out
def set_names(self, fulls: Iterable[int], partials: Iterable[int]) -> None:
""" Adds token information for the normalised names.
"""
self.names = self._mk_array(itertools.chain(fulls, partials))
def add_housenumber(self, token: Optional[int], hnr: Optional[str]) -> None:
""" Extract housenumber information from a list of normalised
housenumbers.
"""
if token:
assert hnr is not None
self.housenumbers.add(hnr)
self.housenumber_tokens.add(token)
def add_street(self, tokens: Iterable[int]) -> None:
""" Add addr:street match terms.
"""
if self.street_tokens is None:
self.street_tokens = set()
self.street_tokens.update(tokens)
def add_place(self, tokens: Iterable[int]) -> None:
""" Add addr:place search and match terms.
"""
self.place_tokens.update(tokens)
def add_address_term(self, key: str, partials: Iterable[int]) -> None:
""" Add additional address terms.
"""
array = self._mk_array(partials)
if len(array) > 2:
self.address_tokens[key] = array
def set_postcode(self, postcode: Optional[str]) -> None:
""" Set the postcode to the given one.
"""
self.postcode = postcode
class _TokenCache:
""" Cache for token information to avoid repeated database queries.
This cache is not thread-safe and needs to be instantiated per
analyzer.
"""
def __init__(self) -> None:
self.names: Dict[str, Tuple[int, List[int]]] = {}
self.partials: Dict[str, int] = {}
self.fulls: Dict[str, List[int]] = {}
self.postcodes: Set[str] = set()
self.housenumbers: Dict[str, Tuple[Optional[int], Optional[str]]] = {}