mirror of
https://github.com/osm-search/Nominatim.git
synced 2024-11-24 06:22:08 +03:00
872ab91421
Should be different from the normalisation rules.
633 lines
22 KiB
Python
633 lines
22 KiB
Python
"""
|
|
Tokenizer implementing normalisation as used before Nominatim 4 but using
|
|
libICU instead of the PostgreSQL module.
|
|
"""
|
|
from collections import Counter
|
|
import functools
|
|
import io
|
|
import itertools
|
|
import json
|
|
import logging
|
|
import re
|
|
from textwrap import dedent
|
|
from pathlib import Path
|
|
|
|
from icu import Transliterator
|
|
import psycopg2.extras
|
|
|
|
from nominatim.db.connection import connect
|
|
from nominatim.db.properties import set_property, get_property
|
|
from nominatim.db.sql_preprocessor import SQLPreprocessor
|
|
|
|
DBCFG_NORMALIZATION = "tokenizer_normalization"
|
|
DBCFG_MAXWORDFREQ = "tokenizer_maxwordfreq"
|
|
DBCFG_TRANSLITERATION = "tokenizer_transliteration"
|
|
DBCFG_ABBREVIATIONS = "tokenizer_abbreviations"
|
|
|
|
LOG = logging.getLogger()
|
|
|
|
def create(dsn, data_dir):
|
|
""" Create a new instance of the tokenizer provided by this module.
|
|
"""
|
|
return LegacyICUTokenizer(dsn, data_dir)
|
|
|
|
|
|
class LegacyICUTokenizer:
|
|
""" This tokenizer uses libICU to covert names and queries to ASCII.
|
|
Otherwise it uses the same algorithms and data structures as the
|
|
normalization routines in Nominatim 3.
|
|
"""
|
|
|
|
def __init__(self, dsn, data_dir):
|
|
self.dsn = dsn
|
|
self.data_dir = data_dir
|
|
self.normalization = None
|
|
self.transliteration = None
|
|
self.abbreviations = None
|
|
|
|
|
|
def init_new_db(self, config, init_db=True):
|
|
""" Set up a new tokenizer for the database.
|
|
|
|
This copies all necessary data in the project directory to make
|
|
sure the tokenizer remains stable even over updates.
|
|
"""
|
|
if config.TOKENIZER_CONFIG:
|
|
cfgfile = Path(config.TOKENIZER_CONFIG)
|
|
else:
|
|
cfgfile = config.config_dir / 'legacy_icu_tokenizer.json'
|
|
|
|
rules = json.loads(cfgfile.read_text())
|
|
self.transliteration = ';'.join(rules['normalization']) + ';'
|
|
self.abbreviations = rules["abbreviations"]
|
|
self.normalization = config.TERM_NORMALIZATION
|
|
|
|
self._install_php(config)
|
|
self._save_config(config)
|
|
|
|
if init_db:
|
|
self.update_sql_functions(config)
|
|
self._init_db_tables(config)
|
|
|
|
|
|
def init_from_project(self):
|
|
""" Initialise the tokenizer from the project directory.
|
|
"""
|
|
with connect(self.dsn) as conn:
|
|
self.normalization = get_property(conn, DBCFG_NORMALIZATION)
|
|
self.transliteration = get_property(conn, DBCFG_TRANSLITERATION)
|
|
self.abbreviations = json.loads(get_property(conn, DBCFG_ABBREVIATIONS))
|
|
|
|
|
|
def finalize_import(self, config):
|
|
""" Do any required postprocessing to make the tokenizer data ready
|
|
for use.
|
|
"""
|
|
with connect(self.dsn) as conn:
|
|
sqlp = SQLPreprocessor(conn, config)
|
|
sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer_indices.sql')
|
|
|
|
|
|
def update_sql_functions(self, config):
|
|
""" Reimport the SQL functions for this tokenizer.
|
|
"""
|
|
with connect(self.dsn) as conn:
|
|
max_word_freq = get_property(conn, DBCFG_MAXWORDFREQ)
|
|
sqlp = SQLPreprocessor(conn, config)
|
|
sqlp.run_sql_file(conn, 'tokenizer/legacy_icu_tokenizer.sql',
|
|
max_word_freq=max_word_freq)
|
|
|
|
|
|
def check_database(self):
|
|
""" Check that the tokenizer is set up correctly.
|
|
"""
|
|
self.init_from_project()
|
|
|
|
if self.normalization is None\
|
|
or self.transliteration is None\
|
|
or self.abbreviations is None:
|
|
return "Configuration for tokenizer 'legacy_icu' are missing."
|
|
|
|
return None
|
|
|
|
|
|
def name_analyzer(self):
|
|
""" Create a new analyzer for tokenizing names and queries
|
|
using this tokinzer. Analyzers are context managers and should
|
|
be used accordingly:
|
|
|
|
```
|
|
with tokenizer.name_analyzer() as analyzer:
|
|
analyser.tokenize()
|
|
```
|
|
|
|
When used outside the with construct, the caller must ensure to
|
|
call the close() function before destructing the analyzer.
|
|
|
|
Analyzers are not thread-safe. You need to instantiate one per thread.
|
|
"""
|
|
norm = Transliterator.createFromRules("normalizer", self.normalization)
|
|
trans = Transliterator.createFromRules("trans", self.transliteration)
|
|
return LegacyICUNameAnalyzer(self.dsn, norm, trans, self.abbreviations)
|
|
|
|
|
|
def _install_php(self, config):
|
|
""" Install the php script for the tokenizer.
|
|
"""
|
|
abbr_inverse = list(zip(*self.abbreviations))
|
|
php_file = self.data_dir / "tokenizer.php"
|
|
php_file.write_text(dedent("""\
|
|
<?php
|
|
@define('CONST_Max_Word_Frequency', {1.MAX_WORD_FREQUENCY});
|
|
@define('CONST_Term_Normalization_Rules', "{0.normalization}");
|
|
@define('CONST_Transliteration', "{0.transliteration}");
|
|
@define('CONST_Abbreviations', array(array('{2}'), array('{3}')));
|
|
require_once('{1.lib_dir.php}/tokenizer/legacy_icu_tokenizer.php');
|
|
""".format(self, config,
|
|
"','".join(abbr_inverse[0]),
|
|
"','".join(abbr_inverse[1]))))
|
|
|
|
|
|
def _save_config(self, config):
|
|
""" Save the configuration that needs to remain stable for the given
|
|
database as database properties.
|
|
"""
|
|
with connect(self.dsn) as conn:
|
|
set_property(conn, DBCFG_NORMALIZATION, self.normalization)
|
|
set_property(conn, DBCFG_MAXWORDFREQ, config.MAX_WORD_FREQUENCY)
|
|
set_property(conn, DBCFG_TRANSLITERATION, self.transliteration)
|
|
set_property(conn, DBCFG_ABBREVIATIONS, json.dumps(self.abbreviations))
|
|
|
|
|
|
def _init_db_tables(self, config):
|
|
""" Set up the word table and fill it with pre-computed word
|
|
frequencies.
|
|
"""
|
|
with connect(self.dsn) as conn:
|
|
sqlp = SQLPreprocessor(conn, config)
|
|
sqlp.run_sql_file(conn, 'tokenizer/legacy_tokenizer_tables.sql')
|
|
conn.commit()
|
|
|
|
LOG.warning("Precomputing word tokens")
|
|
|
|
# get partial words and their frequencies
|
|
words = Counter()
|
|
with self.name_analyzer() as analyzer:
|
|
with conn.cursor(name="words") as cur:
|
|
cur.execute("SELECT svals(name) as v, count(*) FROM place GROUP BY v")
|
|
|
|
for name, cnt in cur:
|
|
term = analyzer.make_standard_word(name)
|
|
if term:
|
|
for word in term.split():
|
|
words[word] += cnt
|
|
|
|
# copy them back into the word table
|
|
copystr = io.StringIO(''.join(('{}\t{}\n'.format(*args) for args in words.items())))
|
|
|
|
|
|
with conn.cursor() as cur:
|
|
copystr.seek(0)
|
|
cur.copy_from(copystr, 'word', columns=['word_token', 'search_name_count'])
|
|
cur.execute("""UPDATE word SET word_id = nextval('seq_word')
|
|
WHERE word_id is null""")
|
|
|
|
conn.commit()
|
|
|
|
|
|
class LegacyICUNameAnalyzer:
|
|
""" The legacy analyzer uses the ICU library for splitting names.
|
|
|
|
Each instance opens a connection to the database to request the
|
|
normalization.
|
|
"""
|
|
|
|
def __init__(self, dsn, normalizer, transliterator, abbreviations):
|
|
self.conn = connect(dsn).connection
|
|
self.conn.autocommit = True
|
|
self.normalizer = normalizer
|
|
self.transliterator = transliterator
|
|
self.abbreviations = abbreviations
|
|
|
|
self._cache = _TokenCache()
|
|
|
|
|
|
def __enter__(self):
|
|
return self
|
|
|
|
|
|
def __exit__(self, exc_type, exc_value, traceback):
|
|
self.close()
|
|
|
|
|
|
def close(self):
|
|
""" Free all resources used by the analyzer.
|
|
"""
|
|
if self.conn:
|
|
self.conn.close()
|
|
self.conn = None
|
|
|
|
|
|
def get_word_token_info(self, conn, words):
|
|
""" Return token information for the given list of words.
|
|
If a word starts with # it is assumed to be a full name
|
|
otherwise is a partial name.
|
|
|
|
The function returns a list of tuples with
|
|
(original word, word token, word id).
|
|
|
|
The function is used for testing and debugging only
|
|
and not necessarily efficient.
|
|
"""
|
|
tokens = {}
|
|
for word in words:
|
|
if word.startswith('#'):
|
|
tokens[word] = ' ' + self.make_standard_word(word[1:])
|
|
else:
|
|
tokens[word] = self.make_standard_word(word)
|
|
|
|
with conn.cursor() as cur:
|
|
cur.execute("""SELECT word_token, word_id
|
|
FROM word, (SELECT unnest(%s::TEXT[]) as term) t
|
|
WHERE word_token = t.term
|
|
and class is null and country_code is null""",
|
|
(list(tokens.values()), ))
|
|
ids = {r[0]: r[1] for r in cur}
|
|
|
|
return [(k, v, ids[v]) for k, v in tokens.items()]
|
|
|
|
|
|
def normalize(self, phrase):
|
|
""" Normalize the given phrase, i.e. remove all properties that
|
|
are irrelevant for search.
|
|
"""
|
|
return self.normalizer.transliterate(phrase)
|
|
|
|
@functools.lru_cache(maxsize=1024)
|
|
def make_standard_word(self, name):
|
|
""" Create the normalised version of the input.
|
|
"""
|
|
norm = ' ' + self.transliterator.transliterate(name) + ' '
|
|
for full, abbr in self.abbreviations:
|
|
if full in norm:
|
|
norm = norm.replace(full, abbr)
|
|
|
|
return norm.strip()
|
|
|
|
|
|
def _make_standard_hnr(self, hnr):
|
|
""" Create a normalised version of a housenumber.
|
|
|
|
This function takes minor shortcuts on transliteration.
|
|
"""
|
|
if hnr.isdigit():
|
|
return hnr
|
|
|
|
return self.transliterator.transliterate(hnr)
|
|
|
|
def add_postcodes_from_db(self):
|
|
""" Add postcodes from the location_postcode table to the word table.
|
|
"""
|
|
copystr = io.StringIO()
|
|
with self.conn.cursor() as cur:
|
|
cur.execute("SELECT distinct(postcode) FROM location_postcode")
|
|
for (postcode, ) in cur:
|
|
copystr.write(postcode)
|
|
copystr.write('\t ')
|
|
copystr.write(self.transliterator.transliterate(postcode))
|
|
copystr.write('\tplace\tpostcode\t0\n')
|
|
|
|
copystr.seek(0)
|
|
cur.copy_from(copystr, 'word',
|
|
columns=['word', 'word_token', 'class', 'type',
|
|
'search_name_count'])
|
|
# Don't really need an ID for postcodes....
|
|
# cur.execute("""UPDATE word SET word_id = nextval('seq_word')
|
|
# WHERE word_id is null and type = 'postcode'""")
|
|
|
|
|
|
def update_special_phrases(self, phrases):
|
|
""" Replace the search index for special phrases with the new phrases.
|
|
"""
|
|
norm_phrases = set(((self.normalize(p[0]), p[1], p[2], p[3])
|
|
for p in phrases))
|
|
|
|
with self.conn.cursor() as cur:
|
|
# Get the old phrases.
|
|
existing_phrases = set()
|
|
cur.execute("""SELECT word, class, type, operator FROM word
|
|
WHERE class != 'place'
|
|
OR (type != 'house' AND type != 'postcode')""")
|
|
for label, cls, typ, oper in cur:
|
|
existing_phrases.add((label, cls, typ, oper or '-'))
|
|
|
|
to_add = norm_phrases - existing_phrases
|
|
to_delete = existing_phrases - norm_phrases
|
|
|
|
if to_add:
|
|
copystr = io.StringIO()
|
|
for word, cls, typ, oper in to_add:
|
|
term = self.make_standard_word(word)
|
|
if term:
|
|
copystr.write(word)
|
|
copystr.write('\t ')
|
|
copystr.write(term)
|
|
copystr.write('\t')
|
|
copystr.write(cls)
|
|
copystr.write('\t')
|
|
copystr.write(typ)
|
|
copystr.write('\t')
|
|
copystr.write(oper if oper in ('in', 'near') else '\\N')
|
|
copystr.write('\t0\n')
|
|
|
|
copystr.seek(0)
|
|
cur.copy_from(copystr, 'word',
|
|
columns=['word', 'word_token', 'class', 'type',
|
|
'operator', 'search_name_count'])
|
|
|
|
if to_delete:
|
|
psycopg2.extras.execute_values(
|
|
cur,
|
|
""" DELETE FROM word USING (VALUES %s) as v(name, in_class, in_type, op)
|
|
WHERE word = name and class = in_class and type = in_type
|
|
and ((op = '-' and operator is null) or op = operator)""",
|
|
to_delete)
|
|
|
|
LOG.info("Total phrases: %s. Added: %s. Deleted: %s",
|
|
len(norm_phrases), len(to_add), len(to_delete))
|
|
|
|
|
|
def add_country_names(self, country_code, names):
|
|
""" Add names for the given country to the search index.
|
|
"""
|
|
full_names = set((self.make_standard_word(n) for n in names))
|
|
full_names.discard('')
|
|
self._add_normalized_country_names(country_code, full_names)
|
|
|
|
|
|
def _add_normalized_country_names(self, country_code, names):
|
|
""" Add names for the given country to the search index.
|
|
"""
|
|
word_tokens = set((' ' + name for name in names))
|
|
with self.conn.cursor() as cur:
|
|
# Get existing names
|
|
cur.execute("SELECT word_token FROM word WHERE country_code = %s",
|
|
(country_code, ))
|
|
word_tokens.difference_update((t[0] for t in cur))
|
|
|
|
if word_tokens:
|
|
cur.execute("""INSERT INTO word (word_id, word_token, country_code,
|
|
search_name_count)
|
|
(SELECT nextval('seq_word'), token, '{}', 0
|
|
FROM unnest(%s) as token)
|
|
""".format(country_code), (list(word_tokens),))
|
|
|
|
|
|
def process_place(self, place):
|
|
""" Determine tokenizer information about the given place.
|
|
|
|
Returns a JSON-serialisable structure that will be handed into
|
|
the database via the token_info field.
|
|
"""
|
|
token_info = _TokenInfo(self._cache)
|
|
|
|
names = place.get('name')
|
|
|
|
if names:
|
|
full_names = set((self.make_standard_word(name) for name in names.values()))
|
|
full_names.discard('')
|
|
|
|
token_info.add_names(self.conn, full_names)
|
|
|
|
country_feature = place.get('country_feature')
|
|
if country_feature and re.fullmatch(r'[A-Za-z][A-Za-z]', country_feature):
|
|
self._add_normalized_country_names(country_feature.lower(),
|
|
full_names)
|
|
|
|
address = place.get('address')
|
|
|
|
if address:
|
|
hnrs = []
|
|
addr_terms = []
|
|
for key, value in address.items():
|
|
if key == 'postcode':
|
|
self._add_postcode(value)
|
|
elif key in ('housenumber', 'streetnumber', 'conscriptionnumber'):
|
|
hnrs.append(value)
|
|
elif key == 'street':
|
|
token_info.add_street(self.conn, self.make_standard_word(value))
|
|
elif key == 'place':
|
|
token_info.add_place(self.conn, self.make_standard_word(value))
|
|
elif not key.startswith('_') and \
|
|
key not in ('country', 'full'):
|
|
addr_terms.append((key, self.make_standard_word(value)))
|
|
|
|
if hnrs:
|
|
hnrs = self._split_housenumbers(hnrs)
|
|
token_info.add_housenumbers(self.conn, [self._make_standard_hnr(n) for n in hnrs])
|
|
|
|
if addr_terms:
|
|
token_info.add_address_terms(self.conn, addr_terms)
|
|
|
|
return token_info.data
|
|
|
|
|
|
def _add_postcode(self, postcode):
|
|
""" Make sure the normalized postcode is present in the word table.
|
|
"""
|
|
if re.search(r'[:,;]', postcode) is None and not postcode in self._cache.postcodes:
|
|
term = self.make_standard_word(postcode)
|
|
if not term:
|
|
return
|
|
|
|
with self.conn.cursor() as cur:
|
|
# no word_id needed for postcodes
|
|
cur.execute("""INSERT INTO word (word, word_token, class, type,
|
|
search_name_count)
|
|
(SELECT pc, %s, 'place', 'postcode', 0
|
|
FROM (VALUES (%s)) as v(pc)
|
|
WHERE NOT EXISTS
|
|
(SELECT * FROM word
|
|
WHERE word = pc and class='place' and type='postcode'))
|
|
""", (' ' + term, postcode))
|
|
self._cache.postcodes.add(postcode)
|
|
|
|
@staticmethod
|
|
def _split_housenumbers(hnrs):
|
|
if len(hnrs) > 1 or ',' in hnrs[0] or ';' in hnrs[0]:
|
|
# split numbers if necessary
|
|
simple_list = []
|
|
for hnr in hnrs:
|
|
simple_list.extend((x.strip() for x in re.split(r'[;,]', hnr)))
|
|
|
|
if len(simple_list) > 1:
|
|
hnrs = list(set(simple_list))
|
|
else:
|
|
hnrs = simple_list
|
|
|
|
return hnrs
|
|
|
|
|
|
|
|
|
|
class _TokenInfo:
|
|
""" Collect token information to be sent back to the database.
|
|
"""
|
|
def __init__(self, cache):
|
|
self.cache = cache
|
|
self.data = {}
|
|
|
|
@staticmethod
|
|
def _mk_array(tokens):
|
|
return '{%s}' % ','.join((str(s) for s in tokens))
|
|
|
|
|
|
def add_names(self, conn, names):
|
|
""" Adds token information for the normalised names.
|
|
"""
|
|
# Start with all partial names
|
|
terms = set((part for ns in names for part in ns.split()))
|
|
# Add partials for the full terms (TO BE REMOVED)
|
|
terms.update((n for n in names))
|
|
# Add the full names
|
|
terms.update((' ' + n for n in names))
|
|
|
|
self.data['names'] = self._mk_array(self.cache.get_term_tokens(conn, terms))
|
|
|
|
|
|
def add_housenumbers(self, conn, hnrs):
|
|
""" Extract housenumber information from a list of normalised
|
|
housenumbers.
|
|
"""
|
|
self.data['hnr_tokens'] = self._mk_array(self.cache.get_hnr_tokens(conn, hnrs))
|
|
self.data['hnr'] = ';'.join(hnrs)
|
|
|
|
|
|
def add_street(self, conn, street):
|
|
""" Add addr:street match terms.
|
|
"""
|
|
if not street:
|
|
return
|
|
|
|
term = ' ' + street
|
|
|
|
tid = self.cache.names.get(term)
|
|
|
|
if tid is None:
|
|
with conn.cursor() as cur:
|
|
cur.execute("""SELECT word_id FROM word
|
|
WHERE word_token = %s
|
|
and class is null and type is null""",
|
|
(term, ))
|
|
if cur.rowcount > 0:
|
|
tid = cur.fetchone()[0]
|
|
self.cache.names[term] = tid
|
|
|
|
if tid is not None:
|
|
self.data['street'] = '{%d}' % tid
|
|
|
|
|
|
def add_place(self, conn, place):
|
|
""" Add addr:place search and match terms.
|
|
"""
|
|
if not place:
|
|
return
|
|
|
|
partial_ids = self.cache.get_term_tokens(conn, place.split())
|
|
tid = self.cache.get_term_tokens(conn, [' ' + place])
|
|
|
|
self.data['place_search'] = self._mk_array(itertools.chain(partial_ids, tid))
|
|
self.data['place_match'] = '{%s}' % tid[0]
|
|
|
|
|
|
def add_address_terms(self, conn, terms):
|
|
""" Add additional address terms.
|
|
"""
|
|
tokens = {}
|
|
|
|
for key, value in terms:
|
|
if not value:
|
|
continue
|
|
partial_ids = self.cache.get_term_tokens(conn, value.split())
|
|
term = ' ' + value
|
|
tid = self.cache.names.get(term)
|
|
|
|
if tid is None:
|
|
with conn.cursor() as cur:
|
|
cur.execute("""SELECT word_id FROM word
|
|
WHERE word_token = %s
|
|
and class is null and type is null""",
|
|
(term, ))
|
|
if cur.rowcount > 0:
|
|
tid = cur.fetchone()[0]
|
|
self.cache.names[term] = tid
|
|
|
|
tokens[key] = [self._mk_array(partial_ids),
|
|
'{%s}' % ('' if tid is None else str(tid))]
|
|
|
|
if tokens:
|
|
self.data['addr'] = tokens
|
|
|
|
|
|
class _TokenCache:
|
|
""" Cache for token information to avoid repeated database queries.
|
|
|
|
This cache is not thread-safe and needs to be instantiated per
|
|
analyzer.
|
|
"""
|
|
def __init__(self):
|
|
self.names = {}
|
|
self.postcodes = set()
|
|
self.housenumbers = {}
|
|
|
|
|
|
def get_term_tokens(self, conn, terms):
|
|
""" Get token ids for a list of terms, looking them up in the database
|
|
if necessary.
|
|
"""
|
|
tokens = []
|
|
askdb = []
|
|
|
|
for term in terms:
|
|
token = self.names.get(term)
|
|
if token is None:
|
|
askdb.append(term)
|
|
elif token != 0:
|
|
tokens.append(token)
|
|
|
|
if askdb:
|
|
with conn.cursor() as cur:
|
|
cur.execute("SELECT term, getorcreate_term_id(term) FROM unnest(%s) as term",
|
|
(askdb, ))
|
|
for term, tid in cur:
|
|
self.names[term] = tid
|
|
if tid != 0:
|
|
tokens.append(tid)
|
|
|
|
return tokens
|
|
|
|
|
|
def get_hnr_tokens(self, conn, terms):
|
|
""" Get token ids for a list of housenumbers, looking them up in the
|
|
database if necessary.
|
|
"""
|
|
tokens = []
|
|
askdb = []
|
|
|
|
for term in terms:
|
|
token = self.housenumbers.get(term)
|
|
if token is None:
|
|
askdb.append(term)
|
|
else:
|
|
tokens.append(token)
|
|
|
|
if askdb:
|
|
with conn.cursor() as cur:
|
|
cur.execute("SELECT nr, getorcreate_hnr_id(nr) FROM unnest(%s) as nr",
|
|
(askdb, ))
|
|
for term, tid in cur:
|
|
self.housenumbers[term] = tid
|
|
tokens.append(tid)
|
|
|
|
return tokens
|