mirror of
https://github.com/osm-search/Nominatim.git
synced 2024-12-27 23:15:12 +03:00
474d4230b8
SQLite is not timezone-aware, so make sure to convert to UTC before inserting any data.
266 lines
11 KiB
Python
266 lines
11 KiB
Python
# SPDX-License-Identifier: GPL-3.0-or-later
|
|
#
|
|
# This file is part of Nominatim. (https://nominatim.org)
|
|
#
|
|
# Copyright (C) 2023 by the Nominatim developer community.
|
|
# For a full list of authors see the git log.
|
|
"""
|
|
Exporting a Nominatim database to SQlite.
|
|
"""
|
|
from typing import Set, Any
|
|
import datetime as dt
|
|
import logging
|
|
from pathlib import Path
|
|
|
|
import sqlalchemy as sa
|
|
|
|
from nominatim.typing import SaSelect, SaRow
|
|
from nominatim.db.sqlalchemy_types import Geometry, IntArray
|
|
from nominatim.api.search.query_analyzer_factory import make_query_analyzer
|
|
import nominatim.api as napi
|
|
|
|
LOG = logging.getLogger()
|
|
|
|
async def convert(project_dir: Path, outfile: Path, options: Set[str]) -> None:
|
|
""" Export an existing database to sqlite. The resulting database
|
|
will be usable against the Python frontend of Nominatim.
|
|
"""
|
|
api = napi.NominatimAPIAsync(project_dir)
|
|
|
|
try:
|
|
outapi = napi.NominatimAPIAsync(project_dir,
|
|
{'NOMINATIM_DATABASE_DSN': f"sqlite:dbname={outfile}",
|
|
'NOMINATIM_DATABASE_RW': '1'})
|
|
|
|
try:
|
|
async with api.begin() as src, outapi.begin() as dest:
|
|
writer = SqliteWriter(src, dest, options)
|
|
await writer.write()
|
|
finally:
|
|
await outapi.close()
|
|
finally:
|
|
await api.close()
|
|
|
|
|
|
class SqliteWriter:
|
|
""" Worker class which creates a new SQLite database.
|
|
"""
|
|
|
|
def __init__(self, src: napi.SearchConnection,
|
|
dest: napi.SearchConnection, options: Set[str]) -> None:
|
|
self.src = src
|
|
self.dest = dest
|
|
self.options = options
|
|
|
|
|
|
async def write(self) -> None:
|
|
""" Create the database structure and copy the data from
|
|
the source database to the destination.
|
|
"""
|
|
LOG.warning('Setting up spatialite')
|
|
await self.dest.execute(sa.select(sa.func.InitSpatialMetaData(True, 'WGS84')))
|
|
|
|
await self.create_tables()
|
|
await self.copy_data()
|
|
if 'search' in self.options:
|
|
await self.create_word_table()
|
|
await self.create_indexes()
|
|
|
|
|
|
async def create_tables(self) -> None:
|
|
""" Set up the database tables.
|
|
"""
|
|
LOG.warning('Setting up tables')
|
|
if 'search' not in self.options:
|
|
self.dest.t.meta.remove(self.dest.t.search_name)
|
|
else:
|
|
await self.create_class_tables()
|
|
|
|
await self.dest.connection.run_sync(self.dest.t.meta.create_all)
|
|
|
|
# Convert all Geometry columns to Spatialite geometries
|
|
for table in self.dest.t.meta.sorted_tables:
|
|
for col in table.c:
|
|
if isinstance(col.type, Geometry):
|
|
await self.dest.execute(sa.select(
|
|
sa.func.RecoverGeometryColumn(table.name, col.name, 4326,
|
|
col.type.subtype.upper(), 'XY')))
|
|
|
|
|
|
async def create_class_tables(self) -> None:
|
|
""" Set up the table that serve class/type-specific geometries.
|
|
"""
|
|
sql = sa.text("""SELECT tablename FROM pg_tables
|
|
WHERE tablename LIKE 'place_classtype_%'""")
|
|
for res in await self.src.execute(sql):
|
|
for db in (self.src, self.dest):
|
|
sa.Table(res[0], db.t.meta,
|
|
sa.Column('place_id', sa.BigInteger),
|
|
sa.Column('centroid', Geometry))
|
|
|
|
|
|
async def create_word_table(self) -> None:
|
|
""" Create the word table.
|
|
This table needs the property information to determine the
|
|
correct format. Therefore needs to be done after all other
|
|
data has been copied.
|
|
"""
|
|
await make_query_analyzer(self.src)
|
|
await make_query_analyzer(self.dest)
|
|
src = self.src.t.meta.tables['word']
|
|
dest = self.dest.t.meta.tables['word']
|
|
|
|
await self.dest.connection.run_sync(dest.create)
|
|
|
|
LOG.warning("Copying word table")
|
|
async_result = await self.src.connection.stream(sa.select(src))
|
|
|
|
async for partition in async_result.partitions(10000):
|
|
data = [{k: getattr(r, k) for k in r._fields} for r in partition]
|
|
await self.dest.execute(dest.insert(), data)
|
|
|
|
await self.dest.connection.run_sync(sa.Index('idx_word_woken', dest.c.word_token).create)
|
|
|
|
|
|
async def copy_data(self) -> None:
|
|
""" Copy data for all registered tables.
|
|
"""
|
|
def _getfield(row: SaRow, key: str) -> Any:
|
|
value = getattr(row, key)
|
|
if isinstance(value, dt.datetime):
|
|
if value.tzinfo is not None:
|
|
value = value.astimezone(dt.timezone.utc)
|
|
return value
|
|
|
|
for table in self.dest.t.meta.sorted_tables:
|
|
LOG.warning("Copying '%s'", table.name)
|
|
async_result = await self.src.connection.stream(self.select_from(table.name))
|
|
|
|
async for partition in async_result.partitions(10000):
|
|
data = [{('class_' if k == 'class' else k): _getfield(r, k)
|
|
for k in r._fields}
|
|
for r in partition]
|
|
await self.dest.execute(table.insert(), data)
|
|
|
|
# Set up a minimal copy of pg_tables used to look up the class tables later.
|
|
pg_tables = sa.Table('pg_tables', self.dest.t.meta,
|
|
sa.Column('schemaname', sa.Text, default='public'),
|
|
sa.Column('tablename', sa.Text))
|
|
await self.dest.connection.run_sync(pg_tables.create)
|
|
data = [{'tablename': t} for t in self.dest.t.meta.tables]
|
|
await self.dest.execute(pg_tables.insert().values(data))
|
|
|
|
|
|
async def create_indexes(self) -> None:
|
|
""" Add indexes necessary for the frontend.
|
|
"""
|
|
# reverse place node lookup needs an extra table to simulate a
|
|
# partial index with adaptive buffering.
|
|
await self.dest.execute(sa.text(
|
|
""" CREATE TABLE placex_place_node_areas AS
|
|
SELECT place_id, ST_Expand(geometry,
|
|
14.0 * exp(-0.2 * rank_search) - 0.03) as geometry
|
|
FROM placex
|
|
WHERE rank_address between 5 and 25
|
|
and osm_type = 'N'
|
|
and linked_place_id is NULL """))
|
|
await self.dest.execute(sa.select(
|
|
sa.func.RecoverGeometryColumn('placex_place_node_areas', 'geometry',
|
|
4326, 'GEOMETRY', 'XY')))
|
|
await self.dest.execute(sa.select(sa.func.CreateSpatialIndex(
|
|
'placex_place_node_areas', 'geometry')))
|
|
|
|
# Remaining indexes.
|
|
await self.create_spatial_index('country_grid', 'geometry')
|
|
await self.create_spatial_index('placex', 'geometry')
|
|
await self.create_spatial_index('osmline', 'linegeo')
|
|
await self.create_spatial_index('tiger', 'linegeo')
|
|
await self.create_index('placex', 'place_id')
|
|
await self.create_index('placex', 'parent_place_id')
|
|
await self.create_index('placex', 'rank_address')
|
|
await self.create_index('addressline', 'place_id')
|
|
await self.create_index('postcode', 'place_id')
|
|
await self.create_index('osmline', 'place_id')
|
|
await self.create_index('tiger', 'place_id')
|
|
|
|
if 'search' in self.options:
|
|
await self.create_spatial_index('postcode', 'geometry')
|
|
await self.create_spatial_index('search_name', 'centroid')
|
|
await self.create_index('search_name', 'place_id')
|
|
await self.create_index('osmline', 'parent_place_id')
|
|
await self.create_index('tiger', 'parent_place_id')
|
|
await self.create_search_index()
|
|
|
|
for t in self.dest.t.meta.tables:
|
|
if t.startswith('place_classtype_'):
|
|
await self.dest.execute(sa.select(
|
|
sa.func.CreateSpatialIndex(t, 'centroid')))
|
|
|
|
|
|
async def create_spatial_index(self, table: str, column: str) -> None:
|
|
""" Create a spatial index on the given table and column.
|
|
"""
|
|
await self.dest.execute(sa.select(
|
|
sa.func.CreateSpatialIndex(getattr(self.dest.t, table).name, column)))
|
|
|
|
|
|
async def create_index(self, table_name: str, column: str) -> None:
|
|
""" Create a simple index on the given table and column.
|
|
"""
|
|
table = getattr(self.dest.t, table_name)
|
|
await self.dest.connection.run_sync(
|
|
sa.Index(f"idx_{table}_{column}", getattr(table.c, column)).create)
|
|
|
|
|
|
async def create_search_index(self) -> None:
|
|
""" Create the tables and indexes needed for word lookup.
|
|
"""
|
|
LOG.warning("Creating reverse search table")
|
|
rsn = sa.Table('reverse_search_name', self.dest.t.meta,
|
|
sa.Column('word', sa.Integer()),
|
|
sa.Column('column', sa.Text()),
|
|
sa.Column('places', IntArray))
|
|
await self.dest.connection.run_sync(rsn.create)
|
|
|
|
tsrc = self.src.t.search_name
|
|
for column in ('name_vector', 'nameaddress_vector'):
|
|
sql = sa.select(sa.func.unnest(getattr(tsrc.c, column)).label('word'),
|
|
sa.func.ArrayAgg(tsrc.c.place_id).label('places'))\
|
|
.group_by('word')
|
|
|
|
async_result = await self.src.connection.stream(sql)
|
|
async for partition in async_result.partitions(100):
|
|
data = []
|
|
for row in partition:
|
|
row.places.sort()
|
|
data.append({'word': row.word,
|
|
'column': column,
|
|
'places': row.places})
|
|
await self.dest.execute(rsn.insert(), data)
|
|
|
|
await self.dest.connection.run_sync(
|
|
sa.Index('idx_reverse_search_name_word', rsn.c.word).create)
|
|
|
|
|
|
def select_from(self, table: str) -> SaSelect:
|
|
""" Create the SQL statement to select the source columns and rows.
|
|
"""
|
|
columns = self.src.t.meta.tables[table].c
|
|
|
|
if table == 'placex':
|
|
# SQLite struggles with Geometries that are larger than 5MB,
|
|
# so simplify those.
|
|
return sa.select(*(c for c in columns if not isinstance(c.type, Geometry)),
|
|
sa.func.ST_AsText(columns.centroid).label('centroid'),
|
|
sa.func.ST_AsText(
|
|
sa.case((sa.func.ST_MemSize(columns.geometry) < 5000000,
|
|
columns.geometry),
|
|
else_=sa.func.ST_SimplifyPreserveTopology(
|
|
columns.geometry, 0.0001)
|
|
)).label('geometry'))
|
|
|
|
sql = sa.select(*(sa.func.ST_AsText(c).label(c.name)
|
|
if isinstance(c.type, Geometry) else c for c in columns))
|
|
|
|
return sql
|