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Abstract
Improving performance is a central concern for software
developers. To locate optimization opportunities, developers
rely on software profilers. However, these profilers only report
where programs spent their time: optimizing that code may
have no impact on performance. Past profilers thus both waste
developer time and make it difficult for them to uncover
significant optimization opportunities.

This paper introduces causal profiling. Unlike past pro-
filing approaches, causal profiling indicates exactly where
programmers should focus their optimization efforts, and
quantifies their potential impact. Causal profiling works by
running performance experiments during program execution.
Each experiment calculates the impact of any potential op-
timization by virtually speeding up code: inserting pauses
that slow down all other code running concurrently. The key
insight is that this slowdown has the same relative effect as
running that line faster, thus “virtually” speeding it up.

We present COZ, a causal profiler, which we evaluate on
a range of highly-tuned applications: Memcached, SQLite,
and the PARSEC benchmark suite. COZ identifies previously
unknown optimization opportunities that are both significant
and targeted. Guided by COZ, we improve the performance
of Memcached by 9%, SQLite by 25%, and accelerate six
PARSEC applications by as much as 68%; in most cases,
these optimizations involve modifying under 10 lines of code.

1. Introduction
Improving performance is a central concern for software
developers. While compiler optimizations are of some assis-
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tance, they often do not have enough of an impact on perfor-
mance to meet programmers’ demands [10]. Programmers
seeking to increase the throughput or responsiveness of their
applications thus must resort to manual performance tuning.

Manually inspecting a program to find optimization op-
portunities is impractical, so developers use profilers. Con-
ventional profilers rank code by its contribution to total exe-
cution time. Prominent examples include oprofile, perf, and
gprof [17, 27, 29]. Unfortunately, even when a profiler ac-
curately reports where a program spends its time, this infor-
mation can lead programmers astray. Code that runs for a
long time is not necessarily a good choice for optimization.
For example, optimizing code that draws a loading animation
during a file download will not make the program run faster,
even though this code runs just as long as the download.

This phenomenon is not limited to I/O operations. Figure 1
shows a simple program that illustrates the shortcomings of
existing profilers, along with its gprof profile in Figure 2a.
This program spawns two threads, which invoke functions
fa and fb respectively. Most profilers will report that these
functions comprise roughly half of the total execution time.
Other profilers may report that fa is on the critical path, or that
the main thread spends roughly equal time waiting for fa and
fb [23]. While accurate, all of this information is potentially
misleading. Optimizing fa away entirely will only speed up
the program by 4.5% because fb becomes the new critical
path.

example.cpp

1 void a() { // ˜6.7 seconds
2 for(volatile size_t x=0; x<2000000000; x++) {}
3 }
4 void b() { // ˜6.4 seconds
5 for(volatile size_t y=0; y<1900000000; y++) {}
6 }
7 int main() {
8 // Spawn both threads and wait for them.
9 thread a_thread(a), b_thread(b);

10 a_thread.join(); b_thread.join();
11 }

Figure 1: A simple multithreaded program that illustrates the
shortcomings of existing profilers. Optimizing fa will improve
performance by no more than 4.5%, while optimizing fb would
have no effect on performance.



Conventional Profile for example.cpp

% cumulative self self total
time seconds seconds calls Ts/call Ts/call name
55.20 7.20 7.20 1 a()
45.19 13.09 5.89 1 b()

% time self children called name
<spontaneous>

55.0 7.20 0.00 a()
--------------------------------------------------

<spontaneous>
45.0 5.89 0.00 b()

(a) A conventional profile for example.cpp, collected with gprof

Causal Profile For example.cpp

●

●●
●

●

●●
●●●

●
●

●
●●

●
●

●●

●
●

line 2 (a) line 5 (b)

0%

2%

4%

6%

0% 25% 50% 75% 100%0% 25% 50% 75% 100%
Line Speedup

P
ro

gr
am

 S
pe

ed
up

(b) Causal profile for example.cpp

Figure 2: The gprof and causal profiles for the code in Figure 1. In the causal profile, the y-axis shows the program speedup that would be
achieved by speeding up each line of code by the percentage on the x-axis. The gray area shows standard error. Gprof reports that fa and fb
comprise similar fractions of total runtime, but optimizing fa will improve performance by at most 4.5%, and optimizing fb would have no
effect on performance. The causal profile predicts both outcomes within 0.5%.

Conventional profilers do not report the potential impact of
optimizations; developers are left to make these predictions
based on their understanding of the program. While these
predictions may be easy for programs as simple as the one
in Figure 1, accurately predicting the effect of a proposed
optimization is nearly impossible for programmers attempting
to optimize large applications.

This paper introduces causal profiling, an approach that
accurately and precisely indicates where programmers should
focus their optimization efforts, and quantifies their potential
impact. Figure 2b shows the results of running COZ, our
prototype causal profiler. This profile plots the hypothetical
speedup of a line of code (x-axis) versus its impact on
execution time (y-axis). The graph correctly shows that
optimizing either fa or fb in isolation would have little effect.

A causal profiler conducts a series of performance exper-
iments to empirically observe the effect of a potential opti-
mization. Of course it is not possible to automatically speed
up any line of code by an arbitrary amount. Instead, a causal
profiler uses the novel technique of virtual speedups to mimic
the effect of optimizing a specific line of code by a fixed
amount. A line is virtually sped up by inserting pauses to
slow all other threads each time the line runs. The key insight
is that this slowdown has the same relative effect as running
that line faster, thus “virtually” speeding it up. Figure 3 shows
the equivalence of virtual and actual speedups.

Each performance experiment measures the effect of vir-
tually speeding up one line by a specific amount. By conduct-
ing many performance experiments over the range of virtual
speedup from between 0% (no change) and 100% (the line is
completely eliminated), a causal profiler can predict the effect
of any potential optimization on a program’s performance.

Causal profiling further departs from conventional profil-
ing by making it possible to view the effect of optimizations
on both throughput and latency. To profile throughput, devel-
opers specify a progress point, indicating a line in the code
that corresponds to the end of a unit of work. For example, a
progress point could be the point at which a transaction con-

cludes, when a web page finishes rendering, or when a query
completes. A causal profiler then measures the rate of visits to
each progress point to determine any potential optimization’s
effect on throughput. To profile latency, programmers instead
place two progress points that correspond to the start and
end of an event of interest, such as when a transaction begins
and completes. A causal profiler then reports the effect of
potential optimizations on the average latency between those
two progress points.

To demonstrate the effectiveness of causal profiling, we
have developed COZ, a causal profiler for Linux. We show
that COZ imposes low execution time overhead (mean: 17%,
min: 0.1%, max: 65%), making it substantially faster than
gprof (up to 6× overhead).

We show that causal profiling accurately predicts optimiza-
tion opportunities, and that it is effective at guiding optimiza-
tion efforts. We apply COZ to Memcached, SQLite, and the
extensively studied PARSEC benchmark suite. Guided by
COZ’s output, we optimized the performance of Memcached
by 9%, SQLite by 25%, and six PARSEC applications by as
much as 68%. These optimizations typically involved mod-
ifying under 10 lines of code. When possible to accurately
measure the size of our optimizations on the line(s) identified
by COZ, we compare the observed performance improve-
ments to COZ’s predictions: in each case, we find that the real
effect of our optimization matches COZ’s prediction.

Contributions
This paper makes the following contributions:

1. It presents causal profiling, which identifies code where
optimizations will have the largest impact. Using virtual
speedups and progress points, causal profiling directly
measures the effect of potential optimizations on both
throughput and latency (§2).

2. It presents COZ, a causal profiler that works on unmod-
ified Linux binaries. It describes COZ’s implementation
(§3), and demonstrates its efficiency and effectiveness at
identifying optimization opportunities (§4).



2. Causal Profiling Overview
This section describes the major steps in collecting, process-
ing, and interpreting a causal profile with COZ, our prototype
causal profiler.

Profiler startup. A user invokes COZ using a command of
the form coz run --- <program> <args>. At the
beginning of the program’s execution, COZ collects debug
information for the executable and all loaded libraries. Users
may specify file and binary scope, which restricts COZ’s
experiments to speedups in the specified files. By default,
COZ will consider speedups in any source file from the main
executable. COZ builds a map from instructions to source
lines using the program’s debug information and the specified
scope. Once the source map is constructed, COZ creates a
profiler thread and resumes normal execution.

Experiment initialization. COZ’s profiler thread begins an
experiment by selecting a line to virtually speed up, and a
randomly-chosen percent speedup. Both parameters must be
selected randomly; any systematic method of exploring lines
or speedups could lead to systematic bias in profile results.
One might assume that COZ could exclude lines or virtual
speedup amounts that have not shown a performance effect
early in previous experiments, but prioritizing experiments
based on past results would prevent COZ from identifying
an important line if its performance only matters after some
warmup period. Once a line and speedup have been selected,
the profiler thread saves the number of visits to each progress
point and begins the experiment.

Applying a virtual speedup. Every time the profiled pro-
gram creates a thread, COZ begins sampling the instruction
pointer from this thread. COZ processes samples within each
thread to implement a sampling version of virtual speedups.
In Section 3.4, we show the equivalence between the virtual
speedup mechanism shown in Figure 3 and the sampling
approach used by COZ. Every time a sample is available, a
thread checks whether the sample falls in the line of code
selected for virtual speedup. If so, it forces other threads to
pause. This process continues until the profiler thread indi-
cates that the experiment has completed.

Ending an experiment. COZ ends the experiment after a
pre-determined time has elapsed. If there were too few visits
to progress points during the experiment—five is the default
minimum—COZ doubles the experiment time for the rest
of the execution. Once the experiment has completed, the
profiler thread logs the results of the experiment, including
the effective duration of the experiment (runtime minus the
total inserted delay), the selected line and speedup, and the
number of visits to all progress points. Before beginning the
next experiment, COZ will pause for a brief cooloff period to
allow any remaining samples to be processed before the next
experiment begins.

Illustration of Virtual Speedup
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Figure 3: An illustration of virtual speedup: (a) shows the original
execution of two threads running functions f and g; (b) shows the
effect of a actually speeding up f by 40%; (c) shows the effect of
virtually speeding up f by 40%. Each time f runs in one thread, all
other threads pause for 40% of f’s original execution time (shown as
ellipsis). The difference between the runtime in (c) and the original
runtime plus nf · d—the number of times f ran times the delay
size—is the same as the effect of actually optimizing f.

Producing a causal profile. After an application has been
profiled with COZ, the results of all the performance exper-
iments can be combined to produce a causal profile. Each
experiment has two independent variables: the line chosen
for virtual speedup and the amount of virtual speedup. COZ
records the dependent variable, the rate of visits to each
progress point, in two numbers: the total number of visits
to each progress point and the effective duration of the exper-
iment (the real runtime minus the total length of all pauses).
Experiments with the same independent variables can be
combined by adding the progress point visits and experiment
durations.

Once experiments have been combined, COZ groups ex-
periments by the line that was virtually sped up. Any lines
that do not have a measurement of 0% virtual speedup are
discarded; without this baseline measurement we cannot com-
pute a percent speedup relative to the original program. Mea-
suring this baseline separately for each line guarantees that
any line-dependent overhead from virtual speedups, such as
the additional cross-thread communication required to insert
delays when a frequently-executed line runs, will not skew
profile results. By default, COZ will also discard any lines
with fewer than 5 different virtual speedup amounts (a plot
that only shows the effect of a 75% virtual speedup is not
particularly useful). Finally, we compute the percent program



speedup for each grouped experiment as the percent change in
rate of visits to each progress point over the baseline (virtual
speedup of 0%). COZ then plots the resulting table of line
and program speedups for each line, producing the profile
graphs shown in this paper.

Interpreting a causal profile. Once causal profile graphs
have been generated, it is up to the user to interpret them and
make an educated choice about which lines may be possible
to optimize. To help the user identify important lines, COZ
sorts the graphs by the slope of their linear regression. Steep
upward slopes indicate a line where optimizations will gen-
erally have a positive impact, while a flat line indicates that
optimizing this line will not improve program performance.
COZ also finds lines with a steep downward slope, meaning
any optimization to this line will actually hurt performance.
This downward sloping profile is a strong indication of con-
tention; the line that was virtually sped up interferes with the
program’s critical path, and optimizing this line increases the
amount of interference. This phenomenon is surprisingly com-
mon, and can often result in significant optimization opportu-
nities. In our evaluation we identify and fix contention issues
in three applications: fluidanimate, streamcluster,
and memcached, resulting in speedups of 37.5%, 68.4%,
and 9.4% respectively.

3. Implementation
This section describes COZ’s basic functionality and imple-
mentation. We briefly discuss the core mechanisms required
to support profiling unmodified Linux x86-64 executables,
along with implementation details for each of the key compo-
nents of a causal profiler: performance experiments, progress
points, and virtual speedups.

3.1 Core Mechanisms
COZ uses sampling to implement both virtual speedups
and progress points. When a user starts a program with
the coz command, COZ injects a profiling runtime library
into the program’s address space using LD PRELOAD. This
runtime library creates a dedicated profiler thread to run
performance experiments, but also intercepts each thread
startup and shutdown to start and stop sampling in the thread
using the perf even API. Using the perf event API,
COZ collects both the current program counter and user-space
call stack from each thread every 1ms. To keep overhead low,
COZ processes samples in batches of ten by default (every
10ms). Processing samples more frequently is unlikely to
improve accuracy, as the additional overhead would distort
program execution.

Attributing samples to source locations. COZ uses DWARF
debug information to map sampled program counter values to
source locations. The profiled program does not need to con-
tain DWARF line information; COZ will use the same search
procedure as GDB to locate external debug information if

necessary [14]. Note that debug information is available
even for optimized code, and most Linux distributions offer
packages that include this information for common libraries.

By default, COZ will only collect debug information for
the main executable. This means COZ will only test potential
optimizations in the main program’s source files. Users can
specify a source scope to control which source files COZ will
select lines from to evaluate potential optimizations. Likewise,
users can specify a binary scope to control which executables
and libraries will be profiled. Users should use these scope
options to specify exactly which code they are willing or able
to change to improve their program’s performance.

3.2 Performance Experiment Implementation
COZ uses a dedicated profiler thread to coordinate perfor-
mance experiments. This thread is responsible for select-
ing a line to virtually speed up, selecting the size of the vir-
tual speedup, measuring the effect of the virtual speedup on
progress points, and writing profiler output.

Starting a performance experiment. A single profiler
thread, created during program initialization, coordinates
performance experiments. Before an experiment can begin,
the profiler selects a source line to virtually speed up. To do
this, all program threads sample their instruction pointers
and map these addresses to source lines. The first thread to
sample a source line that falls within the specified profiling
scope sets this as the line selected for virtual speedup.

Once the profiler receives a valid line from one of the
program’s threads, it chooses a random virtual speedup be-
tween 0% and 100%, in multiples of 5%. For any given virtual
speedup, the effect on program performance is 1− ps

p0
, where

p0 is the period between progress point visits with no virtual
speedup, and ps is the same period measured with some vir-
tual speedup s. Because p0 is required to compute program
speedup for every ps, a virtual speedup of 0 is selected with
50% probability. The remaining 50% is distributed evenly
over the other virtual speedup amounts.

Lines for virtual speedup must be selected randomly to
prevent bias in the results of performance experiments. A
seemingly reasonably (but invalid) approach would be to
begin conducting performance experiments with small vir-
tual speedups, gradually increasing the speedup until it no
longer has an effect on program performance. However, this
approach may both over- and under-state the impact of opti-
mizing a particular line if its impact varies over time.

For example, a line that has no performance impact during
a program’s initialization would not be measured later in exe-
cution, when optimizing it could have significant performance
benefit. Conversely, a line that only affects performance dur-
ing initialization would have exaggerated performance impact
unless future experiments re-evaluate virtual speedup values
for this line during normal execution. Any systematic ap-
proach to exploring the space of virtual speedup values could
potentially lead to systematic bias in the profile output.



Once a line and speedup amount have been selected, COZ
saves the current values of all progress point counters and
begins the performance experiment.

Running a performance experiment. Once a performance
experiment has started, each of the program’s threads pro-
cesses samples and inserts delays to perform virtual speedups.
After the pre-determined experiment time has elapsed, the
profiler thread logs the end of the experiment, including the
current time, the number and size of delays inserted for vir-
tual speedup, the running count of samples in the selected
line, and the values for all progress point counters. After a
performance experiment has finished, COZ waits until all
samples collected during the current experiment have been
processed. By default, COZ will process samples in groups
of ten, so this pause time is just ten times the sampling rate
of 1ms. Lengthening this cooloff period will reduce COZ’s
overhead by inserting fewer delays at the cost of increased
profiling time to conduct the same number of performance
experiments.

3.3 Progress Point Implementation
COZ supports three mechanisms for monitoring progress
points: source-level, breakpoint, and sampled.

Source-level progress points. Source-level progress points
are the only progress points that require program modification.
To indicate a source-level progress point, a developer simply
inserts the COZ PROGRESS macro in the program’s source
code at the appropriate location.

Breakpoint progress points. Breakpoint progress points
are specified at the command line. COZ uses the Linux
perf event API to set a breakpoint at the first instruction
in a line specified in the profiler arguments.

Sampled progress points. Sampled progress points are
specified on the command line. However, unlike source-level
and breakpoint progress points, sampled progress points do
not keep a count of the number of visits to the progress point.
Instead, sampled progress points count the number of samples
that fall within the specified line. As with virtual speedups,
the percent change in visits to a sampled progress point can
be computed even when exact counts are unknown.

Measuring latency. Source-level and breakpoint progress
points can also be used to measure the impact of an optimiza-
tion on latency rather than throughput. To measure latency, a
developer must specify two progress points: one at the start of
some operation, and the other at the end. The rate of visits to
the starting progress point measures the arrival rate, and the
difference between the counts at the start and end points tells
us how many requests are currently in progress. By denoting
L as the number of requests in progress and λ as the arrival
rate, we can solve for the average latency W via Little’s Law,
which holds for nearly any queuing system: L = λW [30].
Rewriting Little’s Law, we then compute the average latency
as L/λ.

Little’s Law holds under a wide variety of circumstances,
and is independent of the distributions of the arrival rate and
service time. The key requirement is that Little’s Law only
holds when the system is stable: the arrival rate cannot exceed
the service rate. Note that all usable systems are stable: if a
system is unstable, its latency will grow without bound since
the system will not be able to keep up with arrivals.

3.4 Virtual Speedup Implementation
A critical component of any causal profiler is the ability to
virtually speed up any fragment of code. A naive implemen-
tation of virtual speedups is shown in Figure 3; each time the
function f runs, all other threads are paused briefly. If f has
an average runtime of t̄f each time it is called and threads are
paused for time d each time f runs, then f has an effective
average runtime of t̄f − d.

If the real runtime of f was t̄f − d, but we forced every
thread in the program to pause for time d after f ran (in-
cluding the thread that just executed f) we would measure
the same total runtime as with a virtual speedup. The only
difference between virtual speedup and a real speedup with
these additional pauses is that we use the time d to allow one
thread to finish executing f. The pauses inserted for virtual
speedup increase the total runtime by nf · d, where nf is the
total number of times f by any thread. Subtracting nf ·d from
the total runtime with virtual speedup gives us the execution
time we would measure if f had runtime tf − d.

Implementing virtual speedup with sampling. The previ-
ous discussion of virtual speedups assumes an implementa-
tion where every time a specific line of code executes all other
threads instantaneously pause for a very brief time (a fraction
of the time require to run a single line). Unfortunately, this
approach would incur prohibitively high overhead that would
distort program execution, making the profile useless. Instead,
COZ periodically samples the program counter and counts
samples that fall in the line selected for virtual speedup. Then,
other threads are delayed proportionally to the number of
samples. The number of samples in the selected line, s, is
approximately

s ≈ n · t̄
P

(1)

where P is the period of time between samples, t̄ is the
average time required to run the selected line once, and n
is the number of times the selected line is executed.

In our original model of virtual speedups, delaying other
threads by time d each time the selected line is executed
has the effect of shortening this line’s runtime by d. With
sampling, only some executions of the selected line will result
in delays. The effective runtime of the selected line when
sampled is t̄−d, while executions of the selected line that are
not sampled simply take time t̄. The effective average time to
run the selected line is

t̄e =
(n− s) · t̄+ s · (t̄− d)

n
. (2)



Using (1), this reduces to

t̄e =
n · t̄ · (1− t̄

P ) + n·t̄
P · (t̄− d)

n
= t̄ · (1− d

P
) (3)

The relative difference between t and t̄e, the amount of virtual
speedup, is simply

∆t̄ = 1− t̄e
t̄

=
d

P
. (4)

This result lets COZ virtually speed up selected lines by
a specific amount without instrumentation. Inserting a delay
that is one quarter of the sampling period will virtually speed
up the selected line by 25%.

Pausing other threads. When one thread receives a sample
in the line selected for virtual speedup, all other threads must
pause. Rather than using POSIX signals, which would have
prohibitively high overhead, COZ controls inter-thread paus-
ing using counters. The first counter, shared by all threads,
records the number of times each thread should have paused
so far. Each thread has a local counter of the number of times
that thread has already paused. Whenever a thread’s local
count of pauses is less than the number of required pauses
in the global counter, a thread must pause (and increment its
local counter). To signal all other threads to pause, a thread
simply increments both the global counter and its own lo-
cal counter. Every thread checks if pauses are required after
processing its own samples.

Ensuring accurate timing. COZ uses the nanosleep
POSIX function to insert delays. This function only guaran-
tees that the thread will pause for at least the requested time,
but the pause may be longer than requested. COZ tracks any
excess pause time, which is subtracted from future pauses.

Thread creation. To start sampling and adjust delays, COZ
interposes on the pthread create function. COZ first
initiates perf event sampling in the new thread. It then
inherits the parent thread’s local delay count; any previously
inserted delays to the parent thread also delayed the creation
of the new thread.

3.4.1 Handling Suspended Threads
COZ only collects samples and inserts delays in a thread while
that thread is actually executing. This means that required
delays will accumulate in a thread while it is suspended.
When a thread is suspended on a blocking I/O operation, this
is the desired behavior; pausing the thread while it is already
suspended on I/O would not delay the thread’s progress. COZ
simply adds these delays after the thread unblocks.

However, a thread can also be suspended while waiting
for a mutex or other POSIX synchronization primitive. As
with blocking I/O, required delays will accumulate while
the thread is suspended, but COZ may not need to insert all
of these delays when the thread resumes. When one thread
resumes after waiting for a mutex, another thread must have

Potentially unblocking calls
pthread mutex unlock unlock a mutex
pthread cond signal wake one waiter on a c.v.
pthread cond broadcast wake all waiters on c.v.
pthread barrier wait wait at a barrier
pthread kill send signal to a thread
pthread exit terminate this thread

Table 1: COZ intercepts POSIX functions that could wake a blocked
thread. To ensure correctness of virtual speedups, COZ forces threads
to execute any unconsumed delays before invoking any of these
functions and potentially waking another thread.

Potentially blocking calls
pthread mutex lock lock a mutex
pthread cond wait wait on a condition variable
pthread barrier wait wait at a barrier
pthread join wait for a thread to complete
sigwait wait for a signal
sigwaitinfo wait for a signal
sigtimedwait wait for a signal (with timeout)
sigsuspend wait for a signal

Table 2: COZ intercepts POSIX functions that could block waiting
for a thread, instrumenting them to update delay counts before and
after blocking.

unlocked that mutex. If the unlocking thread has executed all
the required delays, then the blocked thread has effectively
already been delayed; it should not insert any additional
delays after unblocking.

To correctly handle suspended threads, a causal profiler
must follow a simple rule: If a suspended thread resumes
execution because of another thread, the suspended thread
should be “credited” for any delays inserted in the thread
responsible for waking it up. Otherwise, the thread should
insert all the necessary delays that accumulated during the
time the thread was suspended. To simplify the implementa-
tion of this policy, COZ forces a thread to execute all required
delays before it does anything that could block that thread
(see Table 2) or wake a suspended thread (shown in Table 1).
This means that any resumed thread can skip any required
delays after returning from a call which may have blocked
the thread. Note that this special handling is only required for
operations that can suspend a thread. COZ can accommodate
programs with ad-hoc synchronization that does not suspend
threads with no special handling.

3.4.2 Attributing Samples to Source Lines
Samples are attributed to source lines using the source map
constructed at startup. When a sample does not fall in any
in-scope source line, the profiler walks the sampled callchain
to find the first in-scope address. This has the effect of at-
tributing all out-of-scope execution to the last in-scope call-
site responsible. For example, a program may call printf,
which calls vfprintf, which in turn calls strlen. Any
samples collected during this chain of calls will be attributed
to the source line that issues the original printf call.



3.4.3 Optimization: Minimizing Delays
If every thread executes the selected line, forcing each thread
to delay num threads−1 times unnecessarily slows execution.
If all but one thread executes the selected line, only that thread
needs to pause. The invariant that must be preserved is the
following: for each thread, the number of pauses plus the
number of samples in the selected line must be equal. When
a sample falls in the selected line, COZ increments only the
local delay count. If the local delay count is still less than the
global delay count after processing all available samples, COZ
inserts pauses. If the local delay count is larger than global
delay count, the thread increases the global delay count.

Adjusting for phases
COZ randomly selects a recently-executed line of code at
the start of each performance experiment. This increases the
likelihood that experiments will yield useful information—
a virtual speedup would have no effect on lines that never
run—but could bias results for programs with phases.

If a program runs in phases, optimizing a line will not
have any effect on progress rate during periods when the line
is not being run. However, COZ will not run performance
experiments for the line during these periods because only
currently-executing lines are selected. If left uncorrected, this
bias would lead COZ to overstate the effect of optimizing
lines that run in phases.

To eliminate this bias, we break the program’s execution
into two logical phases: phase A, during which the selected
line runs, and phase B, when it does not. These phases need
not be contiguous. The total runtime T = tA + tB is the sum
of the durations of the two phases. The average progress rate
during the entire execution is:

P =
T

N
=
tA + tB
N

. (5)

COZ collects samples during the entire execution, record-
ing the number of samples in each line. We define s to be
the number of samples in the selected line, of which sobs
occur during a performance experiment with duration tobs.
The expected number of samples during the experiment is:

E[sobs] = s · tobs
tA

, therefore tA ≈ s ·
tobs
sobs

. (6)

COZ measures the effect of a virtual speedup during phase
A,

∆pA =
pA − pA′

pA

where pA′ and pA are the average progress periods with and
without a virtual speedup; this can be rewritten as:

∆pA =
tA
nA
− tA

′

nA

tA
nA

=
tA − tA′

tA
(7)

Summary of Optimization Results
Application Speedup Diff Size LOC

blackscholes 2.56%± 0.41% −61, +4 342
dedup 8.95%± 0.27% −3, +3 2,570
ferret 21.27%± 0.17% −4, +4 5,937

fluidanimate 37.5%± 0.56% −1, +0 1,015
streamcluster 68.4%± 1.12% −1, +0 1,779

swaptions 15.8%± 1.10% −10, +16 970
Memcached 9.39%± 0.95% −6, +2 10,475

SQLite 25.60%± 1.00% −7, +7 92,635

Table 3: All benchmarks were run ten times before and after
optimization. Standard error for speedup was computed using
Efron’s bootstrap method, where speedup is defined as t0−topt

t0
.

All speedups are statistically significant at the 99.9% confidence
level (α = 0.001) using the one-tailed Mann-Whitney U test, which
does not rely on any assumptions about the distribution of execution
times. Lines of code do not include blank or comment-only lines.

where nA is the number of progress point visits during phase
A. Using (5), the new value for P with the virtual speedup is

P ′ =
tA
′ + tB
N

and the percent change in P is

∆P =
P − P ′

P
=

tA+tB
N − tA

′+tB
N

T
N

=
tA − tA′

T
.

Finally, using (6) and (7),

∆P = ∆pA
tA
T
≈ ∆pA ·

tobs
sobs
· s
T
. (8)

COZ multiplies all measured speedups, ∆pA, by the cor-
rection factor tobs

sobs
· s
T in its final report.

4. Evaluation
Our evaluation answers the following questions: (1) Does
causal profiling enable effective performance tuning? (2)
Are COZ’s performance predictions accurate? (3) Is COZ’s
overhead low enough to be practical?

4.1 Experimental Setup
We perform all experiments on a 64 core, four socket AMD
Opteron machine with 60GB of memory, running Linux 3.14
with no modifications. All applications are compiled using
GCC version 4.9.1 at the -O3 optimization level and debug
information generated with -g. We disable frame pointer
elimination with the -fno-omit-frame-pointer flag
so the Linux can collect accurate call stacks with each sample.
COZ is run with the default sampling period of 1ms, with
sample processing set to occur after every 10 samples. Each
performance experiment runs with a cooling-off period of
10ms after each experiment to allow any remaining samples
to be processed before the next experiment begins. Due to
space limitations, we only profile throughput (and not latency)
in this evaluation.
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Figure 4: In the dedup benchmark, COZ identified hash bucket
traversal as a bottleneck. These plots show collisions per-bucket
before, mid-way through, and after optimization of the dedup bench-
mark (note different y-axes). The dashed horizontal line shows aver-
age collisions per-utilized bucket for each version. Fixing dedup’s
hash function improved performance by 8.9%.

4.2 Effectiveness
We demonstrate causal profiling’s effectiveness through case
studies. Using COZ, we collect causal profiles for Mem-
cached, SQLite, and the PARSEC benchmark suite. Using
these causal profiles, we were able to make small changes
to two of the real applications and six PARSEC benchmarks,
resulting in performance improvements as large as 68%. Ta-
ble 3 summarizes the results of our optimization efforts. We
describe our experience using COZ below, with three gen-
eral outcomes: (1) cases where COZ found optimization op-
portunities that gprof and perf did not (dedup, ferret, and
SQLite); (2) cases where COZ identified contention (fluidani-
mate, streamcluster, and Memcached); and (3) cases where
both COZ and a conventional profiler identified the optimiza-
tion we implemented (blackscholes and swaptions).

4.2.1 Case Study: dedup
The dedup application performs parallel file compression
via deduplication. This process is divided into three main
stages: fine-grained fragmentation, hash computation, and
compression. We placed a progress point immediately after
dedup completes compression of a single block of data
(encoder.c:189).

COZ identifies the source line hashtable.c:217 as
the best opportunity for optimization. This code is the top
of the while loop in hashtable search that traverses
the linked list of entries that have been assigned to the same
hash bucket. This suggests that dedup’s shared hash table has
a significant number of collisions. Increasing the hash table
size had no effect on performance. This led us to examine
dedup’s hash function, which could also be responsible for
the large number of hash table collisions. We discovered that
dedup’s hash function maps keys to just 2.3% of the available

IMAGE&
SEGMENTATION&

FEATURE&
EXTRACTION& INDEXING& RANKING&

INPUT& OUTPUT&

Figure 5: Ferret’s pipeline. The middle four stages each have an
associated thread pool; the input and output stages each consist of
one thread. The colors represent the impact on throughput of each
stage, as identified by COZ: green is low impact, orange is medium
impact, and red is high impact.

buckets; over 97% of buckets were never used during the
entire execution.

The original hash function adds characters of the hash table
key, which leads to virtually no high order bits being set. The
resulting hash output is then passed to a bit shifting procedure
intended to compensate for poor hash functions. We removed
the bit shifting step, which increased hash table utilization to
54.4%. We then changed the hash function to bitwise XOR
32 bit chunks of the key. This increased hash table utilization
to 82.0% and resulted in an 8.95% ± 0.27% performance
improvement. Figure 4 shows the rate of bucket collisions of
the original hash function, the same hash function without
the bit shifting “improvement”, and our final hash function.
The entire optimization required changing just three lines of
code. As with ferret, this result was achieved by one graduate
student who was initially unfamiliar with the code; the entire
profiling and tuning effort took just two hours.

Comparison with gprof. We ran both the original and op-
timized versions of dedup with gprof. As with ferret, the
optimization opportunities identified by COZ were not obvi-
ous in gprof’s output. Overall, hashtable search had
the largest share of highest execution time at 14.38%, but
calls to hashtable search from the hash computation
stage accounted for just 0.48% of execution time; Gprof’s
call graph actually obscured the importance of this code. Af-
ter optimization, hashtable search’s share of execution
time reduced to 1.1%.

4.2.2 Case Study: ferret
The ferret benchmark performs a content-based image simi-
larity search. Ferret consists of a pipeline with six stages: the
first and the last stages are for input and output. The middle
four stages perform image segmentation, feature extraction,
indexing, and ranking. Ferret takes two arguments: an in-
put file and a desired number of threads, which are divided
equally across the four middle stages. We first inserted a
progress point in the final stage of the image search pipeline
to measure throughput (ferret-parallel.c:398). We
then ran COZ with the source scope set to evaluate optimiza-
tions only in ferret-parallel.c, rather than across the
entire ferret toolkit.
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Figure 6: COZ output for the unmodified ferret application. The
x-axis shows the amount of virtual speedup applied to each line,
versus the resulting change in throughput on the y-axis. The top two
lines are executed by the indexing and ranking stages; the third line
is executed during image segmentation.

Figure 6 shows the top three lines identified by COZ, using
its default ranking metric. Lines 320 and 358 are calls to
cass table query from the indexing and ranking stages.
Line 255 is a call to image segment in the segmentation
stage. Figure 5 depicts ferret’s pipeline with the associated
thread pools (colors indicate COZ’s computed impact on
throughput of optimizing these stages).

Because each important line falls in a different pipeline
stage, and because COZ did not find any important lines in the
queues shared by adjacent stages, we can easily “optimize”
a specific line by shifting threads to that stage. We modified
ferret to let us specify the number of threads assigned to each
stage separately, a four-line change.

COZ did not find any important lines in the feature extrac-
tion stage, so we shifted threads from this stage to the three
other main stages. After three rounds of profiling and adjust-
ing thread assignments, we arrived at a final thread allocation
of 20, 1, 22, and 21 to segmentation, feature extraction, index-
ing, and ranking respectively. The reallocation of threads led
to a 21.27%±0.17% speedup over the original configuration,
using the same number of threads.

Comparison with gprof. We also ran ferret with gprof in
both the initial and final configurations. Optimization oppor-
tunities are not immediately obvious from that profile. For ex-
ample, in the flat profile, the function cass table query
appears near the bottom of the ranking, and is tied with 56
other functions for most cumulative time.

Gprof also offers little guidance for optimizing ferret. In
fact, its output was virtually unchanged before and after our
optimization, despite a large performance change.

4.2.3 Case Study: SQLite
The SQLite database library is widely used by many ap-
plications to store relational data. The embedded database,
which can be included as a single large C file, is used for
many applications including Firefox, Chrome, Safari, Opera,
Skype, iTunes, and is a standard component of Android, iOS,
Blackberry 10 OS, and Windows Phone 8. We evaluated
SQLite performance using a write-intensive parallel work-

Causal and Perf Profiles for SQLite

●

●●●
●●

●

●●
●

●
●●

●

●

Line 16916 Line 18974 Line 40345

−50%

−25%

0%

25%

0% 50% 0% 50% 0% 50%
Line Speedup

P
ro

gr
am

 S
pe

ed
up

(a) COZ’s output for SQLite before optimizations.

% Runtime Symbol
85.55% _raw_spin_lock
1.76% x86_pmu_enable_all

... 30 lines ...
0.10% rcu_irq_enter
0.09% sqlite3MemSize
0.09% source_load
... 26 lines ...

0.03% __queue_work
0.03% pcache1Fetch
0.03% kmem_cache_free
0.03% update_cfs_rq_blocked_load
0.03% pthreadMutexLeave
0.03% sqlite3MemMalloc

(b) Perf’s output for SQLite before optimizations.

Figure 7: COZ and perf output for SQLite before optimizations.
The three lines in the causal profile correspond to the function
prologues for sqlite3MemSize, pthreadMutexLeave, and
pcache1Fetch. A small optimization to each of these lines will
improve program performance, but beyond about a 25% speedup,
COZ predicts that the optimization would actually lead to a slow-
down. Changing indirect calls into direct calls for these functions
improved overall performance by 25.6%± 1.0%.

load, where each thread rapidly inserts rows to its own private
table. While this benchmark is synthetic, it exposes any scal-
ability bottlenecks in the database engine itself because all
threads should theoretically operate independently. We placed
a progress point in the benchmark itself (which is linked with
the database), which executes after each insertion.

COZ identified three important optimization opportunities,
shown in Figure 7a. At startup, SQLite populates a large
number of structs with function pointers to implementation-
specific functions, but most of these functions are only ever
given a default value determined by compile-time options.
The three functions COZ identified unlock a standard pthread
mutex, retrieve the next item from a shared page cache, and
get the size of an allocated object. These simple functions do
very little work, so the overhead of the indirect function call
is relatively high. Replacing these indirect calls with direct
calls resulted in a 25.60%± 1.00% speedup.

Comparison with conventional profilers. Unfortunately,
running SQLite with gprof segfaults immediately. The ap-
plication does run with the Linux perf tool, which reports
that the three functions COZ identified account for a total of
just 0.15% of total runtime (shown in Figure 7b). Using perf,



a developer would be misled into thinking that optimizing
these functions would be a waste of time. COZ accurately
shows that the opposite is true: optimizing these functions
has a dramatic impact on performance.

4.2.4 Case Study: fluidanimate
The fluidanimate benchmark, also provided by Intel, is a phys-
ical simulation of an incompressible fluid for animation. The
application spawns worker threads that execute in eight con-
current phases, separated by a barrier. We placed a progress
point immediately after the barrier, so it executes each time
all threads complete a phase of the computation.

COZ identifies a single modest potential speedup in the
thread creation code, but there was no obvious way to speed
up this code. However, COZ also identified two significant
points of contention, indicated by a downward sloping causal
profile. Figure 8 shows COZ’s output for these two lines.
This result tells us that optimizing the indicated line of code
would actually slow down the program, rather than speed
it up. Both lines COZ identifies are in a custom barrier
implementation, immediately before entering a loop that
repeatedly calls pthread mutex trylock. Removing
this spinning from the barrier would reduce the contention,
but it was simpler to replace the custom barrier with the
default pthread barrier implementation. This one line
change led to a 37.5%± 0.56% speedup.

4.2.5 Case Study: streamcluster
The streamcluster benchmark performs online clustering of
streaming data. As with fluidanimate, worker threads execute
in concurrent phases separated by a custom barrier, where
we placed a progress point. COZ identified a call to a ran-
dom number generator as a potential line for optimization.
Replacing this call with a lightweight random number gen-
erator had a modest effect on performance (˜2% speedup).
As with fluidanimate, COZ highlighted the custom barrier
implementation as a major source of contention. Replacing
this barrier with the default pthread barrier led to a
68.4%± 1.12% speedup.

4.2.6 Case Study: Memcached
Memcached is a widely-used in-memory caching system. To
evaluate cache performance, we ran a benchmark ported from
the Redis performance benchmark. This program spawns 50
parallel clients that collectively issue 100,000 SET and GET
requests for randomly chosen keys. We placed a progress
point at the end of the process command function, which
handles each client request.

Most of the lines COZ identifies are cases of contention,
with a characteristic downward-sloping causal profile plot.
One such line is at the start of item remove, which locks
an item in the cache and then decrements its reference
count, freeing it if the count goes to zero. To reduce lock
initialization overhead, Memcached uses a static array of
locks to protect items, where each item selects its lock

Causal Profile for fluidanimate
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Figure 8: COZ output for fluidanimate, prior to optimiza-
tion. COZ finds evidence of contention in two lines in
parsec barrier.cpp, the custom barrier implementation used
by both fluidanimate and streamcluster. This causal profile reports
that optimizing either line will slow down the application, not speed
it up. These lines precede calls to pthread mutex trylock on
a contended mutex. Optimizing this code would increase contention
on the mutex and interfere with the application’s progress. Replac-
ing this inefficient barrier implementation sped up fluidanimate and
streamcluster by 37.5% and 68.4% respectively.

using a hash of its key. Consequently, locking any one item
can potentially contend with independent accesses to other
items whose keys happen to hash to the same lock index.
Because reference counts are updated atomically, we can
safely remove the lock from this function, which resulted in
a 9.39%± 0.95% speedup.

4.2.7 Case Study: blackscholes
The blackscholes benchmark, provided by Intel, solves the
Black–Scholes differential equation to price a portfolio of
stock options. We placed a progress point after each thread
completes one round of the iterative approximation to the dif-
ferential equation (blackscholes.c:259). COZ identi-
fies many lines in the CNDF and BlkSchlsEqEuroNoDiv
functions that would have a small impact if optimized. This
same code was identified as a bottleneck by ParaShares [26];
this is the only optimization we describe here that was pre-
viously reported. This block of code performs the main
numerical work of the program, and uses many temporary
variables to break apart the complex computation. Manu-
ally eliminating common subexpressions and combining 61
piecewise calculations into 4 larger expressions resulted in a
2.56%± 0.41% program speedup.

4.2.8 Case Study: swaptions
The swaptions benchmark is a Monte Carlo pricing algorithm
for swaptions, a type of financial derivative. Like blackscholes
and fluidanimate, this program was developed by Intel. We
placed a progress point after each iteration of the main loop ex-
ecuted by worker threads (HJM Securities.cpp:99).

COZ identified three significant optimization opportunities,
all inside nested loops over a large multidimensional array.
One of these loops zeroed out consecutive values. A second
loop filled part of the same large array with values from
a distribution function, with no obvious opportunities for



Results for Unoptimized Applications
Benchmark Progress Point Top Optimization

bodytrack TicketDispenser.h:106 ParticleFilter.h:262

canneal annealer thread.cpp:87 netlist elem.cpp:82

facesim taskQDistCommon.c:109 MATRIX 3X3.h:136

freqmine fp tree.cpp:383 fp tree.cpp:301

raytrace BinnedAllDims...:98 RTEmulatedSSE.hxx:784

vips threadgroup.c:360 im Lab2LabQ.c:98

x264 encoder.c:1165 common.c:687

Table 4: The locations of inserted progress points for the remaining
PARSEC benchmarks, and the top optimization opportunities that
COZ identifies. The progress point for raytrace was placed on line
98 of BinnedAllDimsSaveSpace.cxx.

optimization. The third nested loop iterated over the same
array again, but traversed the dimensions in an irregular order.
Reordering these loops and replacing the first loop with a call
to memset sped execution by 15.8%± 1.10%.

Effectiveness Summary. Our case studies confirm that
COZ is effective at identifying optimization opportunities
and guiding performance tuning. In every case, the informa-
tion COZ provided led us directly to the optimization we
implemented. In most cases, COZ identified around 20 lines
of interest, with as many as 50 for larger programs (Mem-
cached and x264). COZ identified optimization opportunities
in all of the PARSEC benchmarks, but some required more
invasive changes that are out of scope for this paper. Table 4
summarizes our findings for the remaining PARSEC bench-
marks. We have submitted patches to the developers of all
the applications we optimized.

4.3 Accuracy
For most of the optimizations described above, it is not
possible to quantify the effect our optimization had on the
specific lines that COZ identified. However, for two of our
case studies—ferret and dedup—we can directly compute
the effect our optimization had on the line COZ identified
and compare the resulting speedup to COZ’s predictions. Our
results show that COZ’s predictions are highly accurate.

To optimize ferret, we increased the number of threads
for the indexing stage from 16 to 22, which increases the
throughput of line 320 by 27%. COZ predicted that this
improvement would result in a 21.4% program speedup,
which is nearly the same as the 21.2% we observe.

For dedup, COZ identified the top of the while loop
that traverses a hash bucket’s linked list. By replacing the
degenerate hash function, we reduced the average number
of elements in each hash bucket from 76.7 to just 2.09. This
change reduces the number of iterations from 77.7 to 3.09
(accounting for the final trip through the loop). This reduction
corresponds to a speedup of the line COZ identified by 96%.
For this speedup, COZ predicted a performance improvement
of 9%, very close to our observed speedup of 8.95%.
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Figure 9: Percent overhead for each of COZ’s possible sources of
overhead. Delays are the overhead due to adding delays for virtual
speedups, Sampling is the cost of collecting and processing samples,
and Startup is the initial cost of processing debugging information.
Note that sampling results in slight performance improvements for
swaptions, vips, and x264.

4.4 Efficiency
We measure COZ’s profiling overhead on the PARSEC bench-
marks running with the native inputs. The sole exception is
streamcluster, where we use the test inputs because execution
time was excessive with the native inputs.

Figure 9 breaks down the total overhead of running COZ
on each of the PARSEC benchmarks by category. The average
overhead with COZ is 17.6%. COZ collects debug information
at startup, which contributes 2.6% to the average overhead.
Sampling during program execution and attributing these
samples to lines using debug information is responsible
for 4.8% of the average overhead. The remaining overhead
(10.2%) comes from the delays COZ inserts to perform virtual
speedups.

These results were collected by running each benchmark
in four configurations. First, each program was run without
COZ to measure a baseline execution time. In the second
configuration, each program was run with COZ, but execution
terminated immediately after startup work was completed.
Third, programs were run with COZ configured to sample
the program’s execution but not to insert delays (effectively
testing only virtual speedups of size zero). Finally, each
program was run with COZ fully enabled. The difference
in execution time between each successive configuration give
us the startup, sampling, and delay overheads, respectively.

Reducing overhead. Most programs have sufficiently long
running times (mean: 103s) to amortize the cost of processing
debug information, but especially large executables can be
expensive to process at startup (x264 and vips, for exam-
ple). COZ could be modified to collect and process debug
information lazily to reduce startup overhead. Sampling over-
head comes mainly from starting and stopping sampling with
the perf event API at thread creation and exit. This cost
could be amortized by sampling globally instead of per-thread,



which would require root permissions on most machines. If
the perf event API supported sampling all threads in a
process this overhead could be eliminated. Delay overhead,
the largest component of COZ’s total overhead, could be re-
duced by allowing programs to execute normally for some
time between each experiment. Increasing the time between
experiments would significantly reduce overhead, but a longer
profiling run would be required to collect a usable profile.

Efficiency summary. COZ’s profiling overhead is on aver-
age 17.6% (minimum: 0.1%, maximum: 65%). For all but
three of the benchmarks, its overhead was under 30%. Given
that the widely used gprof profiler can impose much higher
overhead (e.g., 6× for ferret, versus 6% with COZ), these
results confirm that COZ has sufficiently low overhead to be
used in practice.

5. Related Work
Causal profiling identifies and quantifies optimization oppor-
tunities, while most past work on profilers has focused on
collecting detailed (though not necessarily actionable) infor-
mation with low overhead.

5.1 General-Purpose Profilers
General-purpose profilers are typically implemented using
instrumentation, sampling, or both. Systems based on sam-
pling (including causal profiling) can arbitrarily reduce probe
effect, although sampling must be unbiased [35].

The UNIX prof tool and oprofile both use sampling ex-
clusively [29, 42]. Oprofile can sample using a variety of
hardware performance counters, which can be used to iden-
tify cache-hostile code, poorly predicted branches, and other
hardware bottlenecks. Gprof combines instrumentation and
sampling to measure execution time [17]. Gprof produces
a call graph profile, which counts invocations of functions
segregated by caller. Cho, Moseley, et al. reduce the overhead
of Gprof’s call-graph profiling by interleaving instrumented
and un-instrumented execution [9]. Path profilers add further
detail, counting executions of each path through a procedure,
or across procedures [2, 6].

5.2 Parallel Profilers
Past work on parallel profiling has focused on identifying
the critical path or bottlenecks, although optimizing the crit-
ical path or removing the bottleneck may not significantly
improve program performance.

Critical path profiling. IPS uses traces from message-
passing programs to identify the critical path, and reports
the amount of time each procedure contributes to the critical
path [34]. IPS-2 extends this approach with limited sup-
port for shared memory parallelism [33, 44]. Other critical
path profilers rely on languages with first-class threads and
synchronization to identify the critical path [21, 37, 40]. Iden-
tifying the critical path helps developers find code where

optimizations will have some impact, but these approaches
to not give developers any information about how much per-
formance gain is possible before the critical path changes.
Hollingsworth and Miller introduce two new metrics to ap-
proximate optimization potential: slack, how much a proce-
dure can be improved before the critical path changes; and
logical zeroing, the reduction in critical path length when
a procedure is completely removed [22]. These metrics are
similar to the optimization potential measured by a causal
profiler, but can only be computed with a complete program
activity graph. Collection of a program activity graph is
costly, and could introduce significant probe effect.

Bottleneck identification. Several approaches have used
hardware performance counters to identify hardware-level
performance bottlenecks [8, 12, 32]. Techniques based on
binary instrumentation can identify cache and heap perfor-
mance issues, contended locks, and other program hotspots [5,
31, 36]. ParaShares and Harmony identify basic blocks that
run during periods with little or no parallelism [25, 26]. Code
identified by these tools is a good candidate for parallelization
or classic serial optimizations. Bottlenecks, a profile analysis
tool, uses heuristics to identify bottlenecks using call-tree
profiles [3]. Given call-tree profiles for different executions,
Bottlenecks can pinpoint which procedures are responsible
for the difference in performance. The FreeLunch profiler
and Visual Studio’s contention profiler identify locks that are
responsible for significant thread blocking time [11, 16]. BIS
uses similar techniques to identify highly contended critical
sections on asymmetric multiprocessors, and automatically
migrates performance-critical code to faster cores [24]. Bottle
graphs present thread execution time and parallelism in a vi-
sual format that highlights program bottlenecks [13]. Unlike
causal profiling, these tools do not predict the performance
impact of removing bottlenecks. All these systems can only
identify bottlenecks that arise from explicit thread commu-
nication, while causal profiling can measure parallel perfor-
mance problems from any source, including cache coherence
protocols, scheduling dependencies, and I/O.

Profiling for parallelization and scalability. Several sys-
tems have been developed to measure potential parallelism in
serial programs [15, 43, 45]. Like causal profiling, these sys-
tems identify code that will benefit from developer time. Un-
like causal profiling, these tools are not aimed at diagnosing
performance issues in code that has already been parallelized.

Kulkarni, Pai, and Schuff present general metrics for avail-
able parallelism and scalability [28]. The Cilkview scalabil-
ity analyzer uses performance models for Cilk’s constrained
parallelism to estimate the performance effect of adding ad-
ditional hardware threads [20]. Causal profiling can detect
performance problems that result from poor scaling on the
current hardware platform.

Time attribution profilers. Time attribution profilers assign
“blame” to concurrently executing code based on what other



threads are doing. Quartz introduces the notion of “normal-
ized processor time,” which assigns high cost to code that
runs while a large fraction of other threads are blocked [4].
CPPROFJ extends this approach to Java programs with as-
pects [19]. CPPROFJ uses finer categories for time: running,
blocked for a higher-priority thread, waiting on a monitor,
and blocked on other events. Tallent and Mellor-Crummey
extend this approach further to support Cilk programs, with
an added category for time spent managing parallelism [41].
The WAIT tool adds fine-grained categorization to identify
bottlenecks in large-scale production Java systems [1]. Unlike
causal profiling, these profilers can only capture interference
between threads that directly affects their scheduler state.

5.3 Performance Guidance and Experimentation
Several systems have employed delays to extract informa-
tion about program execution times. Mytkowicz et al. use
delays to validate the output of profilers on single-threaded
Java programs [35]. Snelick, JáJá et al. use delays to profile
parallel programs [38]. This approach measures the effect of
slowdowns in combination, which requires a complete exe-
cution of the program for each of an exponential number of
configurations. Active Dependence Discovery (ADD) intro-
duces performance perturbations to distributed systems and
measures their impact on response time [7]. ADD requires a
complete enumeration of system components, and requires
developers to insert performance perturbations manually. Gu-
nawi, Agrawal et al. use delays to identify causal dependen-
cies between events in the EMC Centera storage system to
analyze Centera’s protocols and policies [18]. Song and Lu
use machine learning to identify performance anti-patterns in
source code [39]. Unlike causal profiling, these approaches
do not predict the effect of potential optimizations.

6. Conclusion
Profilers are the primary tool in the programmer’s toolbox for
identifying performance tuning opportunities. Previous pro-
filers only observe actual executions and correlate code with
execution time or performance counters. This information
can be of limited use because the amount of time spent does
not necessarily correspond to where programmers should fo-
cus their optimization efforts. Past profilers are also limited to
reporting end-to-end execution time, an unimportant quantity
for servers and interactive applications whose key metrics of
interest are throughput and latency. Causal profiling is a new,
experiment-based approach that establishes causal relation-
ships between hypothetical optimizations and their effects. By
virtually speeding up lines of code, causal profiling identifies
and quantifies the impact on either throughput or latency of
any degree of optimization to any line of code. Our prototype
causal profiler, COZ, is efficient, accurate, and effective at
guiding optimization efforts.
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