Merge branch 'trunk' into space-in-pattern

This commit is contained in:
Richard Feldman 2021-02-02 00:04:27 -05:00 committed by GitHub
commit 1ae3b99b32
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 127 additions and 15166 deletions

View File

@ -1,5 +1,5 @@
const std = @import("std");
const str = @import("str.zig");
const str = @import("str");
const RocStr = str.RocStr;
const testing = std.testing;
const expectEqual = testing.expectEqual;

View File

@ -1,818 +0,0 @@
const std = @import("std");
const mem = std.mem;
const always_inline = std.builtin.CallOptions.Modifier.always_inline;
const Allocator = mem.Allocator;
const unicode = std.unicode;
const testing = std.testing;
const expectEqual = testing.expectEqual;
const expect = testing.expect;
const InPlace = packed enum(u8) {
InPlace,
Clone,
};
pub const RocStr = extern struct {
str_bytes: ?[*]u8,
str_len: usize,
pub inline fn empty() RocStr {
return RocStr{
.str_len = 0,
.str_bytes = null,
};
}
// This clones the pointed-to bytes if they won't fit in a
// small string, and returns a (pointer, len) tuple which points to them.
pub fn init(allocator: *Allocator, bytes_ptr: [*]const u8, length: usize) RocStr {
const roc_str_size = @sizeOf(RocStr);
if (length < roc_str_size) {
var ret_small_str = RocStr.empty();
const target_ptr = @ptrToInt(&ret_small_str);
var index: u8 = 0;
// TODO isn't there a way to bulk-zero data in Zig?
// Zero out the data, just to be safe
while (index < roc_str_size) {
var offset_ptr = @intToPtr(*u8, target_ptr + index);
offset_ptr.* = 0;
index += 1;
}
// TODO rewrite this into a for loop
index = 0;
while (index < length) {
var offset_ptr = @intToPtr(*u8, target_ptr + index);
offset_ptr.* = bytes_ptr[index];
index += 1;
}
// set the final byte to be the length
const final_byte_ptr = @intToPtr(*u8, target_ptr + roc_str_size - 1);
final_byte_ptr.* = @truncate(u8, length) ^ 0b10000000;
return ret_small_str;
} else {
var result = RocStr.initBig(allocator, u64, InPlace.Clone, length);
@memcpy(@ptrCast([*]u8, result.str_bytes), bytes_ptr, length);
return result;
}
}
pub fn initBig(allocator: *Allocator, comptime T: type, in_place: InPlace, number_of_chars: u64) RocStr {
const length = @sizeOf(T) + number_of_chars;
var new_bytes: []T = allocator.alloc(T, length) catch unreachable;
if (in_place == InPlace.InPlace) {
new_bytes[0] = @intCast(T, number_of_chars);
} else {
new_bytes[0] = std.math.minInt(T);
}
var first_element = @ptrCast([*]align(@alignOf(T)) u8, new_bytes);
first_element += @sizeOf(usize);
return RocStr{
.str_bytes = first_element,
.str_len = number_of_chars,
};
}
pub fn deinit(self: RocStr, allocator: *Allocator) void {
if (!self.isSmallStr() and !self.isEmpty()) {
const str_bytes_ptr: [*]u8 = self.str_bytes orelse unreachable;
// must include refcount
const str_bytes: []u8 = (str_bytes_ptr - 8)[0 .. self.str_len + 8];
allocator.free(str_bytes);
}
}
// This takes ownership of the pointed-to bytes if they won't fit in a
// small string, and returns a (pointer, len) tuple which points to them.
pub fn withCapacity(length: usize) RocStr {
const roc_str_size = @sizeOf(RocStr);
if (length < roc_str_size) {
return RocStr.empty();
} else {
var new_bytes: []T = allocator.alloc(u8, length) catch unreachable;
var new_bytes_ptr: [*]u8 = @ptrCast([*]u8, &new_bytes);
return RocStr{
.str_bytes = new_bytes_ptr,
.str_len = length,
};
}
}
pub fn eq(self: RocStr, other: RocStr) bool {
const self_bytes_ptr: ?[*]const u8 = self.str_bytes;
const other_bytes_ptr: ?[*]const u8 = other.str_bytes;
// If they are byte-for-byte equal, they're definitely equal!
if (self_bytes_ptr == other_bytes_ptr and self.str_len == other.str_len) {
return true;
}
const self_len = self.len();
const other_len = other.len();
// If their lengths are different, they're definitely unequal.
if (self_len != other_len) {
return false;
}
const self_u8_ptr: [*]const u8 = @ptrCast([*]const u8, &self);
const other_u8_ptr: [*]const u8 = @ptrCast([*]const u8, &other);
const self_bytes: [*]const u8 = if (self.isSmallStr() or self.isEmpty()) self_u8_ptr else self_bytes_ptr orelse unreachable;
const other_bytes: [*]const u8 = if (other.isSmallStr() or other.isEmpty()) other_u8_ptr else other_bytes_ptr orelse unreachable;
var index: usize = 0;
// TODO rewrite this into a for loop
const length = self.len();
while (index < length) {
if (self_bytes[index] != other_bytes[index]) {
return false;
}
index = index + 1;
}
return true;
}
pub fn clone(allocator: *Allocator, comptime T: type, in_place: InPlace, str: RocStr) RocStr {
if (str.isSmallStr() or str.isEmpty()) {
// just return the bytes
return str;
} else {
var new_str = RocStr.initBig(allocator, T, in_place, str.str_len);
var old_bytes: [*]u8 = @ptrCast([*]u8, str.str_bytes);
var new_bytes: [*]u8 = @ptrCast([*]u8, new_str.str_bytes);
@memcpy(new_bytes, old_bytes, str.str_len);
return new_str;
}
}
pub fn isSmallStr(self: RocStr) bool {
return @bitCast(isize, self.str_len) < 0;
}
pub fn len(self: RocStr) usize {
const bytes: [*]const u8 = @ptrCast([*]const u8, &self);
const last_byte = bytes[@sizeOf(RocStr) - 1];
const small_len = @as(usize, last_byte ^ 0b1000_0000);
const big_len = self.str_len;
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return if (self.isSmallStr()) small_len else big_len;
}
pub fn isEmpty(self: RocStr) bool {
return self.len() == 0;
}
pub fn asSlice(self: RocStr) []u8 {
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return self.asU8ptr()[0..self.len()];
}
pub fn asU8ptr(self: RocStr) [*]u8 {
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return if (self.isSmallStr() or self.isEmpty()) (&@bitCast([16]u8, self)) else (@ptrCast([*]u8, self.str_bytes));
}
// Given a pointer to some bytes, write the first (len) bytes of this
// RocStr's contents into it.
//
// One use for this function is writing into an `alloca` for a C string that
// only needs to live long enough to be passed as an argument to
// a C function - like the file path argument to `fopen`.
pub fn memcpy(self: RocStr, dest: [*]u8, length: usize) void {
const src = self.asU8ptr();
@memcpy(dest, src, length);
}
test "RocStr.eq: equal" {
const str1_len = 3;
var str1: [str1_len]u8 = "abc".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
expect(roc_str1.eq(roc_str2));
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
test "RocStr.eq: not equal different length" {
const str1_len = 4;
var str1: [str1_len]u8 = "abcd".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
expect(!roc_str1.eq(roc_str2));
}
test "RocStr.eq: not equal same length" {
const str1_len = 3;
var str1: [str1_len]u8 = "acb".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
expect(!roc_str1.eq(roc_str2));
}
};
// Str.equal
pub fn strEqual(self: RocStr, other: RocStr) callconv(.C) bool {
return self.eq(other);
}
// Str.numberOfBytes
pub fn strNumberOfBytes(string: RocStr) callconv(.C) usize {
return string.len();
}
// Str.fromInt
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strFromIntC(int: i64) callconv(.C) RocStr {
return strFromInt(std.heap.c_allocator, int);
}
fn strFromInt(allocator: *Allocator, int: i64) RocStr {
// prepare for having multiple integer types in the future
return @call(.{ .modifier = always_inline }, strFromIntHelp, .{ allocator, i64, int });
}
fn strFromIntHelp(allocator: *Allocator, comptime T: type, int: T) RocStr {
// determine maximum size for this T
comptime const size = comptime blk: {
// the string representation of the minimum i128 value uses at most 40 characters
var buf: [40]u8 = undefined;
var result = std.fmt.bufPrint(&buf, "{}", .{std.math.minInt(T)}) catch unreachable;
break :blk result.len;
};
var buf: [size]u8 = undefined;
const result = std.fmt.bufPrint(&buf, "{}", .{int}) catch unreachable;
return RocStr.init(allocator, &buf, result.len);
}
// Str.split
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strSplitInPlaceC(array: [*]RocStr, string: RocStr, delimiter: RocStr) callconv(.C) void {
return @call(.{ .modifier = always_inline }, strSplitInPlace, .{ std.heap.c_allocator, array, string, delimiter });
}
fn strSplitInPlace(allocator: *Allocator, array: [*]RocStr, string: RocStr, delimiter: RocStr) void {
var ret_array_index: usize = 0;
var slice_start_index: usize = 0;
var str_index: usize = 0;
const str_bytes = string.asU8ptr();
const str_len = string.len();
const delimiter_bytes_ptrs = delimiter.asU8ptr();
const delimiter_len = delimiter.len();
if (str_len > delimiter_len) {
const end_index: usize = str_len - delimiter_len + 1;
while (str_index <= end_index) {
var delimiter_index: usize = 0;
var matches_delimiter = true;
while (delimiter_index < delimiter_len) {
var delimiterChar = delimiter_bytes_ptrs[delimiter_index];
var strChar = str_bytes[str_index + delimiter_index];
if (delimiterChar != strChar) {
matches_delimiter = false;
break;
}
delimiter_index += 1;
}
if (matches_delimiter) {
const segment_len: usize = str_index - slice_start_index;
array[ret_array_index] = RocStr.init(allocator, str_bytes + slice_start_index, segment_len);
slice_start_index = str_index + delimiter_len;
ret_array_index += 1;
str_index += delimiter_len;
} else {
str_index += 1;
}
}
}
array[ret_array_index] = RocStr.init(allocator, str_bytes + slice_start_index, str_len - slice_start_index);
}
test "strSplitInPlace: no delimiter" {
// Str.split "abc" "!" == [ "abc" ]
const str_arr = "abc";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
var array: [1]RocStr = undefined;
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
var expected = [1]RocStr{
str,
};
defer {
for (array) |roc_str| {
roc_str.deinit(testing.allocator);
}
for (expected) |roc_str| {
roc_str.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
}
test "strSplitInPlace: empty end" {
const str_arr = "1---- ---- ---- ---- ----2---- ---- ---- ---- ----";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "---- ---- ---- ---- ----";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = [_]RocStr{
undefined,
undefined,
undefined,
};
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const one = RocStr.init(testing.allocator, "1", 1);
const two = RocStr.init(testing.allocator, "2", 1);
var expected = [3]RocStr{
one, two, RocStr.empty(),
};
defer {
for (array) |rocStr| {
rocStr.deinit(testing.allocator);
}
for (expected) |rocStr| {
rocStr.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
expect(array[1].eq(expected[1]));
expect(array[2].eq(expected[2]));
}
test "strSplitInPlace: delimiter on sides" {
const str_arr = "tttghittt";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "ttt";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = [_]RocStr{
undefined,
undefined,
undefined,
};
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const ghi_arr = "ghi";
const ghi = RocStr.init(testing.allocator, ghi_arr, ghi_arr.len);
var expected = [3]RocStr{
RocStr.empty(), ghi, RocStr.empty(),
};
defer {
for (array) |rocStr| {
rocStr.deinit(testing.allocator);
}
for (expected) |rocStr| {
rocStr.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
expect(array[1].eq(expected[1]));
expect(array[2].eq(expected[2]));
}
test "strSplitInPlace: three pieces" {
// Str.split "a!b!c" "!" == [ "a", "b", "c" ]
const str_arr = "a!b!c";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = undefined;
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const a = RocStr.init(testing.allocator, "a", 1);
const b = RocStr.init(testing.allocator, "b", 1);
const c = RocStr.init(testing.allocator, "c", 1);
var expected_array = [array_len]RocStr{
a, b, c,
};
defer {
for (array) |roc_str| {
roc_str.deinit(testing.allocator);
}
for (expected_array) |roc_str| {
roc_str.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(expected_array.len, array.len);
expect(array[0].eq(expected_array[0]));
expect(array[1].eq(expected_array[1]));
expect(array[2].eq(expected_array[2]));
}
// This is used for `Str.split : Str, Str -> Array Str
// It is used to count how many segments the input `_str`
// needs to be broken into, so that we can allocate a array
// of that size. It always returns at least 1.
pub fn countSegments(string: RocStr, delimiter: RocStr) callconv(.C) usize {
const str_bytes = string.asU8ptr();
const str_len = string.len();
const delimiter_bytes_ptrs = delimiter.asU8ptr();
const delimiter_len = delimiter.len();
var count: usize = 1;
if (str_len > delimiter_len) {
var str_index: usize = 0;
const end_cond: usize = str_len - delimiter_len + 1;
while (str_index < end_cond) {
var delimiter_index: usize = 0;
var matches_delimiter = true;
while (delimiter_index < delimiter_len) {
const delimiterChar = delimiter_bytes_ptrs[delimiter_index];
const strChar = str_bytes[str_index + delimiter_index];
if (delimiterChar != strChar) {
matches_delimiter = false;
break;
}
delimiter_index += 1;
}
if (matches_delimiter) {
count += 1;
}
str_index += 1;
}
}
return count;
}
test "countSegments: long delimiter" {
// Str.split "str" "delimiter" == [ "str" ]
// 1 segment
const str_arr = "str";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "delimiter";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 1);
}
test "countSegments: delimiter at start" {
// Str.split "hello there" "hello" == [ "", " there" ]
// 2 segments
const str_arr = "hello there";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "hello";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 2);
}
test "countSegments: delimiter interspered" {
// Str.split "a!b!c" "!" == [ "a", "b", "c" ]
// 3 segments
const str_arr = "a!b!c";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 3);
}
fn rocStrFromLiteral(bytes_arr: *const []u8) RocStr {}
// Str.startsWith
pub fn startsWith(string: RocStr, prefix: RocStr) callconv(.C) bool {
const bytes_len = string.len();
const bytes_ptr = string.asU8ptr();
const prefix_len = prefix.len();
const prefix_ptr = prefix.asU8ptr();
if (prefix_len > bytes_len) {
return false;
}
// we won't exceed bytes_len due to the previous check
var i: usize = 0;
while (i < prefix_len) {
if (bytes_ptr[i] != prefix_ptr[i]) {
return false;
}
i += 1;
}
return true;
}
test "startsWith: foo starts with fo" {
const foo = RocStr.init(testing.allocator, "foo", 3);
const fo = RocStr.init(testing.allocator, "fo", 2);
expect(startsWith(foo, fo));
}
test "startsWith: 123456789123456789 starts with 123456789123456789" {
const str = RocStr.init(testing.allocator, "123456789123456789", 18);
defer str.deinit(testing.allocator);
expect(startsWith(str, str));
}
test "startsWith: 12345678912345678910 starts with 123456789123456789" {
const str = RocStr.init(testing.allocator, "12345678912345678910", 20);
defer str.deinit(testing.allocator);
const prefix = RocStr.init(testing.allocator, "123456789123456789", 18);
defer prefix.deinit(testing.allocator);
expect(startsWith(str, prefix));
}
// Str.endsWith
pub fn endsWith(string: RocStr, suffix: RocStr) callconv(.C) bool {
const bytes_len = string.len();
const bytes_ptr = string.asU8ptr();
const suffix_len = suffix.len();
const suffix_ptr = suffix.asU8ptr();
if (suffix_len > bytes_len) {
return false;
}
const offset: usize = bytes_len - suffix_len;
var i: usize = 0;
while (i < suffix_len) {
if (bytes_ptr[i + offset] != suffix_ptr[i]) {
return false;
}
i += 1;
}
return true;
}
test "endsWith: foo ends with oo" {
const foo = RocStr.init(testing.allocator, "foo", 3);
const oo = RocStr.init(testing.allocator, "oo", 2);
defer foo.deinit(testing.allocator);
defer oo.deinit(testing.allocator);
expect(endsWith(foo, oo));
}
test "endsWith: 123456789123456789 ends with 123456789123456789" {
const str = RocStr.init(testing.allocator, "123456789123456789", 18);
defer str.deinit(testing.allocator);
expect(endsWith(str, str));
}
test "endsWith: 12345678912345678910 ends with 345678912345678910" {
const str = RocStr.init(testing.allocator, "12345678912345678910", 20);
const suffix = RocStr.init(testing.allocator, "345678912345678910", 18);
defer str.deinit(testing.allocator);
defer suffix.deinit(testing.allocator);
expect(endsWith(str, suffix));
}
test "endsWith: hello world ends with world" {
const str = RocStr.init(testing.allocator, "hello world", 11);
const suffix = RocStr.init(testing.allocator, "world", 5);
defer str.deinit(testing.allocator);
defer suffix.deinit(testing.allocator);
expect(endsWith(str, suffix));
}
// Str.concat
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strConcatC(ptr_size: u32, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) callconv(.C) RocStr {
return @call(.{ .modifier = always_inline }, strConcat, .{ std.heap.c_allocator, ptr_size, result_in_place, arg1, arg2 });
}
fn strConcat(allocator: *Allocator, ptr_size: u32, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) RocStr {
return switch (ptr_size) {
4 => strConcatHelp(allocator, i32, result_in_place, arg1, arg2),
8 => strConcatHelp(allocator, i64, result_in_place, arg1, arg2),
else => unreachable,
};
}
fn strConcatHelp(allocator: *Allocator, comptime T: type, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) RocStr {
if (arg1.isEmpty()) {
return RocStr.clone(allocator, T, result_in_place, arg2);
} else if (arg2.isEmpty()) {
return RocStr.clone(allocator, T, result_in_place, arg1);
} else {
const combined_length = arg1.len() + arg2.len();
const small_str_bytes = 2 * @sizeOf(T);
const result_is_big = combined_length >= small_str_bytes;
if (result_is_big) {
var result = RocStr.initBig(allocator, T, result_in_place, combined_length);
{
const old_bytes = arg1.asU8ptr();
const new_bytes: [*]u8 = @ptrCast([*]u8, result.str_bytes);
@memcpy(new_bytes, old_bytes, arg1.len());
}
{
const old_bytes = arg2.asU8ptr();
const new_bytes = @ptrCast([*]u8, result.str_bytes) + arg1.len();
@memcpy(new_bytes, old_bytes, arg2.len());
}
return result;
} else {
var result = [16]u8{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
// if the result is small, then for sure arg1 and arg2 are also small
{
var old_bytes: [*]u8 = @ptrCast([*]u8, &@bitCast([16]u8, arg1));
var new_bytes: [*]u8 = @ptrCast([*]u8, &result);
@memcpy(new_bytes, old_bytes, arg1.len());
}
{
var old_bytes: [*]u8 = @ptrCast([*]u8, &@bitCast([16]u8, arg2));
var new_bytes = @ptrCast([*]u8, &result) + arg1.len();
@memcpy(new_bytes, old_bytes, arg2.len());
}
const mask: u8 = 0b1000_0000;
const final_byte = @truncate(u8, combined_length) | mask;
result[small_str_bytes - 1] = final_byte;
return @bitCast(RocStr, result);
}
return result;
}
}
test "RocStr.concat: small concat small" {
const str1_len = 3;
var str1: [str1_len]u8 = "foo".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
const str3_len = 6;
var str3: [str3_len]u8 = "fooabc".*;
const str3_ptr: [*]u8 = &str3;
var roc_str3 = RocStr.init(testing.allocator, str3_ptr, str3_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
roc_str3.deinit(testing.allocator);
}
const result = strConcat(testing.allocator, 8, InPlace.Clone, roc_str1, roc_str2);
defer result.deinit(testing.allocator);
expect(roc_str3.eq(result));
}

View File

@ -1,5 +1,5 @@
const std = @import("std");
const str = @import("str.zig");
const str = @import("str");
const RocStr = str.RocStr;
const testing = std.testing;
const expectEqual = testing.expectEqual;

View File

@ -1,818 +0,0 @@
const std = @import("std");
const mem = std.mem;
const always_inline = std.builtin.CallOptions.Modifier.always_inline;
const Allocator = mem.Allocator;
const unicode = std.unicode;
const testing = std.testing;
const expectEqual = testing.expectEqual;
const expect = testing.expect;
const InPlace = packed enum(u8) {
InPlace,
Clone,
};
pub const RocStr = extern struct {
str_bytes: ?[*]u8,
str_len: usize,
pub inline fn empty() RocStr {
return RocStr{
.str_len = 0,
.str_bytes = null,
};
}
// This clones the pointed-to bytes if they won't fit in a
// small string, and returns a (pointer, len) tuple which points to them.
pub fn init(allocator: *Allocator, bytes_ptr: [*]const u8, length: usize) RocStr {
const roc_str_size = @sizeOf(RocStr);
if (length < roc_str_size) {
var ret_small_str = RocStr.empty();
const target_ptr = @ptrToInt(&ret_small_str);
var index: u8 = 0;
// TODO isn't there a way to bulk-zero data in Zig?
// Zero out the data, just to be safe
while (index < roc_str_size) {
var offset_ptr = @intToPtr(*u8, target_ptr + index);
offset_ptr.* = 0;
index += 1;
}
// TODO rewrite this into a for loop
index = 0;
while (index < length) {
var offset_ptr = @intToPtr(*u8, target_ptr + index);
offset_ptr.* = bytes_ptr[index];
index += 1;
}
// set the final byte to be the length
const final_byte_ptr = @intToPtr(*u8, target_ptr + roc_str_size - 1);
final_byte_ptr.* = @truncate(u8, length) ^ 0b10000000;
return ret_small_str;
} else {
var result = RocStr.initBig(allocator, u64, InPlace.Clone, length);
@memcpy(@ptrCast([*]u8, result.str_bytes), bytes_ptr, length);
return result;
}
}
pub fn initBig(allocator: *Allocator, comptime T: type, in_place: InPlace, number_of_chars: u64) RocStr {
const length = @sizeOf(T) + number_of_chars;
var new_bytes: []T = allocator.alloc(T, length) catch unreachable;
if (in_place == InPlace.InPlace) {
new_bytes[0] = @intCast(T, number_of_chars);
} else {
new_bytes[0] = std.math.minInt(T);
}
var first_element = @ptrCast([*]align(@alignOf(T)) u8, new_bytes);
first_element += @sizeOf(usize);
return RocStr{
.str_bytes = first_element,
.str_len = number_of_chars,
};
}
pub fn deinit(self: RocStr, allocator: *Allocator) void {
if (!self.isSmallStr() and !self.isEmpty()) {
const str_bytes_ptr: [*]u8 = self.str_bytes orelse unreachable;
// must include refcount
const str_bytes: []u8 = (str_bytes_ptr - 8)[0 .. self.str_len + 8];
allocator.free(str_bytes);
}
}
// This takes ownership of the pointed-to bytes if they won't fit in a
// small string, and returns a (pointer, len) tuple which points to them.
pub fn withCapacity(length: usize) RocStr {
const roc_str_size = @sizeOf(RocStr);
if (length < roc_str_size) {
return RocStr.empty();
} else {
var new_bytes: []T = allocator.alloc(u8, length) catch unreachable;
var new_bytes_ptr: [*]u8 = @ptrCast([*]u8, &new_bytes);
return RocStr{
.str_bytes = new_bytes_ptr,
.str_len = length,
};
}
}
pub fn eq(self: RocStr, other: RocStr) bool {
const self_bytes_ptr: ?[*]const u8 = self.str_bytes;
const other_bytes_ptr: ?[*]const u8 = other.str_bytes;
// If they are byte-for-byte equal, they're definitely equal!
if (self_bytes_ptr == other_bytes_ptr and self.str_len == other.str_len) {
return true;
}
const self_len = self.len();
const other_len = other.len();
// If their lengths are different, they're definitely unequal.
if (self_len != other_len) {
return false;
}
const self_u8_ptr: [*]const u8 = @ptrCast([*]const u8, &self);
const other_u8_ptr: [*]const u8 = @ptrCast([*]const u8, &other);
const self_bytes: [*]const u8 = if (self.isSmallStr() or self.isEmpty()) self_u8_ptr else self_bytes_ptr orelse unreachable;
const other_bytes: [*]const u8 = if (other.isSmallStr() or other.isEmpty()) other_u8_ptr else other_bytes_ptr orelse unreachable;
var index: usize = 0;
// TODO rewrite this into a for loop
const length = self.len();
while (index < length) {
if (self_bytes[index] != other_bytes[index]) {
return false;
}
index = index + 1;
}
return true;
}
pub fn clone(allocator: *Allocator, comptime T: type, in_place: InPlace, str: RocStr) RocStr {
if (str.isSmallStr() or str.isEmpty()) {
// just return the bytes
return str;
} else {
var new_str = RocStr.initBig(allocator, T, in_place, str.str_len);
var old_bytes: [*]u8 = @ptrCast([*]u8, str.str_bytes);
var new_bytes: [*]u8 = @ptrCast([*]u8, new_str.str_bytes);
@memcpy(new_bytes, old_bytes, str.str_len);
return new_str;
}
}
pub fn isSmallStr(self: RocStr) bool {
return @bitCast(isize, self.str_len) < 0;
}
pub fn len(self: RocStr) usize {
const bytes: [*]const u8 = @ptrCast([*]const u8, &self);
const last_byte = bytes[@sizeOf(RocStr) - 1];
const small_len = @as(usize, last_byte ^ 0b1000_0000);
const big_len = self.str_len;
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return if (self.isSmallStr()) small_len else big_len;
}
pub fn isEmpty(self: RocStr) bool {
return self.len() == 0;
}
pub fn asSlice(self: RocStr) []u8 {
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return self.asU8ptr()[0..self.len()];
}
pub fn asU8ptr(self: RocStr) [*]u8 {
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return if (self.isSmallStr() or self.isEmpty()) (&@bitCast([16]u8, self)) else (@ptrCast([*]u8, self.str_bytes));
}
// Given a pointer to some bytes, write the first (len) bytes of this
// RocStr's contents into it.
//
// One use for this function is writing into an `alloca` for a C string that
// only needs to live long enough to be passed as an argument to
// a C function - like the file path argument to `fopen`.
pub fn memcpy(self: RocStr, dest: [*]u8, length: usize) void {
const src = self.asU8ptr();
@memcpy(dest, src, length);
}
test "RocStr.eq: equal" {
const str1_len = 3;
var str1: [str1_len]u8 = "abc".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
expect(roc_str1.eq(roc_str2));
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
test "RocStr.eq: not equal different length" {
const str1_len = 4;
var str1: [str1_len]u8 = "abcd".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
expect(!roc_str1.eq(roc_str2));
}
test "RocStr.eq: not equal same length" {
const str1_len = 3;
var str1: [str1_len]u8 = "acb".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
expect(!roc_str1.eq(roc_str2));
}
};
// Str.equal
pub fn strEqual(self: RocStr, other: RocStr) callconv(.C) bool {
return self.eq(other);
}
// Str.numberOfBytes
pub fn strNumberOfBytes(string: RocStr) callconv(.C) usize {
return string.len();
}
// Str.fromInt
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strFromIntC(int: i64) callconv(.C) RocStr {
return strFromInt(std.heap.c_allocator, int);
}
fn strFromInt(allocator: *Allocator, int: i64) RocStr {
// prepare for having multiple integer types in the future
return @call(.{ .modifier = always_inline }, strFromIntHelp, .{ allocator, i64, int });
}
fn strFromIntHelp(allocator: *Allocator, comptime T: type, int: T) RocStr {
// determine maximum size for this T
comptime const size = comptime blk: {
// the string representation of the minimum i128 value uses at most 40 characters
var buf: [40]u8 = undefined;
var result = std.fmt.bufPrint(&buf, "{}", .{std.math.minInt(T)}) catch unreachable;
break :blk result.len;
};
var buf: [size]u8 = undefined;
const result = std.fmt.bufPrint(&buf, "{}", .{int}) catch unreachable;
return RocStr.init(allocator, &buf, result.len);
}
// Str.split
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strSplitInPlaceC(array: [*]RocStr, string: RocStr, delimiter: RocStr) callconv(.C) void {
return @call(.{ .modifier = always_inline }, strSplitInPlace, .{ std.heap.c_allocator, array, string, delimiter });
}
fn strSplitInPlace(allocator: *Allocator, array: [*]RocStr, string: RocStr, delimiter: RocStr) void {
var ret_array_index: usize = 0;
var slice_start_index: usize = 0;
var str_index: usize = 0;
const str_bytes = string.asU8ptr();
const str_len = string.len();
const delimiter_bytes_ptrs = delimiter.asU8ptr();
const delimiter_len = delimiter.len();
if (str_len > delimiter_len) {
const end_index: usize = str_len - delimiter_len + 1;
while (str_index <= end_index) {
var delimiter_index: usize = 0;
var matches_delimiter = true;
while (delimiter_index < delimiter_len) {
var delimiterChar = delimiter_bytes_ptrs[delimiter_index];
var strChar = str_bytes[str_index + delimiter_index];
if (delimiterChar != strChar) {
matches_delimiter = false;
break;
}
delimiter_index += 1;
}
if (matches_delimiter) {
const segment_len: usize = str_index - slice_start_index;
array[ret_array_index] = RocStr.init(allocator, str_bytes + slice_start_index, segment_len);
slice_start_index = str_index + delimiter_len;
ret_array_index += 1;
str_index += delimiter_len;
} else {
str_index += 1;
}
}
}
array[ret_array_index] = RocStr.init(allocator, str_bytes + slice_start_index, str_len - slice_start_index);
}
test "strSplitInPlace: no delimiter" {
// Str.split "abc" "!" == [ "abc" ]
const str_arr = "abc";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
var array: [1]RocStr = undefined;
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
var expected = [1]RocStr{
str,
};
defer {
for (array) |roc_str| {
roc_str.deinit(testing.allocator);
}
for (expected) |roc_str| {
roc_str.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
}
test "strSplitInPlace: empty end" {
const str_arr = "1---- ---- ---- ---- ----2---- ---- ---- ---- ----";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "---- ---- ---- ---- ----";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = [_]RocStr{
undefined,
undefined,
undefined,
};
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const one = RocStr.init(testing.allocator, "1", 1);
const two = RocStr.init(testing.allocator, "2", 1);
var expected = [3]RocStr{
one, two, RocStr.empty(),
};
defer {
for (array) |rocStr| {
rocStr.deinit(testing.allocator);
}
for (expected) |rocStr| {
rocStr.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
expect(array[1].eq(expected[1]));
expect(array[2].eq(expected[2]));
}
test "strSplitInPlace: delimiter on sides" {
const str_arr = "tttghittt";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "ttt";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = [_]RocStr{
undefined,
undefined,
undefined,
};
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const ghi_arr = "ghi";
const ghi = RocStr.init(testing.allocator, ghi_arr, ghi_arr.len);
var expected = [3]RocStr{
RocStr.empty(), ghi, RocStr.empty(),
};
defer {
for (array) |rocStr| {
rocStr.deinit(testing.allocator);
}
for (expected) |rocStr| {
rocStr.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
expect(array[1].eq(expected[1]));
expect(array[2].eq(expected[2]));
}
test "strSplitInPlace: three pieces" {
// Str.split "a!b!c" "!" == [ "a", "b", "c" ]
const str_arr = "a!b!c";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = undefined;
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const a = RocStr.init(testing.allocator, "a", 1);
const b = RocStr.init(testing.allocator, "b", 1);
const c = RocStr.init(testing.allocator, "c", 1);
var expected_array = [array_len]RocStr{
a, b, c,
};
defer {
for (array) |roc_str| {
roc_str.deinit(testing.allocator);
}
for (expected_array) |roc_str| {
roc_str.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(expected_array.len, array.len);
expect(array[0].eq(expected_array[0]));
expect(array[1].eq(expected_array[1]));
expect(array[2].eq(expected_array[2]));
}
// This is used for `Str.split : Str, Str -> Array Str
// It is used to count how many segments the input `_str`
// needs to be broken into, so that we can allocate a array
// of that size. It always returns at least 1.
pub fn countSegments(string: RocStr, delimiter: RocStr) callconv(.C) usize {
const str_bytes = string.asU8ptr();
const str_len = string.len();
const delimiter_bytes_ptrs = delimiter.asU8ptr();
const delimiter_len = delimiter.len();
var count: usize = 1;
if (str_len > delimiter_len) {
var str_index: usize = 0;
const end_cond: usize = str_len - delimiter_len + 1;
while (str_index < end_cond) {
var delimiter_index: usize = 0;
var matches_delimiter = true;
while (delimiter_index < delimiter_len) {
const delimiterChar = delimiter_bytes_ptrs[delimiter_index];
const strChar = str_bytes[str_index + delimiter_index];
if (delimiterChar != strChar) {
matches_delimiter = false;
break;
}
delimiter_index += 1;
}
if (matches_delimiter) {
count += 1;
}
str_index += 1;
}
}
return count;
}
test "countSegments: long delimiter" {
// Str.split "str" "delimiter" == [ "str" ]
// 1 segment
const str_arr = "str";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "delimiter";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 1);
}
test "countSegments: delimiter at start" {
// Str.split "hello there" "hello" == [ "", " there" ]
// 2 segments
const str_arr = "hello there";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "hello";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 2);
}
test "countSegments: delimiter interspered" {
// Str.split "a!b!c" "!" == [ "a", "b", "c" ]
// 3 segments
const str_arr = "a!b!c";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 3);
}
fn rocStrFromLiteral(bytes_arr: *const []u8) RocStr {}
// Str.startsWith
pub fn startsWith(string: RocStr, prefix: RocStr) callconv(.C) bool {
const bytes_len = string.len();
const bytes_ptr = string.asU8ptr();
const prefix_len = prefix.len();
const prefix_ptr = prefix.asU8ptr();
if (prefix_len > bytes_len) {
return false;
}
// we won't exceed bytes_len due to the previous check
var i: usize = 0;
while (i < prefix_len) {
if (bytes_ptr[i] != prefix_ptr[i]) {
return false;
}
i += 1;
}
return true;
}
test "startsWith: foo starts with fo" {
const foo = RocStr.init(testing.allocator, "foo", 3);
const fo = RocStr.init(testing.allocator, "fo", 2);
expect(startsWith(foo, fo));
}
test "startsWith: 123456789123456789 starts with 123456789123456789" {
const str = RocStr.init(testing.allocator, "123456789123456789", 18);
defer str.deinit(testing.allocator);
expect(startsWith(str, str));
}
test "startsWith: 12345678912345678910 starts with 123456789123456789" {
const str = RocStr.init(testing.allocator, "12345678912345678910", 20);
defer str.deinit(testing.allocator);
const prefix = RocStr.init(testing.allocator, "123456789123456789", 18);
defer prefix.deinit(testing.allocator);
expect(startsWith(str, prefix));
}
// Str.endsWith
pub fn endsWith(string: RocStr, suffix: RocStr) callconv(.C) bool {
const bytes_len = string.len();
const bytes_ptr = string.asU8ptr();
const suffix_len = suffix.len();
const suffix_ptr = suffix.asU8ptr();
if (suffix_len > bytes_len) {
return false;
}
const offset: usize = bytes_len - suffix_len;
var i: usize = 0;
while (i < suffix_len) {
if (bytes_ptr[i + offset] != suffix_ptr[i]) {
return false;
}
i += 1;
}
return true;
}
test "endsWith: foo ends with oo" {
const foo = RocStr.init(testing.allocator, "foo", 3);
const oo = RocStr.init(testing.allocator, "oo", 2);
defer foo.deinit(testing.allocator);
defer oo.deinit(testing.allocator);
expect(endsWith(foo, oo));
}
test "endsWith: 123456789123456789 ends with 123456789123456789" {
const str = RocStr.init(testing.allocator, "123456789123456789", 18);
defer str.deinit(testing.allocator);
expect(endsWith(str, str));
}
test "endsWith: 12345678912345678910 ends with 345678912345678910" {
const str = RocStr.init(testing.allocator, "12345678912345678910", 20);
const suffix = RocStr.init(testing.allocator, "345678912345678910", 18);
defer str.deinit(testing.allocator);
defer suffix.deinit(testing.allocator);
expect(endsWith(str, suffix));
}
test "endsWith: hello world ends with world" {
const str = RocStr.init(testing.allocator, "hello world", 11);
const suffix = RocStr.init(testing.allocator, "world", 5);
defer str.deinit(testing.allocator);
defer suffix.deinit(testing.allocator);
expect(endsWith(str, suffix));
}
// Str.concat
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strConcatC(ptr_size: u32, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) callconv(.C) RocStr {
return @call(.{ .modifier = always_inline }, strConcat, .{ std.heap.c_allocator, ptr_size, result_in_place, arg1, arg2 });
}
fn strConcat(allocator: *Allocator, ptr_size: u32, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) RocStr {
return switch (ptr_size) {
4 => strConcatHelp(allocator, i32, result_in_place, arg1, arg2),
8 => strConcatHelp(allocator, i64, result_in_place, arg1, arg2),
else => unreachable,
};
}
fn strConcatHelp(allocator: *Allocator, comptime T: type, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) RocStr {
if (arg1.isEmpty()) {
return RocStr.clone(allocator, T, result_in_place, arg2);
} else if (arg2.isEmpty()) {
return RocStr.clone(allocator, T, result_in_place, arg1);
} else {
const combined_length = arg1.len() + arg2.len();
const small_str_bytes = 2 * @sizeOf(T);
const result_is_big = combined_length >= small_str_bytes;
if (result_is_big) {
var result = RocStr.initBig(allocator, T, result_in_place, combined_length);
{
const old_bytes = arg1.asU8ptr();
const new_bytes: [*]u8 = @ptrCast([*]u8, result.str_bytes);
@memcpy(new_bytes, old_bytes, arg1.len());
}
{
const old_bytes = arg2.asU8ptr();
const new_bytes = @ptrCast([*]u8, result.str_bytes) + arg1.len();
@memcpy(new_bytes, old_bytes, arg2.len());
}
return result;
} else {
var result = [16]u8{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
// if the result is small, then for sure arg1 and arg2 are also small
{
var old_bytes: [*]u8 = @ptrCast([*]u8, &@bitCast([16]u8, arg1));
var new_bytes: [*]u8 = @ptrCast([*]u8, &result);
@memcpy(new_bytes, old_bytes, arg1.len());
}
{
var old_bytes: [*]u8 = @ptrCast([*]u8, &@bitCast([16]u8, arg2));
var new_bytes = @ptrCast([*]u8, &result) + arg1.len();
@memcpy(new_bytes, old_bytes, arg2.len());
}
const mask: u8 = 0b1000_0000;
const final_byte = @truncate(u8, combined_length) | mask;
result[small_str_bytes - 1] = final_byte;
return @bitCast(RocStr, result);
}
return result;
}
}
test "RocStr.concat: small concat small" {
const str1_len = 3;
var str1: [str1_len]u8 = "foo".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
const str3_len = 6;
var str3: [str3_len]u8 = "fooabc".*;
const str3_ptr: [*]u8 = &str3;
var roc_str3 = RocStr.init(testing.allocator, str3_ptr, str3_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
roc_str3.deinit(testing.allocator);
}
const result = strConcat(testing.allocator, 8, InPlace.Clone, roc_str1, roc_str2);
defer result.deinit(testing.allocator);
expect(roc_str3.eq(result));
}

View File

@ -39,6 +39,22 @@ pub fn link(
}
}
fn find_zig_str_path() -> PathBuf {
let zig_str_path = PathBuf::from("compiler/builtins/bitcode/src/str.zig");
if std::path::Path::exists(&zig_str_path) {
return zig_str_path;
}
// when running the tests, we start in the /cli directory
let zig_str_path = PathBuf::from("../compiler/builtins/bitcode/src/str.zig");
if std::path::Path::exists(&zig_str_path) {
return zig_str_path;
}
panic!("cannot find `str.zig`")
}
pub fn rebuild_host(host_input_path: &Path) {
let c_host_src = host_input_path.with_file_name("host.c");
let c_host_dest = host_input_path.with_file_name("c_host.o");
@ -54,14 +70,27 @@ pub fn rebuild_host(host_input_path: &Path) {
if zig_host_src.exists() {
// Compile host.zig
let emit_bin = format!("-femit-bin={}", host_dest.to_str().unwrap());
let zig_str_path = find_zig_str_path();
debug_assert!(
std::path::Path::exists(&zig_str_path),
"Cannot find str.zig, looking at {:?}",
&zig_str_path
);
let output = Command::new("zig")
.env_clear()
.env("PATH", &env_path)
.env("HOME", &env_home)
.args(&[
"build-lib",
"build-obj",
zig_host_src.to_str().unwrap(),
&emit_bin,
"--pkg-begin",
"str",
zig_str_path.to_str().unwrap(),
"--pkg-end",
// include the zig runtime
"-fcompiler-rt",
// include libc

View File

@ -89,7 +89,10 @@ pub const RocStr = extern struct {
pub fn deinit(self: RocStr, allocator: *Allocator) void {
if (!self.isSmallStr() and !self.isEmpty()) {
const str_bytes_ptr: [*]u8 = self.str_bytes orelse unreachable;
const str_bytes: []u8 = str_bytes_ptr[0..self.str_len];
// include the refcount bytes
const refcount_bytes = @sizeOf(usize);
const str_bytes: []u8 = (str_bytes_ptr - refcount_bytes)[0 .. self.str_len + refcount_bytes];
allocator.free(str_bytes);
}
}

View File

@ -2158,4 +2158,61 @@ mod gen_primitives {
i64
);
}
#[test]
fn switch_fuse_rc_non_exhaustive() {
assert_evals_to!(
indoc!(
r#"
app "test" provides [ main ] to "./platform"
Foo : [ A I64 Foo, B I64 Foo, C I64 Foo, Empty ]
sum : Foo, I64 -> I64
sum = \foo, accum ->
when foo is
A x resta -> sum resta (x + accum)
B x restb -> sum restb (x + accum)
# Empty -> accum
# C x restc -> sum restc (x + accum)
_ -> accum
main : I64
main =
A 1 (B 2 (C 3 Empty))
|> sum 0
"#
),
3,
i64
);
}
#[test]
fn switch_fuse_rc_exhaustive() {
assert_evals_to!(
indoc!(
r#"
app "test" provides [ main ] to "./platform"
Foo : [ A I64 Foo, B I64 Foo, C I64 Foo, Empty ]
sum : Foo, I64 -> I64
sum = \foo, accum ->
when foo is
A x resta -> sum resta (x + accum)
B x restb -> sum restb (x + accum)
C x restc -> sum restc (x + accum)
Empty -> accum
main : I64
main =
A 1 (B 2 (C 3 Empty))
|> sum 0
"#
),
6,
i64
);
}
}

View File

@ -1654,6 +1654,9 @@ fn decide_to_branching<'a>(
let mut branches = bumpalo::collections::Vec::with_capacity_in(tests.len(), env.arena);
let mut tag_id_sum: i64 = (0..tests.len() as i64 + 1).sum();
let mut union_size: i64 = -1;
for (test, decider) in tests {
let branch = decide_to_branching(
env,
@ -1675,16 +1678,42 @@ fn decide_to_branching<'a>(
other => todo!("other {:?}", other),
};
branches.push((tag, BranchInfo::None, branch));
// branch info is only useful for refcounted values
let branch_info = if let Test::IsCtor { tag_id, union, .. } = test {
tag_id_sum -= tag_id as i64;
union_size = union.alternatives.len() as i64;
BranchInfo::Constructor {
scrutinee: inner_cond_symbol,
layout: inner_cond_layout.clone(),
tag_id,
}
} else {
tag_id_sum = -1;
BranchInfo::None
};
branches.push((tag, branch_info, branch));
}
// determine if the switch is exhaustive
let default_branch_info = if tag_id_sum > 0 && union_size > 0 {
BranchInfo::Constructor {
scrutinee: inner_cond_symbol,
layout: inner_cond_layout.clone(),
tag_id: tag_id_sum as u8,
}
} else {
BranchInfo::None
};
// We have learned more about the exact layout of the cond (based on the path)
// but tests are still relative to the original cond symbol
let mut switch = Stmt::Switch {
cond_layout: inner_cond_layout,
cond_symbol: inner_cond_symbol,
branches: branches.into_bump_slice(),
default_branch: (BranchInfo::None, env.arena.alloc(default_branch)),
default_branch: (default_branch_info, env.arena.alloc(default_branch)),
ret_layout,
};

View File

@ -1,5 +1,5 @@
const std = @import("std");
const str = @import("str.zig");
const str = @import("str");
const RocStr = str.RocStr;
const testing = std.testing;
const expectEqual = testing.expectEqual;

View File

@ -1,816 +0,0 @@
const std = @import("std");
const mem = std.mem;
const always_inline = std.builtin.CallOptions.Modifier.always_inline;
const Allocator = mem.Allocator;
const unicode = std.unicode;
const testing = std.testing;
const expectEqual = testing.expectEqual;
const expect = testing.expect;
const InPlace = packed enum(u8) {
InPlace,
Clone,
};
pub const RocStr = extern struct {
str_bytes: ?[*]u8,
str_len: usize,
pub inline fn empty() RocStr {
return RocStr{
.str_len = 0,
.str_bytes = null,
};
}
// This clones the pointed-to bytes if they won't fit in a
// small string, and returns a (pointer, len) tuple which points to them.
pub fn init(allocator: *Allocator, bytes_ptr: [*]const u8, length: usize) RocStr {
const roc_str_size = @sizeOf(RocStr);
if (length < roc_str_size) {
var ret_small_str = RocStr.empty();
const target_ptr = @ptrToInt(&ret_small_str);
var index: u8 = 0;
// TODO isn't there a way to bulk-zero data in Zig?
// Zero out the data, just to be safe
while (index < roc_str_size) {
var offset_ptr = @intToPtr(*u8, target_ptr + index);
offset_ptr.* = 0;
index += 1;
}
// TODO rewrite this into a for loop
index = 0;
while (index < length) {
var offset_ptr = @intToPtr(*u8, target_ptr + index);
offset_ptr.* = bytes_ptr[index];
index += 1;
}
// set the final byte to be the length
const final_byte_ptr = @intToPtr(*u8, target_ptr + roc_str_size - 1);
final_byte_ptr.* = @truncate(u8, length) ^ 0b10000000;
return ret_small_str;
} else {
var result = RocStr.initBig(allocator, u64, InPlace.Clone, length);
@memcpy(@ptrCast([*]u8, result.str_bytes), bytes_ptr, length);
return result;
}
}
pub fn initBig(allocator: *Allocator, comptime T: type, in_place: InPlace, number_of_chars: u64) RocStr {
const length = @sizeOf(T) + number_of_chars;
var new_bytes: []T = allocator.alloc(T, length) catch unreachable;
if (in_place == InPlace.InPlace) {
new_bytes[0] = @intCast(T, number_of_chars);
} else {
new_bytes[0] = std.math.minInt(T);
}
var first_element = @ptrCast([*]align(@alignOf(T)) u8, new_bytes);
first_element += @sizeOf(usize);
return RocStr{
.str_bytes = first_element,
.str_len = number_of_chars,
};
}
pub fn deinit(self: RocStr, allocator: *Allocator) void {
if (!self.isSmallStr() and !self.isEmpty()) {
const str_bytes_ptr: [*]u8 = self.str_bytes orelse unreachable;
const str_bytes: []u8 = str_bytes_ptr[0..self.str_len];
allocator.free(str_bytes);
}
}
// This takes ownership of the pointed-to bytes if they won't fit in a
// small string, and returns a (pointer, len) tuple which points to them.
pub fn withCapacity(length: usize) RocStr {
const roc_str_size = @sizeOf(RocStr);
if (length < roc_str_size) {
return RocStr.empty();
} else {
var new_bytes: []T = allocator.alloc(u8, length) catch unreachable;
var new_bytes_ptr: [*]u8 = @ptrCast([*]u8, &new_bytes);
return RocStr{
.str_bytes = new_bytes_ptr,
.str_len = length,
};
}
}
pub fn eq(self: RocStr, other: RocStr) bool {
const self_bytes_ptr: ?[*]const u8 = self.str_bytes;
const other_bytes_ptr: ?[*]const u8 = other.str_bytes;
// If they are byte-for-byte equal, they're definitely equal!
if (self_bytes_ptr == other_bytes_ptr and self.str_len == other.str_len) {
return true;
}
const self_len = self.len();
const other_len = other.len();
// If their lengths are different, they're definitely unequal.
if (self_len != other_len) {
return false;
}
const self_u8_ptr: [*]const u8 = @ptrCast([*]const u8, &self);
const other_u8_ptr: [*]const u8 = @ptrCast([*]const u8, &other);
const self_bytes: [*]const u8 = if (self.isSmallStr() or self.isEmpty()) self_u8_ptr else self_bytes_ptr orelse unreachable;
const other_bytes: [*]const u8 = if (other.isSmallStr() or other.isEmpty()) other_u8_ptr else other_bytes_ptr orelse unreachable;
var index: usize = 0;
// TODO rewrite this into a for loop
const length = self.len();
while (index < length) {
if (self_bytes[index] != other_bytes[index]) {
return false;
}
index = index + 1;
}
return true;
}
pub fn clone(allocator: *Allocator, comptime T: type, in_place: InPlace, str: RocStr) RocStr {
if (str.isSmallStr() or str.isEmpty()) {
// just return the bytes
return str;
} else {
var new_str = RocStr.initBig(allocator, T, in_place, str.str_len);
var old_bytes: [*]u8 = @ptrCast([*]u8, str.str_bytes);
var new_bytes: [*]u8 = @ptrCast([*]u8, new_str.str_bytes);
@memcpy(new_bytes, old_bytes, str.str_len);
return new_str;
}
}
pub fn isSmallStr(self: RocStr) bool {
return @bitCast(isize, self.str_len) < 0;
}
pub fn len(self: RocStr) usize {
const bytes: [*]const u8 = @ptrCast([*]const u8, &self);
const last_byte = bytes[@sizeOf(RocStr) - 1];
const small_len = @as(usize, last_byte ^ 0b1000_0000);
const big_len = self.str_len;
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return if (self.isSmallStr()) small_len else big_len;
}
pub fn isEmpty(self: RocStr) bool {
return self.len() == 0;
}
pub fn asSlice(self: RocStr) []u8 {
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return self.asU8ptr()[0..self.len()];
}
pub fn asU8ptr(self: RocStr) [*]u8 {
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return if (self.isSmallStr() or self.isEmpty()) (&@bitCast([16]u8, self)) else (@ptrCast([*]u8, self.str_bytes));
}
// Given a pointer to some bytes, write the first (len) bytes of this
// RocStr's contents into it.
//
// One use for this function is writing into an `alloca` for a C string that
// only needs to live long enough to be passed as an argument to
// a C function - like the file path argument to `fopen`.
pub fn memcpy(self: RocStr, dest: [*]u8, length: usize) void {
const src = self.asU8ptr();
@memcpy(dest, src, length);
}
test "RocStr.eq: equal" {
const str1_len = 3;
var str1: [str1_len]u8 = "abc".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
expect(roc_str1.eq(roc_str2));
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
test "RocStr.eq: not equal different length" {
const str1_len = 4;
var str1: [str1_len]u8 = "abcd".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
expect(!roc_str1.eq(roc_str2));
}
test "RocStr.eq: not equal same length" {
const str1_len = 3;
var str1: [str1_len]u8 = "acb".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
expect(!roc_str1.eq(roc_str2));
}
};
// Str.equal
pub fn strEqual(self: RocStr, other: RocStr) callconv(.C) bool {
return self.eq(other);
}
// Str.numberOfBytes
pub fn strNumberOfBytes(string: RocStr) callconv(.C) usize {
return string.len();
}
// Str.fromInt
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strFromIntC(int: i64) callconv(.C) RocStr {
return strFromInt(std.heap.c_allocator, int);
}
fn strFromInt(allocator: *Allocator, int: i64) RocStr {
// prepare for having multiple integer types in the future
return @call(.{ .modifier = always_inline }, strFromIntHelp, .{ allocator, i64, int });
}
fn strFromIntHelp(allocator: *Allocator, comptime T: type, int: T) RocStr {
// determine maximum size for this T
comptime const size = comptime blk: {
// the string representation of the minimum i128 value uses at most 40 characters
var buf: [40]u8 = undefined;
var result = std.fmt.bufPrint(&buf, "{}", .{std.math.minInt(T)}) catch unreachable;
break :blk result.len;
};
var buf: [size]u8 = undefined;
const result = std.fmt.bufPrint(&buf, "{}", .{int}) catch unreachable;
return RocStr.init(allocator, &buf, result.len);
}
// Str.split
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strSplitInPlaceC(array: [*]RocStr, string: RocStr, delimiter: RocStr) callconv(.C) void {
return @call(.{ .modifier = always_inline }, strSplitInPlace, .{ std.heap.c_allocator, array, string, delimiter });
}
fn strSplitInPlace(allocator: *Allocator, array: [*]RocStr, string: RocStr, delimiter: RocStr) void {
var ret_array_index: usize = 0;
var slice_start_index: usize = 0;
var str_index: usize = 0;
const str_bytes = string.asU8ptr();
const str_len = string.len();
const delimiter_bytes_ptrs = delimiter.asU8ptr();
const delimiter_len = delimiter.len();
if (str_len > delimiter_len) {
const end_index: usize = str_len - delimiter_len + 1;
while (str_index <= end_index) {
var delimiter_index: usize = 0;
var matches_delimiter = true;
while (delimiter_index < delimiter_len) {
var delimiterChar = delimiter_bytes_ptrs[delimiter_index];
var strChar = str_bytes[str_index + delimiter_index];
if (delimiterChar != strChar) {
matches_delimiter = false;
break;
}
delimiter_index += 1;
}
if (matches_delimiter) {
const segment_len: usize = str_index - slice_start_index;
array[ret_array_index] = RocStr.init(allocator, str_bytes + slice_start_index, segment_len);
slice_start_index = str_index + delimiter_len;
ret_array_index += 1;
str_index += delimiter_len;
} else {
str_index += 1;
}
}
}
array[ret_array_index] = RocStr.init(allocator, str_bytes + slice_start_index, str_len - slice_start_index);
}
test "strSplitInPlace: no delimiter" {
// Str.split "abc" "!" == [ "abc" ]
const str_arr = "abc";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
var array: [1]RocStr = undefined;
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
var expected = [1]RocStr{
str,
};
defer {
for (array) |roc_str| {
roc_str.deinit(testing.allocator);
}
for (expected) |roc_str| {
roc_str.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
}
test "strSplitInPlace: empty end" {
const str_arr = "1---- ---- ---- ---- ----2---- ---- ---- ---- ----";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "---- ---- ---- ---- ----";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = [_]RocStr{
undefined,
undefined,
undefined,
};
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const one = RocStr.init(testing.allocator, "1", 1);
const two = RocStr.init(testing.allocator, "2", 1);
var expected = [3]RocStr{
one, two, RocStr.empty(),
};
defer {
for (array) |rocStr| {
rocStr.deinit(testing.allocator);
}
for (expected) |rocStr| {
rocStr.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
expect(array[1].eq(expected[1]));
expect(array[2].eq(expected[2]));
}
test "strSplitInPlace: delimiter on sides" {
const str_arr = "tttghittt";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "ttt";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = [_]RocStr{
undefined,
undefined,
undefined,
};
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const ghi_arr = "ghi";
const ghi = RocStr.init(testing.allocator, ghi_arr, ghi_arr.len);
var expected = [3]RocStr{
RocStr.empty(), ghi, RocStr.empty(),
};
defer {
for (array) |rocStr| {
rocStr.deinit(testing.allocator);
}
for (expected) |rocStr| {
rocStr.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
expect(array[1].eq(expected[1]));
expect(array[2].eq(expected[2]));
}
test "strSplitInPlace: three pieces" {
// Str.split "a!b!c" "!" == [ "a", "b", "c" ]
const str_arr = "a!b!c";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = undefined;
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const a = RocStr.init(testing.allocator, "a", 1);
const b = RocStr.init(testing.allocator, "b", 1);
const c = RocStr.init(testing.allocator, "c", 1);
var expected_array = [array_len]RocStr{
a, b, c,
};
defer {
for (array) |roc_str| {
roc_str.deinit(testing.allocator);
}
for (expected_array) |roc_str| {
roc_str.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(expected_array.len, array.len);
expect(array[0].eq(expected_array[0]));
expect(array[1].eq(expected_array[1]));
expect(array[2].eq(expected_array[2]));
}
// This is used for `Str.split : Str, Str -> Array Str
// It is used to count how many segments the input `_str`
// needs to be broken into, so that we can allocate a array
// of that size. It always returns at least 1.
pub fn countSegments(string: RocStr, delimiter: RocStr) callconv(.C) usize {
const str_bytes = string.asU8ptr();
const str_len = string.len();
const delimiter_bytes_ptrs = delimiter.asU8ptr();
const delimiter_len = delimiter.len();
var count: usize = 1;
if (str_len > delimiter_len) {
var str_index: usize = 0;
const end_cond: usize = str_len - delimiter_len + 1;
while (str_index < end_cond) {
var delimiter_index: usize = 0;
var matches_delimiter = true;
while (delimiter_index < delimiter_len) {
const delimiterChar = delimiter_bytes_ptrs[delimiter_index];
const strChar = str_bytes[str_index + delimiter_index];
if (delimiterChar != strChar) {
matches_delimiter = false;
break;
}
delimiter_index += 1;
}
if (matches_delimiter) {
count += 1;
}
str_index += 1;
}
}
return count;
}
test "countSegments: long delimiter" {
// Str.split "str" "delimiter" == [ "str" ]
// 1 segment
const str_arr = "str";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "delimiter";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 1);
}
test "countSegments: delimiter at start" {
// Str.split "hello there" "hello" == [ "", " there" ]
// 2 segments
const str_arr = "hello there";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "hello";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 2);
}
test "countSegments: delimiter interspered" {
// Str.split "a!b!c" "!" == [ "a", "b", "c" ]
// 3 segments
const str_arr = "a!b!c";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 3);
}
fn rocStrFromLiteral(bytes_arr: *const []u8) RocStr {}
// Str.startsWith
pub fn startsWith(string: RocStr, prefix: RocStr) callconv(.C) bool {
const bytes_len = string.len();
const bytes_ptr = string.asU8ptr();
const prefix_len = prefix.len();
const prefix_ptr = prefix.asU8ptr();
if (prefix_len > bytes_len) {
return false;
}
// we won't exceed bytes_len due to the previous check
var i: usize = 0;
while (i < prefix_len) {
if (bytes_ptr[i] != prefix_ptr[i]) {
return false;
}
i += 1;
}
return true;
}
test "startsWith: foo starts with fo" {
const foo = RocStr.init(testing.allocator, "foo", 3);
const fo = RocStr.init(testing.allocator, "fo", 2);
expect(startsWith(foo, fo));
}
test "startsWith: 123456789123456789 starts with 123456789123456789" {
const str = RocStr.init(testing.allocator, "123456789123456789", 18);
defer str.deinit(testing.allocator);
expect(startsWith(str, str));
}
test "startsWith: 12345678912345678910 starts with 123456789123456789" {
const str = RocStr.init(testing.allocator, "12345678912345678910", 20);
defer str.deinit(testing.allocator);
const prefix = RocStr.init(testing.allocator, "123456789123456789", 18);
defer prefix.deinit(testing.allocator);
expect(startsWith(str, prefix));
}
// Str.endsWith
pub fn endsWith(string: RocStr, suffix: RocStr) callconv(.C) bool {
const bytes_len = string.len();
const bytes_ptr = string.asU8ptr();
const suffix_len = suffix.len();
const suffix_ptr = suffix.asU8ptr();
if (suffix_len > bytes_len) {
return false;
}
const offset: usize = bytes_len - suffix_len;
var i: usize = 0;
while (i < suffix_len) {
if (bytes_ptr[i + offset] != suffix_ptr[i]) {
return false;
}
i += 1;
}
return true;
}
test "endsWith: foo ends with oo" {
const foo = RocStr.init(testing.allocator, "foo", 3);
const oo = RocStr.init(testing.allocator, "oo", 2);
defer foo.deinit(testing.allocator);
defer oo.deinit(testing.allocator);
expect(endsWith(foo, oo));
}
test "endsWith: 123456789123456789 ends with 123456789123456789" {
const str = RocStr.init(testing.allocator, "123456789123456789", 18);
defer str.deinit(testing.allocator);
expect(endsWith(str, str));
}
test "endsWith: 12345678912345678910 ends with 345678912345678910" {
const str = RocStr.init(testing.allocator, "12345678912345678910", 20);
const suffix = RocStr.init(testing.allocator, "345678912345678910", 18);
defer str.deinit(testing.allocator);
defer suffix.deinit(testing.allocator);
expect(endsWith(str, suffix));
}
test "endsWith: hello world ends with world" {
const str = RocStr.init(testing.allocator, "hello world", 11);
const suffix = RocStr.init(testing.allocator, "world", 5);
defer str.deinit(testing.allocator);
defer suffix.deinit(testing.allocator);
expect(endsWith(str, suffix));
}
// Str.concat
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strConcatC(ptr_size: u32, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) callconv(.C) RocStr {
return @call(.{ .modifier = always_inline }, strConcat, .{ std.heap.c_allocator, ptr_size, result_in_place, arg1, arg2 });
}
fn strConcat(allocator: *Allocator, ptr_size: u32, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) RocStr {
return switch (ptr_size) {
4 => strConcatHelp(allocator, i32, result_in_place, arg1, arg2),
8 => strConcatHelp(allocator, i64, result_in_place, arg1, arg2),
else => unreachable,
};
}
fn strConcatHelp(allocator: *Allocator, comptime T: type, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) RocStr {
if (arg1.isEmpty()) {
return RocStr.clone(allocator, T, result_in_place, arg2);
} else if (arg2.isEmpty()) {
return RocStr.clone(allocator, T, result_in_place, arg1);
} else {
const combined_length = arg1.len() + arg2.len();
const small_str_bytes = 2 * @sizeOf(T);
const result_is_big = combined_length >= small_str_bytes;
if (result_is_big) {
var result = RocStr.initBig(allocator, T, result_in_place, combined_length);
{
const old_bytes = arg1.asU8ptr();
const new_bytes: [*]u8 = @ptrCast([*]u8, result.str_bytes);
@memcpy(new_bytes, old_bytes, arg1.len());
}
{
const old_bytes = arg2.asU8ptr();
const new_bytes = @ptrCast([*]u8, result.str_bytes) + arg1.len();
@memcpy(new_bytes, old_bytes, arg2.len());
}
return result;
} else {
var result = [16]u8{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
// if the result is small, then for sure arg1 and arg2 are also small
{
var old_bytes: [*]u8 = @ptrCast([*]u8, &@bitCast([16]u8, arg1));
var new_bytes: [*]u8 = @ptrCast([*]u8, &result);
@memcpy(new_bytes, old_bytes, arg1.len());
}
{
var old_bytes: [*]u8 = @ptrCast([*]u8, &@bitCast([16]u8, arg2));
var new_bytes = @ptrCast([*]u8, &result) + arg1.len();
@memcpy(new_bytes, old_bytes, arg2.len());
}
const mask: u8 = 0b1000_0000;
const final_byte = @truncate(u8, combined_length) | mask;
result[small_str_bytes - 1] = final_byte;
return @bitCast(RocStr, result);
}
return result;
}
}
test "RocStr.concat: small concat small" {
const str1_len = 3;
var str1: [str1_len]u8 = "foo".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
const str3_len = 6;
var str3: [str3_len]u8 = "fooabc".*;
const str3_ptr: [*]u8 = &str3;
var roc_str3 = RocStr.init(testing.allocator, str3_ptr, str3_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
roc_str3.deinit(testing.allocator);
}
const result = strConcat(testing.allocator, 8, InPlace.Clone, roc_str1, roc_str2);
defer result.deinit(testing.allocator);
expect(roc_str3.eq(result));
}

View File

@ -1,5 +1,5 @@
const std = @import("std");
const str = @import("str.zig");
const str = @import("str");
const RocStr = str.RocStr;
const testing = std.testing;
const expectEqual = testing.expectEqual;

View File

@ -1,818 +0,0 @@
const std = @import("std");
const mem = std.mem;
const always_inline = std.builtin.CallOptions.Modifier.always_inline;
const Allocator = mem.Allocator;
const unicode = std.unicode;
const testing = std.testing;
const expectEqual = testing.expectEqual;
const expect = testing.expect;
const InPlace = packed enum(u8) {
InPlace,
Clone,
};
pub const RocStr = extern struct {
str_bytes: ?[*]u8,
str_len: usize,
pub inline fn empty() RocStr {
return RocStr{
.str_len = 0,
.str_bytes = null,
};
}
// This clones the pointed-to bytes if they won't fit in a
// small string, and returns a (pointer, len) tuple which points to them.
pub fn init(allocator: *Allocator, bytes_ptr: [*]const u8, length: usize) RocStr {
const roc_str_size = @sizeOf(RocStr);
if (length < roc_str_size) {
var ret_small_str = RocStr.empty();
const target_ptr = @ptrToInt(&ret_small_str);
var index: u8 = 0;
// TODO isn't there a way to bulk-zero data in Zig?
// Zero out the data, just to be safe
while (index < roc_str_size) {
var offset_ptr = @intToPtr(*u8, target_ptr + index);
offset_ptr.* = 0;
index += 1;
}
// TODO rewrite this into a for loop
index = 0;
while (index < length) {
var offset_ptr = @intToPtr(*u8, target_ptr + index);
offset_ptr.* = bytes_ptr[index];
index += 1;
}
// set the final byte to be the length
const final_byte_ptr = @intToPtr(*u8, target_ptr + roc_str_size - 1);
final_byte_ptr.* = @truncate(u8, length) ^ 0b10000000;
return ret_small_str;
} else {
var result = RocStr.initBig(allocator, u64, InPlace.Clone, length);
@memcpy(@ptrCast([*]u8, result.str_bytes), bytes_ptr, length);
return result;
}
}
pub fn initBig(allocator: *Allocator, comptime T: type, in_place: InPlace, number_of_chars: u64) RocStr {
const length = @sizeOf(T) + number_of_chars;
var new_bytes: []T = allocator.alloc(T, length) catch unreachable;
if (in_place == InPlace.InPlace) {
new_bytes[0] = @intCast(T, number_of_chars);
} else {
new_bytes[0] = std.math.minInt(T);
}
var first_element = @ptrCast([*]align(@alignOf(T)) u8, new_bytes);
first_element += @sizeOf(usize);
return RocStr{
.str_bytes = first_element,
.str_len = number_of_chars,
};
}
pub fn deinit(self: RocStr, allocator: *Allocator) void {
if (!self.isSmallStr() and !self.isEmpty()) {
const str_bytes_ptr: [*]u8 = self.str_bytes orelse unreachable;
// must include refcount
const str_bytes: []u8 = (str_bytes_ptr - 8)[0 .. self.str_len + 8];
allocator.free(str_bytes);
}
}
// This takes ownership of the pointed-to bytes if they won't fit in a
// small string, and returns a (pointer, len) tuple which points to them.
pub fn withCapacity(length: usize) RocStr {
const roc_str_size = @sizeOf(RocStr);
if (length < roc_str_size) {
return RocStr.empty();
} else {
var new_bytes: []T = allocator.alloc(u8, length) catch unreachable;
var new_bytes_ptr: [*]u8 = @ptrCast([*]u8, &new_bytes);
return RocStr{
.str_bytes = new_bytes_ptr,
.str_len = length,
};
}
}
pub fn eq(self: RocStr, other: RocStr) bool {
const self_bytes_ptr: ?[*]const u8 = self.str_bytes;
const other_bytes_ptr: ?[*]const u8 = other.str_bytes;
// If they are byte-for-byte equal, they're definitely equal!
if (self_bytes_ptr == other_bytes_ptr and self.str_len == other.str_len) {
return true;
}
const self_len = self.len();
const other_len = other.len();
// If their lengths are different, they're definitely unequal.
if (self_len != other_len) {
return false;
}
const self_u8_ptr: [*]const u8 = @ptrCast([*]const u8, &self);
const other_u8_ptr: [*]const u8 = @ptrCast([*]const u8, &other);
const self_bytes: [*]const u8 = if (self.isSmallStr() or self.isEmpty()) self_u8_ptr else self_bytes_ptr orelse unreachable;
const other_bytes: [*]const u8 = if (other.isSmallStr() or other.isEmpty()) other_u8_ptr else other_bytes_ptr orelse unreachable;
var index: usize = 0;
// TODO rewrite this into a for loop
const length = self.len();
while (index < length) {
if (self_bytes[index] != other_bytes[index]) {
return false;
}
index = index + 1;
}
return true;
}
pub fn clone(allocator: *Allocator, comptime T: type, in_place: InPlace, str: RocStr) RocStr {
if (str.isSmallStr() or str.isEmpty()) {
// just return the bytes
return str;
} else {
var new_str = RocStr.initBig(allocator, T, in_place, str.str_len);
var old_bytes: [*]u8 = @ptrCast([*]u8, str.str_bytes);
var new_bytes: [*]u8 = @ptrCast([*]u8, new_str.str_bytes);
@memcpy(new_bytes, old_bytes, str.str_len);
return new_str;
}
}
pub fn isSmallStr(self: RocStr) bool {
return @bitCast(isize, self.str_len) < 0;
}
pub fn len(self: RocStr) usize {
const bytes: [*]const u8 = @ptrCast([*]const u8, &self);
const last_byte = bytes[@sizeOf(RocStr) - 1];
const small_len = @as(usize, last_byte ^ 0b1000_0000);
const big_len = self.str_len;
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return if (self.isSmallStr()) small_len else big_len;
}
pub fn isEmpty(self: RocStr) bool {
return self.len() == 0;
}
pub fn asSlice(self: RocStr) []u8 {
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return self.asU8ptr()[0..self.len()];
}
pub fn asU8ptr(self: RocStr) [*]u8 {
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return if (self.isSmallStr() or self.isEmpty()) (&@bitCast([16]u8, self)) else (@ptrCast([*]u8, self.str_bytes));
}
// Given a pointer to some bytes, write the first (len) bytes of this
// RocStr's contents into it.
//
// One use for this function is writing into an `alloca` for a C string that
// only needs to live long enough to be passed as an argument to
// a C function - like the file path argument to `fopen`.
pub fn memcpy(self: RocStr, dest: [*]u8, length: usize) void {
const src = self.asU8ptr();
@memcpy(dest, src, length);
}
test "RocStr.eq: equal" {
const str1_len = 3;
var str1: [str1_len]u8 = "abc".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
expect(roc_str1.eq(roc_str2));
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
test "RocStr.eq: not equal different length" {
const str1_len = 4;
var str1: [str1_len]u8 = "abcd".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
expect(!roc_str1.eq(roc_str2));
}
test "RocStr.eq: not equal same length" {
const str1_len = 3;
var str1: [str1_len]u8 = "acb".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
expect(!roc_str1.eq(roc_str2));
}
};
// Str.equal
pub fn strEqual(self: RocStr, other: RocStr) callconv(.C) bool {
return self.eq(other);
}
// Str.numberOfBytes
pub fn strNumberOfBytes(string: RocStr) callconv(.C) usize {
return string.len();
}
// Str.fromInt
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strFromIntC(int: i64) callconv(.C) RocStr {
return strFromInt(std.heap.c_allocator, int);
}
fn strFromInt(allocator: *Allocator, int: i64) RocStr {
// prepare for having multiple integer types in the future
return @call(.{ .modifier = always_inline }, strFromIntHelp, .{ allocator, i64, int });
}
fn strFromIntHelp(allocator: *Allocator, comptime T: type, int: T) RocStr {
// determine maximum size for this T
comptime const size = comptime blk: {
// the string representation of the minimum i128 value uses at most 40 characters
var buf: [40]u8 = undefined;
var result = std.fmt.bufPrint(&buf, "{}", .{std.math.minInt(T)}) catch unreachable;
break :blk result.len;
};
var buf: [size]u8 = undefined;
const result = std.fmt.bufPrint(&buf, "{}", .{int}) catch unreachable;
return RocStr.init(allocator, &buf, result.len);
}
// Str.split
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strSplitInPlaceC(array: [*]RocStr, string: RocStr, delimiter: RocStr) callconv(.C) void {
return @call(.{ .modifier = always_inline }, strSplitInPlace, .{ std.heap.c_allocator, array, string, delimiter });
}
fn strSplitInPlace(allocator: *Allocator, array: [*]RocStr, string: RocStr, delimiter: RocStr) void {
var ret_array_index: usize = 0;
var slice_start_index: usize = 0;
var str_index: usize = 0;
const str_bytes = string.asU8ptr();
const str_len = string.len();
const delimiter_bytes_ptrs = delimiter.asU8ptr();
const delimiter_len = delimiter.len();
if (str_len > delimiter_len) {
const end_index: usize = str_len - delimiter_len + 1;
while (str_index <= end_index) {
var delimiter_index: usize = 0;
var matches_delimiter = true;
while (delimiter_index < delimiter_len) {
var delimiterChar = delimiter_bytes_ptrs[delimiter_index];
var strChar = str_bytes[str_index + delimiter_index];
if (delimiterChar != strChar) {
matches_delimiter = false;
break;
}
delimiter_index += 1;
}
if (matches_delimiter) {
const segment_len: usize = str_index - slice_start_index;
array[ret_array_index] = RocStr.init(allocator, str_bytes + slice_start_index, segment_len);
slice_start_index = str_index + delimiter_len;
ret_array_index += 1;
str_index += delimiter_len;
} else {
str_index += 1;
}
}
}
array[ret_array_index] = RocStr.init(allocator, str_bytes + slice_start_index, str_len - slice_start_index);
}
test "strSplitInPlace: no delimiter" {
// Str.split "abc" "!" == [ "abc" ]
const str_arr = "abc";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
var array: [1]RocStr = undefined;
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
var expected = [1]RocStr{
str,
};
defer {
for (array) |roc_str| {
roc_str.deinit(testing.allocator);
}
for (expected) |roc_str| {
roc_str.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
}
test "strSplitInPlace: empty end" {
const str_arr = "1---- ---- ---- ---- ----2---- ---- ---- ---- ----";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "---- ---- ---- ---- ----";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = [_]RocStr{
undefined,
undefined,
undefined,
};
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const one = RocStr.init(testing.allocator, "1", 1);
const two = RocStr.init(testing.allocator, "2", 1);
var expected = [3]RocStr{
one, two, RocStr.empty(),
};
defer {
for (array) |rocStr| {
rocStr.deinit(testing.allocator);
}
for (expected) |rocStr| {
rocStr.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
expect(array[1].eq(expected[1]));
expect(array[2].eq(expected[2]));
}
test "strSplitInPlace: delimiter on sides" {
const str_arr = "tttghittt";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "ttt";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = [_]RocStr{
undefined,
undefined,
undefined,
};
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const ghi_arr = "ghi";
const ghi = RocStr.init(testing.allocator, ghi_arr, ghi_arr.len);
var expected = [3]RocStr{
RocStr.empty(), ghi, RocStr.empty(),
};
defer {
for (array) |rocStr| {
rocStr.deinit(testing.allocator);
}
for (expected) |rocStr| {
rocStr.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
expect(array[1].eq(expected[1]));
expect(array[2].eq(expected[2]));
}
test "strSplitInPlace: three pieces" {
// Str.split "a!b!c" "!" == [ "a", "b", "c" ]
const str_arr = "a!b!c";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = undefined;
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const a = RocStr.init(testing.allocator, "a", 1);
const b = RocStr.init(testing.allocator, "b", 1);
const c = RocStr.init(testing.allocator, "c", 1);
var expected_array = [array_len]RocStr{
a, b, c,
};
defer {
for (array) |roc_str| {
roc_str.deinit(testing.allocator);
}
for (expected_array) |roc_str| {
roc_str.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(expected_array.len, array.len);
expect(array[0].eq(expected_array[0]));
expect(array[1].eq(expected_array[1]));
expect(array[2].eq(expected_array[2]));
}
// This is used for `Str.split : Str, Str -> Array Str
// It is used to count how many segments the input `_str`
// needs to be broken into, so that we can allocate a array
// of that size. It always returns at least 1.
pub fn countSegments(string: RocStr, delimiter: RocStr) callconv(.C) usize {
const str_bytes = string.asU8ptr();
const str_len = string.len();
const delimiter_bytes_ptrs = delimiter.asU8ptr();
const delimiter_len = delimiter.len();
var count: usize = 1;
if (str_len > delimiter_len) {
var str_index: usize = 0;
const end_cond: usize = str_len - delimiter_len + 1;
while (str_index < end_cond) {
var delimiter_index: usize = 0;
var matches_delimiter = true;
while (delimiter_index < delimiter_len) {
const delimiterChar = delimiter_bytes_ptrs[delimiter_index];
const strChar = str_bytes[str_index + delimiter_index];
if (delimiterChar != strChar) {
matches_delimiter = false;
break;
}
delimiter_index += 1;
}
if (matches_delimiter) {
count += 1;
}
str_index += 1;
}
}
return count;
}
test "countSegments: long delimiter" {
// Str.split "str" "delimiter" == [ "str" ]
// 1 segment
const str_arr = "str";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "delimiter";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 1);
}
test "countSegments: delimiter at start" {
// Str.split "hello there" "hello" == [ "", " there" ]
// 2 segments
const str_arr = "hello there";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "hello";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 2);
}
test "countSegments: delimiter interspered" {
// Str.split "a!b!c" "!" == [ "a", "b", "c" ]
// 3 segments
const str_arr = "a!b!c";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 3);
}
fn rocStrFromLiteral(bytes_arr: *const []u8) RocStr {}
// Str.startsWith
pub fn startsWith(string: RocStr, prefix: RocStr) callconv(.C) bool {
const bytes_len = string.len();
const bytes_ptr = string.asU8ptr();
const prefix_len = prefix.len();
const prefix_ptr = prefix.asU8ptr();
if (prefix_len > bytes_len) {
return false;
}
// we won't exceed bytes_len due to the previous check
var i: usize = 0;
while (i < prefix_len) {
if (bytes_ptr[i] != prefix_ptr[i]) {
return false;
}
i += 1;
}
return true;
}
test "startsWith: foo starts with fo" {
const foo = RocStr.init(testing.allocator, "foo", 3);
const fo = RocStr.init(testing.allocator, "fo", 2);
expect(startsWith(foo, fo));
}
test "startsWith: 123456789123456789 starts with 123456789123456789" {
const str = RocStr.init(testing.allocator, "123456789123456789", 18);
defer str.deinit(testing.allocator);
expect(startsWith(str, str));
}
test "startsWith: 12345678912345678910 starts with 123456789123456789" {
const str = RocStr.init(testing.allocator, "12345678912345678910", 20);
defer str.deinit(testing.allocator);
const prefix = RocStr.init(testing.allocator, "123456789123456789", 18);
defer prefix.deinit(testing.allocator);
expect(startsWith(str, prefix));
}
// Str.endsWith
pub fn endsWith(string: RocStr, suffix: RocStr) callconv(.C) bool {
const bytes_len = string.len();
const bytes_ptr = string.asU8ptr();
const suffix_len = suffix.len();
const suffix_ptr = suffix.asU8ptr();
if (suffix_len > bytes_len) {
return false;
}
const offset: usize = bytes_len - suffix_len;
var i: usize = 0;
while (i < suffix_len) {
if (bytes_ptr[i + offset] != suffix_ptr[i]) {
return false;
}
i += 1;
}
return true;
}
test "endsWith: foo ends with oo" {
const foo = RocStr.init(testing.allocator, "foo", 3);
const oo = RocStr.init(testing.allocator, "oo", 2);
defer foo.deinit(testing.allocator);
defer oo.deinit(testing.allocator);
expect(endsWith(foo, oo));
}
test "endsWith: 123456789123456789 ends with 123456789123456789" {
const str = RocStr.init(testing.allocator, "123456789123456789", 18);
defer str.deinit(testing.allocator);
expect(endsWith(str, str));
}
test "endsWith: 12345678912345678910 ends with 345678912345678910" {
const str = RocStr.init(testing.allocator, "12345678912345678910", 20);
const suffix = RocStr.init(testing.allocator, "345678912345678910", 18);
defer str.deinit(testing.allocator);
defer suffix.deinit(testing.allocator);
expect(endsWith(str, suffix));
}
test "endsWith: hello world ends with world" {
const str = RocStr.init(testing.allocator, "hello world", 11);
const suffix = RocStr.init(testing.allocator, "world", 5);
defer str.deinit(testing.allocator);
defer suffix.deinit(testing.allocator);
expect(endsWith(str, suffix));
}
// Str.concat
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strConcatC(ptr_size: u32, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) callconv(.C) RocStr {
return @call(.{ .modifier = always_inline }, strConcat, .{ std.heap.c_allocator, ptr_size, result_in_place, arg1, arg2 });
}
fn strConcat(allocator: *Allocator, ptr_size: u32, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) RocStr {
return switch (ptr_size) {
4 => strConcatHelp(allocator, i32, result_in_place, arg1, arg2),
8 => strConcatHelp(allocator, i64, result_in_place, arg1, arg2),
else => unreachable,
};
}
fn strConcatHelp(allocator: *Allocator, comptime T: type, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) RocStr {
if (arg1.isEmpty()) {
return RocStr.clone(allocator, T, result_in_place, arg2);
} else if (arg2.isEmpty()) {
return RocStr.clone(allocator, T, result_in_place, arg1);
} else {
const combined_length = arg1.len() + arg2.len();
const small_str_bytes = 2 * @sizeOf(T);
const result_is_big = combined_length >= small_str_bytes;
if (result_is_big) {
var result = RocStr.initBig(allocator, T, result_in_place, combined_length);
{
const old_bytes = arg1.asU8ptr();
const new_bytes: [*]u8 = @ptrCast([*]u8, result.str_bytes);
@memcpy(new_bytes, old_bytes, arg1.len());
}
{
const old_bytes = arg2.asU8ptr();
const new_bytes = @ptrCast([*]u8, result.str_bytes) + arg1.len();
@memcpy(new_bytes, old_bytes, arg2.len());
}
return result;
} else {
var result = [16]u8{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
// if the result is small, then for sure arg1 and arg2 are also small
{
var old_bytes: [*]u8 = @ptrCast([*]u8, &@bitCast([16]u8, arg1));
var new_bytes: [*]u8 = @ptrCast([*]u8, &result);
@memcpy(new_bytes, old_bytes, arg1.len());
}
{
var old_bytes: [*]u8 = @ptrCast([*]u8, &@bitCast([16]u8, arg2));
var new_bytes = @ptrCast([*]u8, &result) + arg1.len();
@memcpy(new_bytes, old_bytes, arg2.len());
}
const mask: u8 = 0b1000_0000;
const final_byte = @truncate(u8, combined_length) | mask;
result[small_str_bytes - 1] = final_byte;
return @bitCast(RocStr, result);
}
return result;
}
}
test "RocStr.concat: small concat small" {
const str1_len = 3;
var str1: [str1_len]u8 = "foo".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
const str3_len = 6;
var str3: [str3_len]u8 = "fooabc".*;
const str3_ptr: [*]u8 = &str3;
var roc_str3 = RocStr.init(testing.allocator, str3_ptr, str3_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
roc_str3.deinit(testing.allocator);
}
const result = strConcat(testing.allocator, 8, InPlace.Clone, roc_str1, roc_str2);
defer result.deinit(testing.allocator);
expect(roc_str3.eq(result));
}

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
const std = @import("std");
const str = @import("str.zig");
const str = @import("str");
const RocStr = str.RocStr;
const testing = std.testing;
const expectEqual = testing.expectEqual;

View File

@ -1,907 +0,0 @@
const std = @import("std");
const mem = std.mem;
const always_inline = std.builtin.CallOptions.Modifier.always_inline;
const Allocator = mem.Allocator;
const unicode = std.unicode;
const testing = std.testing;
const expectEqual = testing.expectEqual;
const expect = testing.expect;
const InPlace = packed enum(u8) {
InPlace,
Clone,
};
pub const RocStr = extern struct {
str_bytes: ?[*]u8,
str_len: usize,
pub inline fn empty() RocStr {
return RocStr{
.str_len = 0,
.str_bytes = null,
};
}
// This clones the pointed-to bytes if they won't fit in a
// small string, and returns a (pointer, len) tuple which points to them.
pub fn init(allocator: *Allocator, bytes_ptr: [*]const u8, length: usize) RocStr {
const roc_str_size = @sizeOf(RocStr);
if (length < roc_str_size) {
var ret_small_str = RocStr.empty();
const target_ptr = @ptrToInt(&ret_small_str);
var index: u8 = 0;
// TODO isn't there a way to bulk-zero data in Zig?
// Zero out the data, just to be safe
while (index < roc_str_size) {
var offset_ptr = @intToPtr(*u8, target_ptr + index);
offset_ptr.* = 0;
index += 1;
}
// TODO rewrite this into a for loop
index = 0;
while (index < length) {
var offset_ptr = @intToPtr(*u8, target_ptr + index);
offset_ptr.* = bytes_ptr[index];
index += 1;
}
// set the final byte to be the length
const final_byte_ptr = @intToPtr(*u8, target_ptr + roc_str_size - 1);
final_byte_ptr.* = @truncate(u8, length) ^ 0b10000000;
return ret_small_str;
} else {
var result = RocStr.initBig(allocator, u64, InPlace.Clone, length);
@memcpy(@ptrCast([*]u8, result.str_bytes), bytes_ptr, length);
return result;
}
}
pub fn initBig(allocator: *Allocator, comptime T: type, in_place: InPlace, number_of_chars: u64) RocStr {
const length = @sizeOf(T) + number_of_chars;
var new_bytes: []T = allocator.alloc(T, length) catch unreachable;
if (in_place == InPlace.InPlace) {
new_bytes[0] = @intCast(T, number_of_chars);
} else {
new_bytes[0] = std.math.minInt(T);
}
var first_element = @ptrCast([*]align(@alignOf(T)) u8, new_bytes);
first_element += @sizeOf(usize);
return RocStr{
.str_bytes = first_element,
.str_len = number_of_chars,
};
}
pub fn deinit(self: RocStr, allocator: *Allocator) void {
if (!self.isSmallStr() and !self.isEmpty()) {
const str_bytes_ptr: [*]u8 = self.str_bytes orelse unreachable;
const str_bytes: []u8 = str_bytes_ptr[0..self.str_len];
allocator.free(str_bytes);
}
}
// This takes ownership of the pointed-to bytes if they won't fit in a
// small string, and returns a (pointer, len) tuple which points to them.
pub fn withCapacity(length: usize) RocStr {
const roc_str_size = @sizeOf(RocStr);
if (length < roc_str_size) {
return RocStr.empty();
} else {
var new_bytes: []T = allocator.alloc(u8, length) catch unreachable;
var new_bytes_ptr: [*]u8 = @ptrCast([*]u8, &new_bytes);
return RocStr{
.str_bytes = new_bytes_ptr,
.str_len = length,
};
}
}
pub fn eq(self: RocStr, other: RocStr) bool {
const self_bytes_ptr: ?[*]const u8 = self.str_bytes;
const other_bytes_ptr: ?[*]const u8 = other.str_bytes;
// If they are byte-for-byte equal, they're definitely equal!
if (self_bytes_ptr == other_bytes_ptr and self.str_len == other.str_len) {
return true;
}
const self_len = self.len();
const other_len = other.len();
// If their lengths are different, they're definitely unequal.
if (self_len != other_len) {
return false;
}
const self_u8_ptr: [*]const u8 = @ptrCast([*]const u8, &self);
const other_u8_ptr: [*]const u8 = @ptrCast([*]const u8, &other);
const self_bytes: [*]const u8 = if (self.isSmallStr() or self.isEmpty()) self_u8_ptr else self_bytes_ptr orelse unreachable;
const other_bytes: [*]const u8 = if (other.isSmallStr() or other.isEmpty()) other_u8_ptr else other_bytes_ptr orelse unreachable;
var index: usize = 0;
// TODO rewrite this into a for loop
const length = self.len();
while (index < length) {
if (self_bytes[index] != other_bytes[index]) {
return false;
}
index = index + 1;
}
return true;
}
pub fn clone(allocator: *Allocator, comptime T: type, in_place: InPlace, str: RocStr) RocStr {
if (str.isSmallStr() or str.isEmpty()) {
// just return the bytes
return str;
} else {
var new_str = RocStr.initBig(allocator, T, in_place, str.str_len);
var old_bytes: [*]u8 = @ptrCast([*]u8, str.str_bytes);
var new_bytes: [*]u8 = @ptrCast([*]u8, new_str.str_bytes);
@memcpy(new_bytes, old_bytes, str.str_len);
return new_str;
}
}
pub fn isSmallStr(self: RocStr) bool {
return @bitCast(isize, self.str_len) < 0;
}
pub fn len(self: RocStr) usize {
const bytes: [*]const u8 = @ptrCast([*]const u8, &self);
const last_byte = bytes[@sizeOf(RocStr) - 1];
const small_len = @as(usize, last_byte ^ 0b1000_0000);
const big_len = self.str_len;
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return if (self.isSmallStr()) small_len else big_len;
}
pub fn isEmpty(self: RocStr) bool {
return self.len() == 0;
}
pub fn asSlice(self: RocStr) []u8 {
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return self.asU8ptr()[0..self.len()];
}
pub fn asU8ptr(self: RocStr) [*]u8 {
// Since this conditional would be prone to branch misprediction,
// make sure it will compile to a cmov.
return if (self.isSmallStr() or self.isEmpty()) (&@bitCast([16]u8, self)) else (@ptrCast([*]u8, self.str_bytes));
}
// Given a pointer to some bytes, write the first (len) bytes of this
// RocStr's contents into it.
//
// One use for this function is writing into an `alloca` for a C string that
// only needs to live long enough to be passed as an argument to
// a C function - like the file path argument to `fopen`.
pub fn memcpy(self: RocStr, dest: [*]u8, length: usize) void {
const src = self.asU8ptr();
@memcpy(dest, src, length);
}
test "RocStr.eq: equal" {
const str1_len = 3;
var str1: [str1_len]u8 = "abc".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
expect(roc_str1.eq(roc_str2));
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
test "RocStr.eq: not equal different length" {
const str1_len = 4;
var str1: [str1_len]u8 = "abcd".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
expect(!roc_str1.eq(roc_str2));
}
test "RocStr.eq: not equal same length" {
const str1_len = 3;
var str1: [str1_len]u8 = "acb".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
}
expect(!roc_str1.eq(roc_str2));
}
};
// Str.numberOfBytes
pub fn strNumberOfBytes(string: RocStr) callconv(.C) usize {
return string.len();
}
// Str.fromInt
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strFromIntC(int: i64) callconv(.C) RocStr {
return strFromInt(std.heap.c_allocator, int);
}
fn strFromInt(allocator: *Allocator, int: i64) RocStr {
// prepare for having multiple integer types in the future
return @call(.{ .modifier = always_inline }, strFromIntHelp, .{ allocator, i64, int });
}
fn strFromIntHelp(allocator: *Allocator, comptime T: type, int: T) RocStr {
// determine maximum size for this T
comptime const size = comptime blk: {
// the string representation of the minimum i128 value uses at most 40 characters
var buf: [40]u8 = undefined;
var result = std.fmt.bufPrint(&buf, "{}", .{std.math.minInt(T)}) catch unreachable;
break :blk result.len;
};
var buf: [size]u8 = undefined;
const result = std.fmt.bufPrint(&buf, "{}", .{int}) catch unreachable;
return RocStr.init(allocator, &buf, result.len);
}
// Str.split
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strSplitInPlaceC(array: [*]RocStr, string: RocStr, delimiter: RocStr) callconv(.C) void {
return @call(.{ .modifier = always_inline }, strSplitInPlace, .{ std.heap.c_allocator, array, string, delimiter });
}
fn strSplitInPlace(allocator: *Allocator, array: [*]RocStr, string: RocStr, delimiter: RocStr) void {
var ret_array_index: usize = 0;
var slice_start_index: usize = 0;
var str_index: usize = 0;
const str_bytes = string.asU8ptr();
const str_len = string.len();
const delimiter_bytes_ptrs = delimiter.asU8ptr();
const delimiter_len = delimiter.len();
if (str_len > delimiter_len) {
const end_index: usize = str_len - delimiter_len + 1;
while (str_index <= end_index) {
var delimiter_index: usize = 0;
var matches_delimiter = true;
while (delimiter_index < delimiter_len) {
var delimiterChar = delimiter_bytes_ptrs[delimiter_index];
var strChar = str_bytes[str_index + delimiter_index];
if (delimiterChar != strChar) {
matches_delimiter = false;
break;
}
delimiter_index += 1;
}
if (matches_delimiter) {
const segment_len: usize = str_index - slice_start_index;
array[ret_array_index] = RocStr.init(allocator, str_bytes + slice_start_index, segment_len);
slice_start_index = str_index + delimiter_len;
ret_array_index += 1;
str_index += delimiter_len;
} else {
str_index += 1;
}
}
}
array[ret_array_index] = RocStr.init(allocator, str_bytes + slice_start_index, str_len - slice_start_index);
}
test "strSplitInPlace: no delimiter" {
// Str.split "abc" "!" == [ "abc" ]
const str_arr = "abc";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
var array: [1]RocStr = undefined;
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
var expected = [1]RocStr{
str,
};
defer {
for (array) |roc_str| {
roc_str.deinit(testing.allocator);
}
for (expected) |roc_str| {
roc_str.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
}
test "strSplitInPlace: empty end" {
const str_arr = "1---- ---- ---- ---- ----2---- ---- ---- ---- ----";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "---- ---- ---- ---- ----";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = [_]RocStr{
undefined,
undefined,
undefined,
};
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const one = RocStr.init(testing.allocator, "1", 1);
const two = RocStr.init(testing.allocator, "2", 1);
var expected = [3]RocStr{
one, two, RocStr.empty(),
};
defer {
for (array) |rocStr| {
rocStr.deinit(testing.allocator);
}
for (expected) |rocStr| {
rocStr.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
expect(array[1].eq(expected[1]));
expect(array[2].eq(expected[2]));
}
test "strSplitInPlace: delimiter on sides" {
const str_arr = "tttghittt";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "ttt";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = [_]RocStr{
undefined,
undefined,
undefined,
};
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const ghi_arr = "ghi";
const ghi = RocStr.init(testing.allocator, ghi_arr, ghi_arr.len);
var expected = [3]RocStr{
RocStr.empty(), ghi, RocStr.empty(),
};
defer {
for (array) |rocStr| {
rocStr.deinit(testing.allocator);
}
for (expected) |rocStr| {
rocStr.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(array.len, expected.len);
expect(array[0].eq(expected[0]));
expect(array[1].eq(expected[1]));
expect(array[2].eq(expected[2]));
}
test "strSplitInPlace: three pieces" {
// Str.split "a!b!c" "!" == [ "a", "b", "c" ]
const str_arr = "a!b!c";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
const array_len: usize = 3;
var array: [array_len]RocStr = undefined;
const array_ptr: [*]RocStr = &array;
strSplitInPlace(testing.allocator, array_ptr, str, delimiter);
const a = RocStr.init(testing.allocator, "a", 1);
const b = RocStr.init(testing.allocator, "b", 1);
const c = RocStr.init(testing.allocator, "c", 1);
var expected_array = [array_len]RocStr{
a, b, c,
};
defer {
for (array) |roc_str| {
roc_str.deinit(testing.allocator);
}
for (expected_array) |roc_str| {
roc_str.deinit(testing.allocator);
}
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
expectEqual(expected_array.len, array.len);
expect(array[0].eq(expected_array[0]));
expect(array[1].eq(expected_array[1]));
expect(array[2].eq(expected_array[2]));
}
// This is used for `Str.split : Str, Str -> Array Str
// It is used to count how many segments the input `_str`
// needs to be broken into, so that we can allocate a array
// of that size. It always returns at least 1.
pub fn countSegments(string: RocStr, delimiter: RocStr) callconv(.C) usize {
const str_bytes = string.asU8ptr();
const str_len = string.len();
const delimiter_bytes_ptrs = delimiter.asU8ptr();
const delimiter_len = delimiter.len();
var count: usize = 1;
if (str_len > delimiter_len) {
var str_index: usize = 0;
const end_cond: usize = str_len - delimiter_len + 1;
while (str_index < end_cond) {
var delimiter_index: usize = 0;
var matches_delimiter = true;
while (delimiter_index < delimiter_len) {
const delimiterChar = delimiter_bytes_ptrs[delimiter_index];
const strChar = str_bytes[str_index + delimiter_index];
if (delimiterChar != strChar) {
matches_delimiter = false;
break;
}
delimiter_index += 1;
}
if (matches_delimiter) {
count += 1;
}
str_index += 1;
}
}
return count;
}
test "countSegments: long delimiter" {
// Str.split "str" "delimiter" == [ "str" ]
// 1 segment
const str_arr = "str";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "delimiter";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 1);
}
test "countSegments: delimiter at start" {
// Str.split "hello there" "hello" == [ "", " there" ]
// 2 segments
const str_arr = "hello there";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "hello";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 2);
}
test "countSegments: delimiter interspered" {
// Str.split "a!b!c" "!" == [ "a", "b", "c" ]
// 3 segments
const str_arr = "a!b!c";
const str = RocStr.init(testing.allocator, str_arr, str_arr.len);
const delimiter_arr = "!";
const delimiter = RocStr.init(testing.allocator, delimiter_arr, delimiter_arr.len);
defer {
str.deinit(testing.allocator);
delimiter.deinit(testing.allocator);
}
const segments_count = countSegments(str, delimiter);
expectEqual(segments_count, 3);
}
// Str.countGraphemeClusters
const grapheme = @import("helpers/grapheme.zig");
pub fn countGraphemeClusters(string: RocStr) callconv(.C) usize {
if (string.isEmpty()) {
return 0;
}
const bytes_len = string.len();
const bytes_ptr = string.asU8ptr();
var bytes = bytes_ptr[0..bytes_len];
var iter = (unicode.Utf8View.init(bytes) catch unreachable).iterator();
var count: usize = 0;
var grapheme_break_state: ?grapheme.BoundClass = null;
var grapheme_break_state_ptr = &grapheme_break_state;
var opt_last_codepoint: ?u21 = null;
while (iter.nextCodepoint()) |cur_codepoint| {
if (opt_last_codepoint) |last_codepoint| {
var did_break = grapheme.isGraphemeBreak(last_codepoint, cur_codepoint, grapheme_break_state_ptr);
if (did_break) {
count += 1;
grapheme_break_state = null;
}
}
opt_last_codepoint = cur_codepoint;
}
// If there are no breaks, but the str is not empty, then there
// must be a single grapheme
if (bytes_len != 0) {
count += 1;
}
return count;
}
fn rocStrFromLiteral(bytes_arr: *const []u8) RocStr {}
test "countGraphemeClusters: empty string" {
const count = countGraphemeClusters(RocStr.empty());
expectEqual(count, 0);
}
test "countGraphemeClusters: ascii characters" {
const bytes_arr = "abcd";
const bytes_len = bytes_arr.len;
const str = RocStr.init(testing.allocator, bytes_arr, bytes_len);
defer str.deinit(testing.allocator);
const count = countGraphemeClusters(str);
expectEqual(count, 4);
}
test "countGraphemeClusters: utf8 characters" {
const bytes_arr = "ãxā";
const bytes_len = bytes_arr.len;
const str = RocStr.init(testing.allocator, bytes_arr, bytes_len);
defer str.deinit(testing.allocator);
const count = countGraphemeClusters(str);
expectEqual(count, 3);
}
test "countGraphemeClusters: emojis" {
const bytes_arr = "🤔🤔🤔";
const bytes_len = bytes_arr.len;
const str = RocStr.init(testing.allocator, bytes_arr, bytes_len);
defer str.deinit(testing.allocator);
const count = countGraphemeClusters(str);
expectEqual(count, 3);
}
test "countGraphemeClusters: emojis and ut8 characters" {
const bytes_arr = "🤔å🤔¥🤔ç";
const bytes_len = bytes_arr.len;
const str = RocStr.init(testing.allocator, bytes_arr, bytes_len);
defer str.deinit(testing.allocator);
const count = countGraphemeClusters(str);
expectEqual(count, 6);
}
test "countGraphemeClusters: emojis, ut8, and ascii characters" {
const bytes_arr = "6🤔å🤔e¥🤔çpp";
const bytes_len = bytes_arr.len;
const str = RocStr.init(testing.allocator, bytes_arr, bytes_len);
defer str.deinit(testing.allocator);
const count = countGraphemeClusters(str);
expectEqual(count, 10);
}
// Str.startsWith
pub fn startsWith(string: RocStr, prefix: RocStr) callconv(.C) bool {
const bytes_len = string.len();
const bytes_ptr = string.asU8ptr();
const prefix_len = prefix.len();
const prefix_ptr = prefix.asU8ptr();
if (prefix_len > bytes_len) {
return false;
}
// we won't exceed bytes_len due to the previous check
var i: usize = 0;
while (i < prefix_len) {
if (bytes_ptr[i] != prefix_ptr[i]) {
return false;
}
i += 1;
}
return true;
}
test "startsWith: foo starts with fo" {
const foo = RocStr.init(testing.allocator, "foo", 3);
const fo = RocStr.init(testing.allocator, "fo", 2);
expect(startsWith(foo, fo));
}
test "startsWith: 123456789123456789 starts with 123456789123456789" {
const str = RocStr.init(testing.allocator, "123456789123456789", 18);
defer str.deinit(testing.allocator);
expect(startsWith(str, str));
}
test "startsWith: 12345678912345678910 starts with 123456789123456789" {
const str = RocStr.init(testing.allocator, "12345678912345678910", 20);
defer str.deinit(testing.allocator);
const prefix = RocStr.init(testing.allocator, "123456789123456789", 18);
defer prefix.deinit(testing.allocator);
expect(startsWith(str, prefix));
}
// Str.endsWith
pub fn endsWith(string: RocStr, suffix: RocStr) callconv(.C) bool {
const bytes_len = string.len();
const bytes_ptr = string.asU8ptr();
const suffix_len = suffix.len();
const suffix_ptr = suffix.asU8ptr();
if (suffix_len > bytes_len) {
return false;
}
const offset: usize = bytes_len - suffix_len;
var i: usize = 0;
while (i < suffix_len) {
if (bytes_ptr[i + offset] != suffix_ptr[i]) {
return false;
}
i += 1;
}
return true;
}
test "endsWith: foo ends with oo" {
const foo = RocStr.init(testing.allocator, "foo", 3);
const oo = RocStr.init(testing.allocator, "oo", 2);
defer foo.deinit(testing.allocator);
defer oo.deinit(testing.allocator);
expect(endsWith(foo, oo));
}
test "endsWith: 123456789123456789 ends with 123456789123456789" {
const str = RocStr.init(testing.allocator, "123456789123456789", 18);
defer str.deinit(testing.allocator);
expect(endsWith(str, str));
}
test "endsWith: 12345678912345678910 ends with 345678912345678910" {
const str = RocStr.init(testing.allocator, "12345678912345678910", 20);
const suffix = RocStr.init(testing.allocator, "345678912345678910", 18);
defer str.deinit(testing.allocator);
defer suffix.deinit(testing.allocator);
expect(endsWith(str, suffix));
}
test "endsWith: hello world ends with world" {
const str = RocStr.init(testing.allocator, "hello world", 11);
const suffix = RocStr.init(testing.allocator, "world", 5);
defer str.deinit(testing.allocator);
defer suffix.deinit(testing.allocator);
expect(endsWith(str, suffix));
}
// Str.concat
// When we actually use this in Roc, libc will be linked so we have access to std.heap.c_allocator
pub fn strConcatC(ptr_size: u32, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) callconv(.C) RocStr {
return @call(.{ .modifier = always_inline }, strConcat, .{ std.heap.c_allocator, ptr_size, result_in_place, arg1, arg2 });
}
fn strConcat(allocator: *Allocator, ptr_size: u32, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) RocStr {
return switch (ptr_size) {
4 => strConcatHelp(allocator, i32, result_in_place, arg1, arg2),
8 => strConcatHelp(allocator, i64, result_in_place, arg1, arg2),
else => unreachable,
};
}
fn strConcatHelp(allocator: *Allocator, comptime T: type, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) RocStr {
if (arg1.isEmpty()) {
return RocStr.clone(allocator, T, result_in_place, arg2);
} else if (arg2.isEmpty()) {
return RocStr.clone(allocator, T, result_in_place, arg1);
} else {
const combined_length = arg1.len() + arg2.len();
const small_str_bytes = 2 * @sizeOf(T);
const result_is_big = combined_length >= small_str_bytes;
if (result_is_big) {
var result = RocStr.initBig(allocator, T, result_in_place, combined_length);
{
const old_if_small = &@bitCast([16]u8, arg1);
const old_if_big = @ptrCast([*]u8, arg1.str_bytes);
const old_bytes = if (arg1.isSmallStr()) old_if_small else old_if_big;
const new_bytes: [*]u8 = @ptrCast([*]u8, result.str_bytes);
@memcpy(new_bytes, old_bytes, arg1.len());
}
{
const old_if_small = &@bitCast([16]u8, arg2);
const old_if_big = @ptrCast([*]u8, arg2.str_bytes);
const old_bytes = if (arg2.isSmallStr()) old_if_small else old_if_big;
const new_bytes = @ptrCast([*]u8, result.str_bytes) + arg1.len();
@memcpy(new_bytes, old_bytes, arg2.len());
}
return result;
} else {
var result = [16]u8{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
// if the result is small, then for sure arg1 and arg2 are also small
{
var old_bytes: [*]u8 = @ptrCast([*]u8, &@bitCast([16]u8, arg1));
var new_bytes: [*]u8 = @ptrCast([*]u8, &result);
@memcpy(new_bytes, old_bytes, arg1.len());
}
{
var old_bytes: [*]u8 = @ptrCast([*]u8, &@bitCast([16]u8, arg2));
var new_bytes = @ptrCast([*]u8, &result) + arg1.len();
@memcpy(new_bytes, old_bytes, arg2.len());
}
const mask: u8 = 0b1000_0000;
const final_byte = @truncate(u8, combined_length) | mask;
result[small_str_bytes - 1] = final_byte;
return @bitCast(RocStr, result);
}
return result;
}
}
test "RocStr.concat: small concat small" {
const str1_len = 3;
var str1: [str1_len]u8 = "foo".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(testing.allocator, str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(testing.allocator, str2_ptr, str2_len);
const str3_len = 6;
var str3: [str3_len]u8 = "fooabc".*;
const str3_ptr: [*]u8 = &str3;
var roc_str3 = RocStr.init(testing.allocator, str3_ptr, str3_len);
defer {
roc_str1.deinit(testing.allocator);
roc_str2.deinit(testing.allocator);
roc_str3.deinit(testing.allocator);
}
const result = strConcat(testing.allocator, 8, InPlace.Clone, roc_str1, roc_str2);
defer result.deinit(testing.allocator);
expect(roc_str3.eq(result));
}