Merge branch 'trunk' into zig-hosts

This commit is contained in:
Richard Feldman 2020-12-01 23:05:11 -05:00 committed by GitHub
commit 2d9fe11c64
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 1675 additions and 829 deletions

View File

@ -54,3 +54,8 @@ maplit = "1.0.1"
indoc = "0.3.3" indoc = "0.3.3"
quickcheck = "0.8" quickcheck = "0.8"
quickcheck_macros = "0.8" quickcheck_macros = "0.8"
[features]
target-arm = []
target-aarch64 = []
target-webassembly = []

View File

@ -19,6 +19,7 @@ comptime {
exportStrFn(str.countSegments, "count_segments"); exportStrFn(str.countSegments, "count_segments");
exportStrFn(str.countGraphemeClusters, "count_grapheme_clusters"); exportStrFn(str.countGraphemeClusters, "count_grapheme_clusters");
exportStrFn(str.startsWith, "starts_with"); exportStrFn(str.startsWith, "starts_with");
exportStrFn(str.strConcat, "concat");
} }
// Export helpers - Must be run inside a comptime // Export helpers - Must be run inside a comptime

View File

@ -122,6 +122,10 @@ const RocStr = extern struct {
return if (self.is_small_str()) small_len else big_len; return if (self.is_small_str()) small_len else big_len;
} }
pub fn is_empty(self: RocStr) bool {
return self.len() == 0;
}
// Given a pointer to some bytes, write the first (len) bytes of this // Given a pointer to some bytes, write the first (len) bytes of this
// RocStr's contents into it. // RocStr's contents into it.
// //
@ -586,3 +590,145 @@ test "startsWith: 12345678912345678910 starts with 123456789123456789" {
expect(startsWith(str_ptr, str_len, prefix_ptr, prefix_len)); expect(startsWith(str_ptr, str_len, prefix_ptr, prefix_len));
} }
// Str.concat
test "RocStr.concat: small concat small" {
const str1_len = 3;
var str1: [str1_len]u8 = "foo".*;
const str1_ptr: [*]u8 = &str1;
var roc_str1 = RocStr.init(str1_ptr, str1_len);
const str2_len = 3;
var str2: [str2_len]u8 = "abc".*;
const str2_ptr: [*]u8 = &str2;
var roc_str2 = RocStr.init(str2_ptr, str2_len);
const str3_len = 6;
var str3: [str3_len]u8 = "fooabc".*;
const str3_ptr: [*]u8 = &str3;
var roc_str3 = RocStr.init(str3_ptr, str3_len);
const result = strConcat(8, InPlace.Clone, roc_str1, roc_str2);
expect(roc_str3.eq(result));
roc_str1.drop();
roc_str2.drop();
roc_str3.drop();
result.drop();
}
pub fn strConcat(ptr_size: u32, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) callconv(.C) RocStr {
return switch (ptr_size) {
4 => strConcatHelp(i32, result_in_place, arg1, arg2),
8 => strConcatHelp(i64, result_in_place, arg1, arg2),
else => unreachable,
};
}
fn strConcatHelp(comptime T: type, result_in_place: InPlace, arg1: RocStr, arg2: RocStr) RocStr {
if (arg1.is_empty()) {
return cloneNonemptyStr(T, result_in_place, arg2);
} else if (arg2.is_empty()) {
return cloneNonemptyStr(T, result_in_place, arg1);
} else {
const combined_length = arg1.len() + arg2.len();
const small_str_bytes = 2 * @sizeOf(T);
const result_is_big = combined_length >= small_str_bytes;
if (result_is_big) {
var result = allocate_str(T, result_in_place, combined_length);
{
const old_if_small = &@bitCast([16]u8, arg1);
const old_if_big = @ptrCast([*]u8, arg1.str_bytes);
const old_bytes = if (arg1.is_small_str()) old_if_small else old_if_big;
const new_bytes: [*]u8 = @ptrCast([*]u8, result.str_bytes);
@memcpy(new_bytes, old_bytes, arg1.len());
}
{
const old_if_small = &@bitCast([16]u8, arg2);
const old_if_big = @ptrCast([*]u8, arg2.str_bytes);
const old_bytes = if (arg2.is_small_str()) old_if_small else old_if_big;
const new_bytes = @ptrCast([*]u8, result.str_bytes) + arg1.len();
@memcpy(new_bytes, old_bytes, arg2.len());
}
return result;
} else {
var result = [16]u8{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
// if the result is small, then for sure arg1 and arg2 are also small
{
var old_bytes: [*]u8 = @ptrCast([*]u8, &@bitCast([16]u8, arg1));
var new_bytes: [*]u8 = @ptrCast([*]u8, &result);
@memcpy(new_bytes, old_bytes, arg1.len());
}
{
var old_bytes: [*]u8 = @ptrCast([*]u8, &@bitCast([16]u8, arg2));
var new_bytes = @ptrCast([*]u8, &result) + arg1.len();
@memcpy(new_bytes, old_bytes, arg2.len());
}
const mask: u8 = 0b1000_0000;
const final_byte = @truncate(u8, combined_length) | mask;
result[small_str_bytes - 1] = final_byte;
return @bitCast(RocStr, result);
}
return result;
}
}
const InPlace = packed enum(u8) {
InPlace,
Clone,
};
fn cloneNonemptyStr(comptime T: type, in_place: InPlace, str: RocStr) RocStr {
if (str.is_small_str() or str.is_empty()) {
// just return the bytes
return str;
} else {
var new_str = allocate_str(T, in_place, str.str_len);
var old_bytes: [*]u8 = @ptrCast([*]u8, str.str_bytes);
var new_bytes: [*]u8 = @ptrCast([*]u8, new_str.str_bytes);
@memcpy(new_bytes, old_bytes, str.str_len);
return new_str;
}
}
fn allocate_str(comptime T: type, in_place: InPlace, number_of_chars: u64) RocStr {
const length = @sizeOf(T) + number_of_chars;
var new_bytes: [*]T = @ptrCast([*]T, @alignCast(@alignOf(T), malloc(length)));
if (in_place == InPlace.InPlace) {
new_bytes[0] = @intCast(T, number_of_chars);
} else {
new_bytes[0] = std.math.minInt(T);
}
var first_element = @ptrCast([*]align(@alignOf(T)) u8, new_bytes);
first_element += 8;
return RocStr{
.str_bytes = first_element,
.str_len = number_of_chars,
};
}

View File

@ -24,6 +24,7 @@ pub const NUM_IS_FINITE: &str = "roc_builtins.num.is_finite";
pub const NUM_POW_INT: &str = "roc_builtins.num.pow_int"; pub const NUM_POW_INT: &str = "roc_builtins.num.pow_int";
pub const STR_COUNT_SEGMENTS: &str = "roc_builtins.str.count_segments"; pub const STR_COUNT_SEGMENTS: &str = "roc_builtins.str.count_segments";
pub const STR_CONCAT: &str = "roc_builtins.str.concat";
pub const STR_STR_SPLIT_IN_PLACE: &str = "roc_builtins.str.str_split_in_place"; pub const STR_STR_SPLIT_IN_PLACE: &str = "roc_builtins.str.str_split_in_place";
pub const STR_COUNT_GRAPEHEME_CLUSTERS: &str = "roc_builtins.str.count_grapheme_clusters"; pub const STR_COUNT_GRAPEHEME_CLUSTERS: &str = "roc_builtins.str.count_grapheme_clusters";
pub const STR_STARTS_WITH: &str = "roc_builtins.str.starts_with"; pub const STR_STARTS_WITH: &str = "roc_builtins.str.starts_with";

View File

@ -604,7 +604,9 @@ pub fn build_exp_expr<'a, 'ctx, 'env>(
match expr { match expr {
Literal(literal) => build_exp_literal(env, literal), Literal(literal) => build_exp_literal(env, literal),
RunLowLevel(op, symbols) => run_low_level(env, scope, parent, layout, *op, symbols), RunLowLevel(op, symbols) => {
run_low_level(env, layout_ids, scope, parent, layout, *op, symbols)
}
ForeignCall { ForeignCall {
foreign_symbol, foreign_symbol,
@ -1165,12 +1167,10 @@ fn list_literal<'a, 'ctx, 'env>(
let builder = env.builder; let builder = env.builder;
let len_u64 = elems.len() as u64; let len_u64 = elems.len() as u64;
let elem_bytes = elem_layout.stack_size(env.ptr_bytes) as u64;
let ptr = { let ptr = {
let bytes_len = elem_bytes * len_u64;
let len_type = env.ptr_int(); let len_type = env.ptr_int();
let len = len_type.const_int(bytes_len, false); let len = len_type.const_int(len_u64, false);
allocate_list(env, inplace, elem_layout, len) allocate_list(env, inplace, elem_layout, len)
@ -2383,6 +2383,7 @@ fn call_with_args<'a, 'ctx, 'env>(
} }
#[derive(Copy, Clone)] #[derive(Copy, Clone)]
#[repr(u8)]
pub enum InPlace { pub enum InPlace {
InPlace, InPlace,
Clone, Clone,
@ -2409,6 +2410,7 @@ pub static COLD_CALL_CONV: u32 = 9;
fn run_low_level<'a, 'ctx, 'env>( fn run_low_level<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>, env: &Env<'a, 'ctx, 'env>,
layout_ids: &mut LayoutIds<'a>,
scope: &Scope<'a, 'ctx>, scope: &Scope<'a, 'ctx>,
parent: FunctionValue<'ctx>, parent: FunctionValue<'ctx>,
layout: &Layout<'a>, layout: &Layout<'a>,
@ -2522,7 +2524,16 @@ fn run_low_level<'a, 'ctx, 'env>(
let inplace = get_inplace_from_layout(layout); let inplace = get_inplace_from_layout(layout);
list_map(env, inplace, parent, func, func_layout, list, list_layout) list_map(
env,
layout_ids,
inplace,
parent,
func,
func_layout,
list,
list_layout,
)
} }
ListKeepIf => { ListKeepIf => {
// List.keepIf : List elem, (elem -> Bool) -> List elem // List.keepIf : List elem, (elem -> Bool) -> List elem

View File

@ -3,12 +3,13 @@ use crate::llvm::build::{
}; };
use crate::llvm::compare::build_eq; use crate::llvm::compare::build_eq;
use crate::llvm::convert::{basic_type_from_layout, collection, get_ptr_type}; use crate::llvm::convert::{basic_type_from_layout, collection, get_ptr_type};
use crate::llvm::refcounting::decrement_refcount_layout;
use inkwell::builder::Builder; use inkwell::builder::Builder;
use inkwell::context::Context; use inkwell::context::Context;
use inkwell::types::{BasicTypeEnum, PointerType}; use inkwell::types::{BasicTypeEnum, PointerType};
use inkwell::values::{BasicValueEnum, FunctionValue, IntValue, PointerValue, StructValue}; use inkwell::values::{BasicValueEnum, FunctionValue, IntValue, PointerValue, StructValue};
use inkwell::{AddressSpace, IntPredicate}; use inkwell::{AddressSpace, IntPredicate};
use roc_mono::layout::{Builtin, Layout, MemoryMode}; use roc_mono::layout::{Builtin, Layout, LayoutIds, MemoryMode};
/// List.single : a -> List a /// List.single : a -> List a
pub fn list_single<'a, 'ctx, 'env>( pub fn list_single<'a, 'ctx, 'env>(
@ -1318,8 +1319,10 @@ pub fn list_keep_if_help<'a, 'ctx, 'env>(
} }
/// List.map : List before, (before -> after) -> List after /// List.map : List before, (before -> after) -> List after
#[allow(clippy::too_many_arguments)]
pub fn list_map<'a, 'ctx, 'env>( pub fn list_map<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>, env: &Env<'a, 'ctx, 'env>,
layout_ids: &mut LayoutIds<'a>,
inplace: InPlace, inplace: InPlace,
parent: FunctionValue<'ctx>, parent: FunctionValue<'ctx>,
func: BasicValueEnum<'ctx>, func: BasicValueEnum<'ctx>,
@ -1365,7 +1368,11 @@ pub fn list_map<'a, 'ctx, 'env>(
incrementing_elem_loop(builder, ctx, parent, list_ptr, len, "#index", list_loop); incrementing_elem_loop(builder, ctx, parent, list_ptr, len, "#index", list_loop);
store_list(env, ret_list_ptr, len) let result = store_list(env, ret_list_ptr, len);
decrement_refcount_layout(env, parent, layout_ids, list, list_layout);
result
}; };
if_list_is_not_empty(env, parent, non_empty_fn, list, list_layout, "List.map") if_list_is_not_empty(env, parent, non_empty_fn, list, list_layout, "List.map")
@ -2043,7 +2050,6 @@ pub fn allocate_list<'a, 'ctx, 'env>(
let len_type = env.ptr_int(); let len_type = env.ptr_int();
let elem_bytes = elem_layout.stack_size(env.ptr_bytes) as u64; let elem_bytes = elem_layout.stack_size(env.ptr_bytes) as u64;
let bytes_per_element = len_type.const_int(elem_bytes, false); let bytes_per_element = len_type.const_int(elem_bytes, false);
let number_of_data_bytes = builder.build_int_mul(bytes_per_element, length, "data_length"); let number_of_data_bytes = builder.build_int_mul(bytes_per_element, length, "data_length");
let rc1 = match inplace { let rc1 = match inplace {

View File

@ -1,9 +1,7 @@
use crate::llvm::build::{ use crate::llvm::build::{
call_bitcode_fn, call_void_bitcode_fn, ptr_from_symbol, Env, InPlace, Scope, call_bitcode_fn, call_void_bitcode_fn, ptr_from_symbol, Env, InPlace, Scope,
}; };
use crate::llvm::build_list::{ use crate::llvm::build_list::{allocate_list, build_basic_phi2, load_list_ptr, store_list};
allocate_list, build_basic_phi2, empty_list, incrementing_elem_loop, load_list_ptr, store_list,
};
use crate::llvm::convert::collection; use crate::llvm::convert::collection;
use inkwell::builder::Builder; use inkwell::builder::Builder;
use inkwell::types::BasicTypeEnum; use inkwell::types::BasicTypeEnum;
@ -90,333 +88,117 @@ pub fn str_split<'a, 'ctx, 'env>(
) )
} }
/*
fn cast_to_zig_str(
env: &Env<'a, 'ctx, 'env>,
str_as_struct: StructValue<'ctx>,
) -> BasicValueEnum<'ctx> {
// get the RocStr type defined by zig
let roc_str_type = env.module.get_struct_type("str.RocStr").unwrap();
// convert `{ *mut u8, i64 }` to `RocStr`
builder.build_bitcast(str_as_struct, roc_str_type, "convert_to_zig_rocstr");
}
fn cast_from_zig_str(
env: &Env<'a, 'ctx, 'env>,
str_as_struct: StructValue<'ctx>,
) -> BasicValueEnum<'ctx> {
let ret_type = BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes));
// convert `RocStr` to `{ *mut u8, i64 }`
builder.build_bitcast(str_as_struct, ret_type, "convert_from_zig_rocstr");
}
*/
fn str_symbol_to_i128<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
scope: &Scope<'a, 'ctx>,
symbol: Symbol,
) -> IntValue<'ctx> {
let str_ptr = ptr_from_symbol(scope, symbol);
let i128_ptr = env
.builder
.build_bitcast(
*str_ptr,
env.context.i128_type().ptr_type(AddressSpace::Generic),
"cast",
)
.into_pointer_value();
env.builder
.build_load(i128_ptr, "load_as_i128")
.into_int_value()
}
fn zig_str_to_struct<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
zig_str: StructValue<'ctx>,
) -> StructValue<'ctx> {
let builder = env.builder;
// get the RocStr type defined by zig
let zig_str_type = env.module.get_struct_type("str.RocStr").unwrap();
let ret_type = BasicTypeEnum::StructType(collection(env.context, env.ptr_bytes));
// a roundabout way of casting (LLVM does not accept a standard bitcast)
let allocation = builder.build_alloca(zig_str_type, "zig_result");
builder.build_store(allocation, zig_str);
let ptr3 = builder
.build_bitcast(
allocation,
env.context.i128_type().ptr_type(AddressSpace::Generic),
"cast",
)
.into_pointer_value();
let ptr4 = builder
.build_bitcast(
ptr3,
ret_type.into_struct_type().ptr_type(AddressSpace::Generic),
"cast",
)
.into_pointer_value();
builder.build_load(ptr4, "load").into_struct_value()
}
/// Str.concat : Str, Str -> Str /// Str.concat : Str, Str -> Str
pub fn str_concat<'a, 'ctx, 'env>( pub fn str_concat<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>, env: &Env<'a, 'ctx, 'env>,
inplace: InPlace, inplace: InPlace,
scope: &Scope<'a, 'ctx>, scope: &Scope<'a, 'ctx>,
parent: FunctionValue<'ctx>, _parent: FunctionValue<'ctx>,
first_str_symbol: Symbol, str1_symbol: Symbol,
second_str_symbol: Symbol, str2_symbol: Symbol,
) -> BasicValueEnum<'ctx> { ) -> BasicValueEnum<'ctx> {
let builder = env.builder; // swap the arguments; second argument comes before the second in the output string
let ctx = env.context; let str1_i128 = str_symbol_to_i128(env, scope, str1_symbol);
let str2_i128 = str_symbol_to_i128(env, scope, str2_symbol);
let second_str_ptr = ptr_from_symbol(scope, second_str_symbol); let zig_result = call_bitcode_fn(
let first_str_ptr = ptr_from_symbol(scope, first_str_symbol);
let ret_type = BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes));
load_str(
env, env,
parent, &[
*second_str_ptr, env.context
ret_type, .i32_type()
|second_str_ptr, second_str_len, second_str_smallness| { .const_int(env.ptr_bytes as u64, false)
load_str( .into(),
env, env.context
parent, .i8_type()
*first_str_ptr, .const_int(inplace as u64, false)
ret_type, .into(),
|first_str_ptr, first_str_len, first_str_smallness| { str1_i128.into(),
// first_str_len > 0 str2_i128.into(),
// We do this check to avoid allocating memory. If the first input ],
// str is empty, then we can just return the second str cloned &bitcode::STR_CONCAT,
let first_str_length_comparison = str_is_not_empty(env, first_str_len);
let if_first_str_is_empty = || {
// second_str_len > 0
// We do this check to avoid allocating memory. If the second input
// str is empty, then we can just return an empty str
let second_str_length_comparison = str_is_not_empty(env, second_str_len);
let if_second_str_is_nonempty = || {
let (new_wrapper, _) = clone_nonempty_str(
env,
inplace,
second_str_smallness,
second_str_len,
second_str_ptr,
);
BasicValueEnum::StructValue(new_wrapper)
};
let if_second_str_is_empty = || empty_list(env);
build_basic_phi2(
env,
parent,
second_str_length_comparison,
if_second_str_is_nonempty,
if_second_str_is_empty,
ret_type,
)
};
let if_first_str_is_not_empty = || {
let if_second_str_is_empty = || {
let (new_wrapper, _) = clone_nonempty_str(
env,
inplace,
first_str_smallness,
first_str_len,
first_str_ptr,
);
BasicValueEnum::StructValue(new_wrapper)
};
// second_str_len > 0
// We do this check to avoid allocating memory. If the second input
// str is empty, then we can just return the first str cloned
let second_str_length_comparison = str_is_not_empty(env, second_str_len);
let if_second_str_is_not_empty = || {
let combined_str_len = builder.build_int_add(
first_str_len,
second_str_len,
"add_list_lengths",
);
// The combined string is big iff its length is
// greater than or equal to the size in memory
// of a small str (e.g. len >= 16 on 64-bit targets)
let is_big = env.builder.build_int_compare(
IntPredicate::UGE,
combined_str_len,
env.ptr_int().const_int(env.small_str_bytes() as u64, false),
"str_is_big",
);
let if_big = || {
let combined_str_ptr =
allocate_list(env, inplace, &CHAR_LAYOUT, combined_str_len);
// TODO replace FIRST_LOOP with a memcpy!
// FIRST LOOP
let first_loop = |first_index, first_str_elem| {
// The pointer to the element in the combined list
let combined_str_elem_ptr = unsafe {
builder.build_in_bounds_gep(
combined_str_ptr,
&[first_index],
"load_index_combined_list",
)
};
// Mutate the new array in-place to change the element.
builder.build_store(combined_str_elem_ptr, first_str_elem);
};
let index_name = "#index";
let index_alloca = incrementing_elem_loop(
builder,
ctx,
parent,
first_str_ptr,
first_str_len,
index_name,
first_loop,
);
// Reset the index variable to 0
builder
.build_store(index_alloca, ctx.i64_type().const_int(0, false));
// TODO replace SECOND_LOOP with a memcpy!
// SECOND LOOP
let second_loop = |second_index, second_str_elem| {
// The pointer to the element in the combined str.
// Note that the pointer does not start at the index
// 0, it starts at the index of first_str_len. In that
// sense it is "offset".
let offset_combined_str_char_ptr = unsafe {
builder.build_in_bounds_gep(
combined_str_ptr,
&[first_str_len],
"elem",
)
};
// The pointer to the char from the second str
// in the combined list
let combined_str_char_ptr = unsafe {
builder.build_in_bounds_gep(
offset_combined_str_char_ptr,
&[second_index],
"load_index_combined_list",
)
};
// Mutate the new array in-place to change the element.
builder.build_store(combined_str_char_ptr, second_str_elem);
};
incrementing_elem_loop(
builder,
ctx,
parent,
second_str_ptr,
second_str_len,
index_name,
second_loop,
);
store_list(env, combined_str_ptr, combined_str_len)
};
let if_small = || {
let combined_str_ptr = builder.build_array_alloca(
ctx.i8_type(),
ctx.i8_type().const_int(env.small_str_bytes() as u64, false),
"alloca_small_str",
);
// TODO replace FIRST_LOOP with a memcpy!
// FIRST LOOP
let first_loop = |first_index, first_str_elem| {
// The pointer to the element in the combined list
let combined_str_elem_ptr = unsafe {
builder.build_in_bounds_gep(
combined_str_ptr,
&[first_index],
"load_index_combined_list",
)
};
// Mutate the new array in-place to change the element.
builder.build_store(combined_str_elem_ptr, first_str_elem);
};
let index_name = "#index";
let index_alloca = incrementing_elem_loop(
builder,
ctx,
parent,
first_str_ptr,
first_str_len,
index_name,
first_loop,
);
// Reset the index variable to 0
builder
.build_store(index_alloca, ctx.i64_type().const_int(0, false));
// TODO replace SECOND_LOOP with a memcpy!
// SECOND LOOP
let second_loop = |second_index, second_str_elem| {
// The pointer to the element in the combined str.
// Note that the pointer does not start at the index
// 0, it starts at the index of first_str_len. In that
// sense it is "offset".
let offset_combined_str_char_ptr = unsafe {
builder.build_in_bounds_gep(
combined_str_ptr,
&[first_str_len],
"elem",
)
};
// The pointer to the char from the second str
// in the combined list
let combined_str_char_ptr = unsafe {
builder.build_in_bounds_gep(
offset_combined_str_char_ptr,
&[second_index],
"load_index_combined_list",
)
};
// Mutate the new array in-place to change the element.
builder.build_store(combined_str_char_ptr, second_str_elem);
};
incrementing_elem_loop(
builder,
ctx,
parent,
second_str_ptr,
second_str_len,
index_name,
second_loop,
);
let final_byte = builder.build_int_cast(
combined_str_len,
ctx.i8_type(),
"str_len_to_i8",
);
let final_byte = builder.build_or(
final_byte,
ctx.i8_type().const_int(0b1000_0000, false),
"str_len_set_discriminant",
);
let final_byte_ptr = unsafe {
builder.build_in_bounds_gep(
combined_str_ptr,
&[ctx
.i8_type()
.const_int(env.small_str_bytes() as u64 - 1, false)],
"str_literal_final_byte",
)
};
builder.build_store(final_byte_ptr, final_byte);
builder.build_load(
builder
.build_bitcast(
combined_str_ptr,
collection(ctx, env.ptr_bytes)
.ptr_type(AddressSpace::Generic),
"cast_collection",
)
.into_pointer_value(),
"small_str_array",
)
};
// If the combined length fits in a small string,
// write into a small string!
build_basic_phi2(
env,
parent,
is_big,
// the result of a Str.concat is most likely big
if_big,
if_small,
BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes)),
)
};
build_basic_phi2(
env,
parent,
second_str_length_comparison,
if_second_str_is_not_empty,
if_second_str_is_empty,
BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes)),
)
};
build_basic_phi2(
env,
parent,
first_str_length_comparison,
if_first_str_is_not_empty,
if_first_str_is_empty,
BasicTypeEnum::StructType(collection(ctx, env.ptr_bytes)),
)
},
)
},
) )
.into_struct_value();
zig_str_to_struct(env, zig_result).into()
} }
/// Obtain the string's length, cast from i8 to usize /// Obtain the string's length, cast from i8 to usize
@ -511,82 +293,6 @@ enum Smallness {
Big, Big,
} }
fn clone_nonempty_str<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
inplace: InPlace,
smallness: Smallness,
len: IntValue<'ctx>,
bytes_ptr: PointerValue<'ctx>,
) -> (StructValue<'ctx>, PointerValue<'ctx>) {
let builder = env.builder;
let ctx = env.context;
let ptr_bytes = env.ptr_bytes;
// Allocate space for the new str that we'll copy into.
match smallness {
Smallness::Small => {
let wrapper_struct_ptr = cast_str_bytes_to_wrapper(env, bytes_ptr);
let wrapper_struct = builder.build_load(wrapper_struct_ptr, "str_wrapper");
let alloca = builder.build_alloca(collection(ctx, ptr_bytes), "small_str_clone");
builder.build_store(alloca, wrapper_struct);
(wrapper_struct.into_struct_value(), alloca)
}
Smallness::Big => {
let clone_ptr = allocate_list(env, inplace, &CHAR_LAYOUT, len);
// TODO check if malloc returned null; if so, runtime error for OOM!
// Copy the bytes from the original array into the new
// one we just malloc'd.
builder
.build_memcpy(clone_ptr, ptr_bytes, bytes_ptr, ptr_bytes, len)
.unwrap();
// Create a fresh wrapper struct for the newly populated array
let struct_type = collection(ctx, env.ptr_bytes);
let mut struct_val;
// Store the pointer
struct_val = builder
.build_insert_value(
struct_type.get_undef(),
clone_ptr,
Builtin::WRAPPER_PTR,
"insert_ptr",
)
.unwrap();
// Store the length
struct_val = builder
.build_insert_value(struct_val, len, Builtin::WRAPPER_LEN, "insert_len")
.unwrap();
let answer = builder
.build_bitcast(
struct_val.into_struct_value(),
collection(ctx, ptr_bytes),
"cast_collection",
)
.into_struct_value();
(answer, clone_ptr)
}
}
}
fn cast_str_bytes_to_wrapper<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>,
bytes_ptr: PointerValue<'ctx>,
) -> PointerValue<'ctx> {
let struct_ptr_type = collection(env.context, env.ptr_bytes).ptr_type(AddressSpace::Generic);
env.builder
.build_bitcast(bytes_ptr, struct_ptr_type, "str_as_struct_ptr")
.into_pointer_value()
}
fn cast_str_wrapper_to_array<'a, 'ctx, 'env>( fn cast_str_wrapper_to_array<'a, 'ctx, 'env>(
env: &Env<'a, 'ctx, 'env>, env: &Env<'a, 'ctx, 'env>,
wrapper_ptr: PointerValue<'ctx>, wrapper_ptr: PointerValue<'ctx>,
@ -661,6 +367,7 @@ fn big_str_len<'ctx>(builder: &Builder<'ctx>, wrapper_struct: StructValue<'ctx>)
.into_int_value() .into_int_value()
} }
#[allow(dead_code)]
fn str_is_not_empty<'ctx>(env: &Env<'_, 'ctx, '_>, len: IntValue<'ctx>) -> IntValue<'ctx> { fn str_is_not_empty<'ctx>(env: &Env<'_, 'ctx, '_>, len: IntValue<'ctx>) -> IntValue<'ctx> {
env.builder.build_int_compare( env.builder.build_int_compare(
IntPredicate::UGT, IntPredicate::UGT,

View File

@ -42,3 +42,6 @@ bumpalo = { version = "3.2", features = ["collections"] }
libc = "0.2" libc = "0.2"
tempfile = "3.1.0" tempfile = "3.1.0"
itertools = "0.9" itertools = "0.9"
[features]
target-aarch64 = ["roc_build/target-aarch64"]

View File

@ -0,0 +1,814 @@
use crate::generic64::{Assembler, CallConv, GPRegTrait};
use bumpalo::collections::Vec;
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Debug)]
#[allow(dead_code)]
pub enum AArch64GPReg {
X0 = 0,
X1 = 1,
X2 = 2,
X3 = 3,
X4 = 4,
X5 = 5,
X6 = 6,
X7 = 7,
XR = 8,
X9 = 9,
X10 = 10,
X11 = 11,
X12 = 12,
X13 = 13,
X14 = 14,
X15 = 15,
IP0 = 16,
IP1 = 17,
PR = 18,
X19 = 19,
X20 = 20,
X21 = 21,
X22 = 22,
X23 = 23,
X24 = 24,
X25 = 25,
X26 = 26,
X27 = 27,
X28 = 28,
FP = 29,
LR = 30,
/// This can mean Zero or Stack Pointer depending on the context.
ZRSP = 31,
}
impl GPRegTrait for AArch64GPReg {}
pub struct AArch64Assembler {}
// AArch64Call may need to eventually be split by OS,
// but I think with how we use it, they may all be the same.
pub struct AArch64Call {}
const STACK_ALIGNMENT: u8 = 16;
impl CallConv<AArch64GPReg> for AArch64Call {
const GP_PARAM_REGS: &'static [AArch64GPReg] = &[
AArch64GPReg::X0,
AArch64GPReg::X1,
AArch64GPReg::X2,
AArch64GPReg::X3,
AArch64GPReg::X4,
AArch64GPReg::X5,
AArch64GPReg::X6,
AArch64GPReg::X7,
];
const GP_RETURN_REGS: &'static [AArch64GPReg] = Self::GP_PARAM_REGS;
const GP_DEFAULT_FREE_REGS: &'static [AArch64GPReg] = &[
// The regs we want to use first should be at the end of this vec.
// We will use pop to get which reg to use next
// Don't use frame pointer: AArch64GPReg::FP,
// Don't user indirect result location: AArch64GPReg::XR,
// Don't use platform register: AArch64GPReg::PR,
// Don't use link register: AArch64GPReg::LR,
// Don't use zero register/stack pointer: AArch64GPReg::ZRSP,
// Use callee saved regs last.
AArch64GPReg::X19,
AArch64GPReg::X20,
AArch64GPReg::X21,
AArch64GPReg::X22,
AArch64GPReg::X23,
AArch64GPReg::X24,
AArch64GPReg::X25,
AArch64GPReg::X26,
AArch64GPReg::X27,
AArch64GPReg::X28,
// Use caller saved regs first.
AArch64GPReg::X0,
AArch64GPReg::X1,
AArch64GPReg::X2,
AArch64GPReg::X3,
AArch64GPReg::X4,
AArch64GPReg::X5,
AArch64GPReg::X6,
AArch64GPReg::X7,
AArch64GPReg::X9,
AArch64GPReg::X10,
AArch64GPReg::X11,
AArch64GPReg::X12,
AArch64GPReg::X13,
AArch64GPReg::X14,
AArch64GPReg::X15,
AArch64GPReg::IP0,
AArch64GPReg::IP1,
];
const SHADOW_SPACE_SIZE: u8 = 0;
#[inline(always)]
fn callee_saved(reg: &AArch64GPReg) -> bool {
matches!(
reg,
AArch64GPReg::X19
| AArch64GPReg::X20
| AArch64GPReg::X21
| AArch64GPReg::X22
| AArch64GPReg::X23
| AArch64GPReg::X24
| AArch64GPReg::X25
| AArch64GPReg::X26
| AArch64GPReg::X27
| AArch64GPReg::X28
)
}
#[inline(always)]
fn setup_stack<'a>(
buf: &mut Vec<'a, u8>,
leaf_function: bool,
saved_regs: &[AArch64GPReg],
requested_stack_size: i32,
) -> Result<i32, String> {
// full size is upcast to i64 to make sure we don't overflow here.
let mut full_size = 8 * saved_regs.len() as i64 + requested_stack_size as i64;
if !leaf_function {
full_size += 8;
}
let alignment = if full_size <= 0 {
0
} else {
full_size % STACK_ALIGNMENT as i64
};
let offset = if alignment == 0 {
0
} else {
STACK_ALIGNMENT - alignment as u8
};
if let Some(aligned_stack_size) =
requested_stack_size.checked_add(8 * saved_regs.len() as i32 + offset as i32)
{
if aligned_stack_size > 0 {
AArch64Assembler::sub_reg64_reg64_imm32(
buf,
AArch64GPReg::ZRSP,
AArch64GPReg::ZRSP,
aligned_stack_size,
);
// All the following stores could be optimized by using `STP` to store pairs.
let mut offset = aligned_stack_size;
if !leaf_function {
offset -= 8;
AArch64Assembler::mov_stack32_reg64(buf, offset, AArch64GPReg::LR);
offset -= 8;
AArch64Assembler::mov_stack32_reg64(buf, offset, AArch64GPReg::FP);
}
for reg in saved_regs {
offset -= 8;
AArch64Assembler::mov_stack32_reg64(buf, offset, *reg);
}
Ok(aligned_stack_size)
} else {
Ok(0)
}
} else {
Err("Ran out of stack space".to_string())
}
}
#[inline(always)]
fn cleanup_stack<'a>(
buf: &mut Vec<'a, u8>,
leaf_function: bool,
saved_regs: &[AArch64GPReg],
aligned_stack_size: i32,
) -> Result<(), String> {
if aligned_stack_size > 0 {
// All the following stores could be optimized by using `STP` to store pairs.
let mut offset = aligned_stack_size;
if !leaf_function {
offset -= 8;
AArch64Assembler::mov_reg64_stack32(buf, AArch64GPReg::LR, offset);
offset -= 8;
AArch64Assembler::mov_reg64_stack32(buf, AArch64GPReg::FP, offset);
}
for reg in saved_regs {
offset -= 8;
AArch64Assembler::mov_reg64_stack32(buf, *reg, offset);
}
AArch64Assembler::add_reg64_reg64_imm32(
buf,
AArch64GPReg::ZRSP,
AArch64GPReg::ZRSP,
aligned_stack_size,
);
}
Ok(())
}
}
impl Assembler<AArch64GPReg> for AArch64Assembler {
#[inline(always)]
fn abs_reg64_reg64<'a>(_buf: &mut Vec<'a, u8>, _dst: AArch64GPReg, _src: AArch64GPReg) {
unimplemented!("abs_reg64_reg64 is not yet implement for AArch64");
}
#[inline(always)]
fn add_reg64_reg64_imm32<'a>(
buf: &mut Vec<'a, u8>,
dst: AArch64GPReg,
src: AArch64GPReg,
imm32: i32,
) {
if imm32 < 0 {
unimplemented!("immediate addition with values less than 0 are not yet implemented");
} else if imm32 < 0xFFF {
add_reg64_reg64_imm12(buf, dst, src, imm32 as u16);
} else {
unimplemented!(
"immediate additions with values greater than 12bits are not yet implemented"
);
}
}
#[inline(always)]
fn add_reg64_reg64_reg64<'a>(
buf: &mut Vec<'a, u8>,
dst: AArch64GPReg,
src1: AArch64GPReg,
src2: AArch64GPReg,
) {
add_reg64_reg64_reg64(buf, dst, src1, src2);
}
#[inline(always)]
fn mov_reg64_imm64<'a>(buf: &mut Vec<'a, u8>, dst: AArch64GPReg, imm: i64) {
let mut remaining = imm as u64;
movz_reg64_imm16(buf, dst, remaining as u16, 0);
remaining >>= 16;
if remaining > 0 {
movk_reg64_imm16(buf, dst, remaining as u16, 1);
}
remaining >>= 16;
if remaining > 0 {
movk_reg64_imm16(buf, dst, remaining as u16, 2);
}
remaining >>= 16;
if remaining > 0 {
movk_reg64_imm16(buf, dst, remaining as u16, 3);
}
}
#[inline(always)]
fn mov_reg64_reg64<'a>(buf: &mut Vec<'a, u8>, dst: AArch64GPReg, src: AArch64GPReg) {
mov_reg64_reg64(buf, dst, src);
}
#[inline(always)]
fn mov_reg64_stack32<'a>(buf: &mut Vec<'a, u8>, dst: AArch64GPReg, offset: i32) {
if offset < 0 {
unimplemented!("negative stack offsets are not yet implement for AArch64");
} else if offset < (0xFFF << 8) {
debug_assert!(offset % 8 == 0);
ldr_reg64_imm12(buf, dst, AArch64GPReg::ZRSP, (offset as u16) >> 3);
} else {
unimplemented!("stack offsets over 32k are not yet implement for AArch64");
}
}
#[inline(always)]
fn mov_stack32_reg64<'a>(buf: &mut Vec<'a, u8>, offset: i32, src: AArch64GPReg) {
if offset < 0 {
unimplemented!("negative stack offsets are not yet implement for AArch64");
} else if offset < (0xFFF << 8) {
debug_assert!(offset % 8 == 0);
str_reg64_imm12(buf, src, AArch64GPReg::ZRSP, (offset as u16) >> 3);
} else {
unimplemented!("stack offsets over 32k are not yet implement for AArch64");
}
}
#[inline(always)]
fn sub_reg64_reg64_imm32<'a>(
buf: &mut Vec<'a, u8>,
dst: AArch64GPReg,
src: AArch64GPReg,
imm32: i32,
) {
if imm32 < 0 {
unimplemented!(
"immediate subtractions with values less than 0 are not yet implemented"
);
} else if imm32 < 0xFFF {
sub_reg64_reg64_imm12(buf, dst, src, imm32 as u16);
} else {
unimplemented!(
"immediate subtractions with values greater than 12bits are not yet implemented"
);
}
}
#[inline(always)]
fn ret<'a>(buf: &mut Vec<'a, u8>) {
ret_reg64(buf, AArch64GPReg::LR)
}
}
impl AArch64Assembler {}
/// AArch64Instruction, maps all instructions to an enum.
/// Decoding the function should be cheap because we will always inline.
/// All of the operations should resolved by constants, leave just some bit manipulation.
/// Enums may not be complete since we will only add what we need.
#[derive(Debug)]
enum AArch64Instruction {
_Reserved,
_SVE,
DPImm(DPImmGroup),
Branch(BranchGroup),
LdStr(LdStrGroup),
DPReg(DPRegGroup),
_DPFloat,
}
#[derive(Debug)]
enum BranchGroup {
UnconditionBranchReg {
opc: u8,
op2: u8,
op3: u8,
reg_n: AArch64GPReg,
op4: u8,
},
}
#[derive(Debug)]
enum DPRegGroup {
AddSubShifted {
sf: bool,
subtract: bool,
set_flags: bool,
shift: u8,
reg_m: AArch64GPReg,
imm6: u8,
reg_n: AArch64GPReg,
reg_d: AArch64GPReg,
},
Logical {
sf: bool,
op: DPRegLogicalOp,
shift: u8,
reg_m: AArch64GPReg,
imm6: u8,
reg_n: AArch64GPReg,
reg_d: AArch64GPReg,
},
}
#[derive(Debug)]
enum DPImmGroup {
AddSubImm {
sf: bool,
subtract: bool,
set_flags: bool,
shift: bool,
imm12: u16,
reg_n: AArch64GPReg,
reg_d: AArch64GPReg,
},
MoveWide {
sf: bool,
opc: u8,
hw: u8,
imm16: u16,
reg_d: AArch64GPReg,
},
}
#[derive(Debug)]
enum LdStrGroup {
UnsignedImm {
size: u8,
v: bool,
opc: u8,
imm12: u16,
reg_n: AArch64GPReg,
reg_t: AArch64GPReg,
},
}
#[derive(Debug)]
#[allow(dead_code)]
enum DPRegLogicalOp {
AND,
BIC,
ORR,
ORN,
EOR,
EON,
ANDS,
BICS,
}
#[inline(always)]
fn build_instruction(inst: AArch64Instruction) -> [u8; 4] {
let mut out: u32 = 0;
match inst {
AArch64Instruction::Branch(branch) => {
out |= 0b101 << 26;
match branch {
BranchGroup::UnconditionBranchReg {
opc,
op2,
op3,
reg_n,
op4,
} => {
debug_assert!(opc <= 0b1111);
debug_assert!(op2 <= 0b11111);
debug_assert!(op3 <= 0b111111);
debug_assert!(op4 <= 0b1111);
out |= 0b1101011 << 25;
out |= (opc as u32) << 21;
out |= (op2 as u32) << 16;
out |= (op3 as u32) << 10;
out |= (reg_n as u32) << 5;
out |= op4 as u32;
}
}
}
AArch64Instruction::DPImm(dpimm) => {
out |= 0b100 << 26;
match dpimm {
DPImmGroup::MoveWide {
sf,
opc,
hw,
imm16,
reg_d,
} => {
out |= (sf as u32) << 31;
out |= (opc as u32) << 29;
out |= 0b101 << 23;
out |= (hw as u32) << 21;
out |= (imm16 as u32) << 5;
out |= reg_d as u32;
}
DPImmGroup::AddSubImm {
sf,
subtract,
set_flags,
shift,
imm12,
reg_n,
reg_d,
} => {
debug_assert!(imm12 <= 0xFFF);
out |= (sf as u32) << 31;
out |= (subtract as u32) << 30;
out |= (set_flags as u32) << 29;
out |= 0b010 << 23;
out |= (shift as u32) << 22;
out |= (imm12 as u32) << 10;
out |= (reg_n as u32) << 5;
out |= reg_d as u32;
}
}
}
AArch64Instruction::DPReg(dpreg) => {
out |= 0b101 << 25;
match dpreg {
DPRegGroup::Logical {
sf,
op,
shift,
reg_m,
imm6,
reg_n,
reg_d,
} => {
debug_assert!(shift <= 0b11);
debug_assert!(imm6 <= 0b111111);
let (opc, n) = match op {
DPRegLogicalOp::AND => (0b00, 0),
DPRegLogicalOp::BIC => (0b00, 1),
DPRegLogicalOp::ORR => (0b01, 0),
DPRegLogicalOp::ORN => (0b01, 1),
DPRegLogicalOp::EOR => (0b10, 0),
DPRegLogicalOp::EON => (0b10, 1),
DPRegLogicalOp::ANDS => (0b11, 0),
DPRegLogicalOp::BICS => (0b11, 1),
};
out |= (sf as u32) << 31;
out |= opc << 29;
out |= (shift as u32) << 22;
out |= n << 21;
out |= (reg_m as u32) << 16;
out |= (imm6 as u32) << 10;
out |= (reg_n as u32) << 5;
out |= reg_d as u32;
}
DPRegGroup::AddSubShifted {
sf,
subtract,
set_flags,
shift,
reg_m,
imm6,
reg_n,
reg_d,
} => {
debug_assert!(shift <= 0b11);
debug_assert!(imm6 <= 0b111111);
out |= (sf as u32) << 31;
out |= (subtract as u32) << 30;
out |= (set_flags as u32) << 29;
out |= 0b1 << 24;
out |= (shift as u32) << 22;
out |= (reg_m as u32) << 16;
out |= (imm6 as u32) << 10;
out |= (reg_n as u32) << 5;
out |= reg_d as u32;
}
}
}
AArch64Instruction::LdStr(ldstr) => {
out |= 0b1 << 27;
match ldstr {
LdStrGroup::UnsignedImm {
size,
v,
opc,
imm12,
reg_n,
reg_t,
} => {
debug_assert!(size <= 0b11);
debug_assert!(imm12 <= 0xFFF);
out |= (size as u32) << 30;
out |= 0b11 << 28;
out |= (v as u32) << 26;
out |= 0b1 << 24;
out |= (opc as u32) << 22;
out |= (imm12 as u32) << 10;
out |= (reg_n as u32) << 5;
out |= reg_t as u32;
}
}
}
x => unimplemented!("The instruction, {:?}, has not be implemented yet", x),
}
out.to_le_bytes()
}
// Below here are the functions for all of the assembly instructions.
// Their names are based on the instruction and operators combined.
// You should call `buf.reserve()` if you push or extend more than once.
// Unit tests are added at the bottom of the file to ensure correct asm generation.
// Please keep these in alphanumeric order.
/// `ADD Xd, Xn, imm12` -> Add Xn and imm12 and place the result into Xd.
#[inline(always)]
fn add_reg64_reg64_imm12<'a>(
buf: &mut Vec<'a, u8>,
dst: AArch64GPReg,
src: AArch64GPReg,
imm12: u16,
) {
buf.extend(&build_instruction(AArch64Instruction::DPImm(
DPImmGroup::AddSubImm {
sf: true,
subtract: false,
set_flags: false,
shift: false,
imm12,
reg_n: src,
reg_d: dst,
},
)));
}
/// `ADD Xd, Xm, Xn` -> Add Xm and Xn and place the result into Xd.
#[inline(always)]
fn add_reg64_reg64_reg64<'a>(
buf: &mut Vec<'a, u8>,
dst: AArch64GPReg,
src1: AArch64GPReg,
src2: AArch64GPReg,
) {
buf.extend(&build_instruction(AArch64Instruction::DPReg(
DPRegGroup::AddSubShifted {
sf: true,
subtract: false,
set_flags: false,
shift: 0,
reg_m: src1,
imm6: 0,
reg_n: src2,
reg_d: dst,
},
)));
}
/// `LDR Xt, [Xn, #offset]` -> Load Xn + Offset Xt. ZRSP is SP.
/// Note: imm12 is the offest divided by 8.
#[inline(always)]
fn ldr_reg64_imm12<'a>(buf: &mut Vec<'a, u8>, dst: AArch64GPReg, base: AArch64GPReg, imm12: u16) {
debug_assert!(imm12 <= 0xFFF);
buf.extend(&build_instruction(AArch64Instruction::LdStr(
LdStrGroup::UnsignedImm {
size: 0b11,
v: false,
opc: 0b01,
imm12,
reg_n: base,
reg_t: dst,
},
)));
}
/// `MOV Xd, Xm` -> Move Xm to Xd.
#[inline(always)]
fn mov_reg64_reg64<'a>(buf: &mut Vec<'a, u8>, dst: AArch64GPReg, src: AArch64GPReg) {
// MOV is equvalent to `ORR Xd, XZR, XM` in AARCH64.
buf.extend(&build_instruction(AArch64Instruction::DPReg(
DPRegGroup::Logical {
sf: true,
op: DPRegLogicalOp::ORR,
shift: 0,
reg_m: src,
imm6: 0,
reg_n: AArch64GPReg::ZRSP,
reg_d: dst,
},
)));
}
/// `MOVK Xd, imm16` -> Keeps Xd and moves an optionally shifted imm16 to Xd.
#[inline(always)]
fn movk_reg64_imm16<'a>(buf: &mut Vec<'a, u8>, dst: AArch64GPReg, imm16: u16, hw: u8) {
debug_assert!(hw <= 0b11);
// MOV is equvalent to `ORR Xd, XZR, XM` in AARCH64.
buf.extend(&build_instruction(AArch64Instruction::DPImm(
DPImmGroup::MoveWide {
sf: true,
opc: 0b11,
hw,
imm16,
reg_d: dst,
},
)));
}
/// `MOVZ Xd, imm16` -> Zeros Xd and moves an optionally shifted imm16 to Xd.
#[inline(always)]
fn movz_reg64_imm16<'a>(buf: &mut Vec<'a, u8>, dst: AArch64GPReg, imm16: u16, hw: u8) {
debug_assert!(hw <= 0b11);
// MOV is equvalent to `ORR Xd, XZR, XM` in AARCH64.
buf.extend(&build_instruction(AArch64Instruction::DPImm(
DPImmGroup::MoveWide {
sf: true,
opc: 0b10,
hw,
imm16,
reg_d: dst,
},
)));
}
/// `STR Xt, [Xn, #offset]` -> Store Xt to Xn + Offset. ZRSP is SP.
/// Note: imm12 is the offest divided by 8.
#[inline(always)]
fn str_reg64_imm12<'a>(buf: &mut Vec<'a, u8>, src: AArch64GPReg, base: AArch64GPReg, imm12: u16) {
debug_assert!(imm12 <= 0xFFF);
buf.extend(&build_instruction(AArch64Instruction::LdStr(
LdStrGroup::UnsignedImm {
size: 0b11,
v: false,
opc: 0b00,
imm12,
reg_n: base,
reg_t: src,
},
)));
}
/// `SUB Xd, Xn, imm12` -> Subtract Xn and imm12 and place the result into Xd.
#[inline(always)]
fn sub_reg64_reg64_imm12<'a>(
buf: &mut Vec<'a, u8>,
dst: AArch64GPReg,
src: AArch64GPReg,
imm12: u16,
) {
buf.extend(&build_instruction(AArch64Instruction::DPImm(
DPImmGroup::AddSubImm {
sf: true,
subtract: true,
set_flags: false,
shift: false,
imm12,
reg_n: src,
reg_d: dst,
},
)));
}
/// `RET Xn` -> Return to the address stored in Xn.
#[inline(always)]
fn ret_reg64<'a>(buf: &mut Vec<'a, u8>, xn: AArch64GPReg) {
buf.extend(&build_instruction(AArch64Instruction::Branch(
BranchGroup::UnconditionBranchReg {
opc: 0b0010,
op2: 0b11111,
op3: 0b000000,
reg_n: xn,
op4: 0b000,
},
)));
}
#[cfg(test)]
mod tests {
use super::*;
const TEST_U16: u16 = 0x1234;
//const TEST_I32: i32 = 0x12345678;
//const TEST_I64: i64 = 0x12345678_9ABCDEF0;
#[test]
fn test_add_reg64_reg64_reg64() {
let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena];
add_reg64_reg64_reg64(
&mut buf,
AArch64GPReg::X10,
AArch64GPReg::ZRSP,
AArch64GPReg::X21,
);
assert_eq!(&buf, &[0xAA, 0x02, 0x1F, 0x8B]);
}
#[test]
fn test_add_reg64_reg64_imm12() {
let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena];
add_reg64_reg64_imm12(&mut buf, AArch64GPReg::X10, AArch64GPReg::X21, 0x123);
assert_eq!(&buf, &[0xAA, 0x8E, 0x04, 0x91]);
}
#[test]
fn test_ldr_reg64_imm12() {
let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena];
ldr_reg64_imm12(&mut buf, AArch64GPReg::X21, AArch64GPReg::ZRSP, 0x123);
assert_eq!(&buf, &[0xF5, 0x8F, 0x44, 0xF9]);
}
#[test]
fn test_mov_reg64_reg64() {
let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena];
mov_reg64_reg64(&mut buf, AArch64GPReg::X10, AArch64GPReg::X21);
assert_eq!(&buf, &[0xEA, 0x03, 0x15, 0xAA]);
}
#[test]
fn test_movk_reg64_imm16() {
let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena];
movk_reg64_imm16(&mut buf, AArch64GPReg::X21, TEST_U16, 3);
assert_eq!(&buf, &[0x95, 0x46, 0xE2, 0xF2]);
}
#[test]
fn test_movz_reg64_imm16() {
let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena];
movz_reg64_imm16(&mut buf, AArch64GPReg::X21, TEST_U16, 3);
assert_eq!(&buf, &[0x95, 0x46, 0xE2, 0xD2]);
}
#[test]
fn test_str_reg64_imm12() {
let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena];
str_reg64_imm12(&mut buf, AArch64GPReg::X21, AArch64GPReg::ZRSP, 0x123);
assert_eq!(&buf, &[0xF5, 0x8F, 0x04, 0xF9]);
}
#[test]
fn test_sub_reg64_reg64_imm12() {
let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena];
sub_reg64_reg64_imm12(&mut buf, AArch64GPReg::X10, AArch64GPReg::X21, 0x123);
assert_eq!(&buf, &[0xAA, 0x8E, 0x04, 0xD1]);
}
#[test]
fn test_ret_reg64() {
let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena];
ret_reg64(&mut buf, AArch64GPReg::LR);
assert_eq!(&buf, &[0xC0, 0x03, 0x5F, 0xD6]);
}
}

View File

@ -1,49 +1,61 @@
use crate::{Backend, Env, Relocation}; use crate::{Backend, Env, Relocation};
use bumpalo::collections::Vec; use bumpalo::collections::Vec;
use roc_collections::all::{ImSet, MutMap, MutSet}; use roc_collections::all::{MutMap, MutSet};
use roc_module::symbol::Symbol; use roc_module::symbol::Symbol;
use roc_mono::ir::{Literal, Stmt}; use roc_mono::ir::{Literal, Stmt};
use std::marker::PhantomData; use std::marker::PhantomData;
use target_lexicon::Triple; use target_lexicon::Triple;
pub mod aarch64;
pub mod x86_64; pub mod x86_64;
pub trait CallConv<GPReg> { pub trait CallConv<GPReg: GPRegTrait> {
fn gp_param_regs() -> &'static [GPReg]; const GP_PARAM_REGS: &'static [GPReg];
fn gp_return_regs() -> &'static [GPReg]; const GP_RETURN_REGS: &'static [GPReg];
fn gp_default_free_regs() -> &'static [GPReg]; const GP_DEFAULT_FREE_REGS: &'static [GPReg];
// A linear scan of an array may be faster than a set technically. const SHADOW_SPACE_SIZE: u8;
// That being said, fastest would likely be a trait based on calling convention/register.
fn caller_saved_regs() -> ImSet<GPReg>;
fn callee_saved_regs() -> ImSet<GPReg>;
fn stack_pointer() -> GPReg; fn callee_saved(reg: &GPReg) -> bool;
fn frame_pointer() -> GPReg; #[inline(always)]
fn caller_saved_regs(reg: &GPReg) -> bool {
!Self::callee_saved(reg)
}
fn shadow_space_size() -> u8; fn setup_stack<'a>(
// It may be worth ignoring the red zone and keeping things simpler. buf: &mut Vec<'a, u8>,
fn red_zone_size() -> u8; leaf_function: bool,
saved_regs: &[GPReg],
requested_stack_size: i32,
) -> Result<i32, String>;
fn cleanup_stack<'a>(
buf: &mut Vec<'a, u8>,
leaf_function: bool,
saved_regs: &[GPReg],
aligned_stack_size: i32,
) -> Result<(), String>;
} }
pub trait Assembler<GPReg> { /// Assembler contains calls to the backend assembly generator.
fn add_register64bit_immediate32bit<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, imm: i32); /// These calls do not necessarily map directly to a single assembly instruction.
fn add_register64bit_register64bit<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, src: GPReg); /// They are higher level in cases where an instruction would not be common and shared between multiple architectures.
fn cmovl_register64bit_register64bit<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, src: GPReg); /// Thus, some backends will need to use mulitiple instructions to preform a single one of this calls.
fn mov_register64bit_immediate32bit<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, imm: i32); /// Generally, I prefer explicit sources, as opposed to dst being one of the sources. Ex: `x = x + y` would be `add x, x, y` instead of `add x, y`.
fn mov_register64bit_immediate64bit<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, imm: i64); /// dst should always come before sources.
fn mov_register64bit_register64bit<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, src: GPReg); pub trait Assembler<GPReg: GPRegTrait> {
fn mov_register64bit_stackoffset32bit<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, offset: i32); fn abs_reg64_reg64<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, src: GPReg);
fn mov_stackoffset32bit_register64bit<'a>(buf: &mut Vec<'a, u8>, offset: i32, src: GPReg); fn add_reg64_reg64_imm32<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, src1: GPReg, imm32: i32);
fn neg_register64bit<'a>(buf: &mut Vec<'a, u8>, reg: GPReg); fn add_reg64_reg64_reg64<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, src1: GPReg, src2: GPReg);
fn mov_reg64_imm64<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, imm: i64);
fn mov_reg64_reg64<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, src: GPReg);
fn mov_reg64_stack32<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, offset: i32);
fn mov_stack32_reg64<'a>(buf: &mut Vec<'a, u8>, offset: i32, src: GPReg);
fn sub_reg64_reg64_imm32<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, src1: GPReg, imm32: i32);
fn ret<'a>(buf: &mut Vec<'a, u8>); fn ret<'a>(buf: &mut Vec<'a, u8>);
fn sub_register64bit_immediate32bit<'a>(buf: &mut Vec<'a, u8>, dst: GPReg, imm: i32);
fn pop_register64bit<'a>(buf: &mut Vec<'a, u8>, reg: GPReg);
fn push_register64bit<'a>(buf: &mut Vec<'a, u8>, reg: GPReg);
} }
#[derive(Clone, Debug, PartialEq)] #[derive(Clone, Debug, PartialEq)]
enum SymbolStorage<GPReg> { enum SymbolStorage<GPReg: GPRegTrait> {
// These may need layout, but I am not sure. // These may need layout, but I am not sure.
// I think whenever a symbol would be used, we specify layout anyways. // I think whenever a symbol would be used, we specify layout anyways.
GPRegeg(GPReg), GPRegeg(GPReg),
@ -69,7 +81,7 @@ pub struct Backend64Bit<'a, GPReg: GPRegTrait, ASM: Assembler<GPReg>, CC: CallCo
literal_map: MutMap<Symbol, Literal<'a>>, literal_map: MutMap<Symbol, Literal<'a>>,
// This should probably be smarter than a vec. // This should probably be smarter than a vec.
// There are certain registers we should always use first. With pushing and poping, this could get mixed. // There are certain registers we should always use first. With pushing and popping, this could get mixed.
gp_free_regs: Vec<'a, GPReg>, gp_free_regs: Vec<'a, GPReg>,
// The last major thing we need is a way to decide what reg to free when all of them are full. // The last major thing we need is a way to decide what reg to free when all of them are full.
@ -109,7 +121,7 @@ impl<'a, GPReg: GPRegTrait, ASM: Assembler<GPReg>, CC: CallConv<GPReg>> Backend<
} }
fn reset(&mut self) { fn reset(&mut self) {
self.stack_size = -(CC::red_zone_size() as i32); self.stack_size = 0;
self.leaf_function = true; self.leaf_function = true;
self.last_seen_map.clear(); self.last_seen_map.clear();
self.free_map.clear(); self.free_map.clear();
@ -119,13 +131,12 @@ impl<'a, GPReg: GPRegTrait, ASM: Assembler<GPReg>, CC: CallConv<GPReg>> Backend<
self.gp_free_regs.clear(); self.gp_free_regs.clear();
self.gp_used_regs.clear(); self.gp_used_regs.clear();
self.gp_free_regs self.gp_free_regs
.extend_from_slice(CC::gp_default_free_regs()); .extend_from_slice(CC::GP_DEFAULT_FREE_REGS);
} }
fn set_not_leaf_function(&mut self) { fn set_not_leaf_function(&mut self) {
self.leaf_function = false; self.leaf_function = false;
// If this is not a leaf function, it can't use the shadow space. self.stack_size = CC::SHADOW_SPACE_SIZE as i32;
self.stack_size = CC::shadow_space_size() as i32 - CC::red_zone_size() as i32;
} }
fn literal_map(&mut self) -> &mut MutMap<Symbol, Literal<'a>> { fn literal_map(&mut self) -> &mut MutMap<Symbol, Literal<'a>> {
@ -147,38 +158,17 @@ impl<'a, GPReg: GPRegTrait, ASM: Assembler<GPReg>, CC: CallConv<GPReg>> Backend<
fn finalize(&mut self) -> Result<(&'a [u8], &[Relocation]), String> { fn finalize(&mut self) -> Result<(&'a [u8], &[Relocation]), String> {
let mut out = bumpalo::vec![in self.env.arena]; let mut out = bumpalo::vec![in self.env.arena];
if !self.leaf_function { // Setup stack.
// I believe that this will have to move away from push and to mov to be generic across backends. let mut used_regs = bumpalo::vec![in self.env.arena];
ASM::push_register64bit(&mut out, CC::frame_pointer()); used_regs.extend(&self.used_callee_saved_regs);
ASM::mov_register64bit_register64bit( let aligned_stack_size =
&mut out, CC::setup_stack(&mut out, self.leaf_function, &used_regs, self.stack_size)?;
CC::frame_pointer(),
CC::stack_pointer(),
);
}
// Save data in all callee saved regs.
let mut pop_order = bumpalo::vec![in self.env.arena];
for reg in &self.used_callee_saved_regs {
ASM::push_register64bit(&mut out, *reg);
pop_order.push(*reg);
}
if self.stack_size > 0 {
ASM::sub_register64bit_immediate32bit(&mut out, CC::stack_pointer(), self.stack_size);
}
// Add function body. // Add function body.
out.extend(&self.buf); out.extend(&self.buf);
if self.stack_size > 0 { // Cleanup stack.
ASM::add_register64bit_immediate32bit(&mut out, CC::stack_pointer(), self.stack_size); CC::cleanup_stack(&mut out, self.leaf_function, &used_regs, aligned_stack_size)?;
}
// Restore data in callee saved regs.
while let Some(reg) = pop_order.pop() {
ASM::pop_register64bit(&mut out, reg);
}
if !self.leaf_function {
ASM::pop_register64bit(&mut out, CC::frame_pointer());
}
ASM::ret(&mut out); ASM::ret(&mut out);
Ok((out.into_bump_slice(), &[])) Ok((out.into_bump_slice(), &[]))
@ -187,9 +177,7 @@ impl<'a, GPReg: GPRegTrait, ASM: Assembler<GPReg>, CC: CallConv<GPReg>> Backend<
fn build_num_abs_i64(&mut self, dst: &Symbol, src: &Symbol) -> Result<(), String> { fn build_num_abs_i64(&mut self, dst: &Symbol, src: &Symbol) -> Result<(), String> {
let dst_reg = self.claim_gp_reg(dst)?; let dst_reg = self.claim_gp_reg(dst)?;
let src_reg = self.load_to_reg(src)?; let src_reg = self.load_to_reg(src)?;
ASM::mov_register64bit_register64bit(&mut self.buf, dst_reg, src_reg); ASM::abs_reg64_reg64(&mut self.buf, dst_reg, src_reg);
ASM::neg_register64bit(&mut self.buf, dst_reg);
ASM::cmovl_register64bit_register64bit(&mut self.buf, dst_reg, src_reg);
Ok(()) Ok(())
} }
@ -201,9 +189,8 @@ impl<'a, GPReg: GPRegTrait, ASM: Assembler<GPReg>, CC: CallConv<GPReg>> Backend<
) -> Result<(), String> { ) -> Result<(), String> {
let dst_reg = self.claim_gp_reg(dst)?; let dst_reg = self.claim_gp_reg(dst)?;
let src1_reg = self.load_to_reg(src1)?; let src1_reg = self.load_to_reg(src1)?;
ASM::mov_register64bit_register64bit(&mut self.buf, dst_reg, src1_reg);
let src2_reg = self.load_to_reg(src2)?; let src2_reg = self.load_to_reg(src2)?;
ASM::add_register64bit_register64bit(&mut self.buf, dst_reg, src2_reg); ASM::add_reg64_reg64_reg64(&mut self.buf, dst_reg, src1_reg, src2_reg);
Ok(()) Ok(())
} }
@ -212,7 +199,7 @@ impl<'a, GPReg: GPRegTrait, ASM: Assembler<GPReg>, CC: CallConv<GPReg>> Backend<
Literal::Int(x) => { Literal::Int(x) => {
let reg = self.claim_gp_reg(sym)?; let reg = self.claim_gp_reg(sym)?;
let val = *x; let val = *x;
ASM::mov_register64bit_immediate64bit(&mut self.buf, reg, val); ASM::mov_reg64_imm64(&mut self.buf, reg, val);
Ok(()) Ok(())
} }
x => Err(format!("loading literal, {:?}, is not yet implemented", x)), x => Err(format!("loading literal, {:?}, is not yet implemented", x)),
@ -234,11 +221,11 @@ impl<'a, GPReg: GPRegTrait, ASM: Assembler<GPReg>, CC: CallConv<GPReg>> Backend<
fn return_symbol(&mut self, sym: &Symbol) -> Result<(), String> { fn return_symbol(&mut self, sym: &Symbol) -> Result<(), String> {
let val = self.symbols_map.get(sym); let val = self.symbols_map.get(sym);
match val { match val {
Some(SymbolStorage::GPRegeg(reg)) if *reg == CC::gp_return_regs()[0] => Ok(()), Some(SymbolStorage::GPRegeg(reg)) if *reg == CC::GP_RETURN_REGS[0] => Ok(()),
Some(SymbolStorage::GPRegeg(reg)) => { Some(SymbolStorage::GPRegeg(reg)) => {
// If it fits in a general purpose register, just copy it over to. // If it fits in a general purpose register, just copy it over to.
// Technically this can be optimized to produce shorter instructions if less than 64bits. // Technically this can be optimized to produce shorter instructions if less than 64bits.
ASM::mov_register64bit_register64bit(&mut self.buf, CC::gp_return_regs()[0], *reg); ASM::mov_reg64_reg64(&mut self.buf, CC::GP_RETURN_REGS[0], *reg);
Ok(()) Ok(())
} }
Some(x) => Err(format!( Some(x) => Err(format!(
@ -258,7 +245,7 @@ impl<'a, GPReg: GPRegTrait, ASM: Assembler<GPReg>, CC: CallConv<GPReg>>
fn claim_gp_reg(&mut self, sym: &Symbol) -> Result<GPReg, String> { fn claim_gp_reg(&mut self, sym: &Symbol) -> Result<GPReg, String> {
let reg = if !self.gp_free_regs.is_empty() { let reg = if !self.gp_free_regs.is_empty() {
let free_reg = self.gp_free_regs.pop().unwrap(); let free_reg = self.gp_free_regs.pop().unwrap();
if CC::callee_saved_regs().contains(&free_reg) { if CC::callee_saved(&free_reg) {
self.used_callee_saved_regs.insert(free_reg); self.used_callee_saved_regs.insert(free_reg);
} }
Ok(free_reg) Ok(free_reg)
@ -291,7 +278,7 @@ impl<'a, GPReg: GPRegTrait, ASM: Assembler<GPReg>, CC: CallConv<GPReg>>
let reg = self.claim_gp_reg(sym)?; let reg = self.claim_gp_reg(sym)?;
self.symbols_map self.symbols_map
.insert(*sym, SymbolStorage::StackAndGPRegeg(reg, offset)); .insert(*sym, SymbolStorage::StackAndGPRegeg(reg, offset));
ASM::mov_register64bit_stackoffset32bit(&mut self.buf, reg, offset as i32); ASM::mov_reg64_stack32(&mut self.buf, reg, offset as i32);
Ok(reg) Ok(reg)
} }
None => Err(format!("Unknown symbol: {}", sym)), None => Err(format!("Unknown symbol: {}", sym)),
@ -302,19 +289,9 @@ impl<'a, GPReg: GPRegTrait, ASM: Assembler<GPReg>, CC: CallConv<GPReg>>
let val = self.symbols_map.remove(sym); let val = self.symbols_map.remove(sym);
match val { match val {
Some(SymbolStorage::GPRegeg(reg)) => { Some(SymbolStorage::GPRegeg(reg)) => {
let offset = self.stack_size; let offset = self.increase_stack_size(8)?;
self.stack_size += 8; ASM::mov_stack32_reg64(&mut self.buf, offset as i32, reg);
if let Some(size) = self.stack_size.checked_add(8) { self.symbols_map.insert(*sym, SymbolStorage::Stack(offset));
self.stack_size = size;
} else {
return Err(format!(
"Ran out of stack space while saving symbol: {}",
sym
));
}
ASM::mov_stackoffset32bit_register64bit(&mut self.buf, offset as i32, reg);
self.symbols_map
.insert(*sym, SymbolStorage::Stack(offset as i32));
Ok(()) Ok(())
} }
Some(SymbolStorage::StackAndGPRegeg(_, offset)) => { Some(SymbolStorage::StackAndGPRegeg(_, offset)) => {
@ -328,4 +305,16 @@ impl<'a, GPReg: GPRegTrait, ASM: Assembler<GPReg>, CC: CallConv<GPReg>>
None => Err(format!("Unknown symbol: {}", sym)), None => Err(format!("Unknown symbol: {}", sym)),
} }
} }
/// increase_stack_size increase the current stack size and returns the offset of the stack.
fn increase_stack_size(&mut self, amount: i32) -> Result<i32, String> {
debug_assert!(amount > 0);
let offset = self.stack_size;
if let Some(new_size) = self.stack_size.checked_add(amount) {
self.stack_size = new_size;
Ok(offset)
} else {
Err("Ran out of stack space".to_string())
}
}
} }

View File

@ -1,6 +1,5 @@
use crate::generic64::{Assembler, CallConv, GPRegTrait}; use crate::generic64::{Assembler, CallConv, GPRegTrait};
use bumpalo::collections::Vec; use bumpalo::collections::Vec;
use roc_collections::all::ImSet;
// Not sure exactly how I want to represent registers. // Not sure exactly how I want to represent registers.
// If we want max speed, we would likely make them structs that impl the same trait to avoid ifs. // If we want max speed, we would likely make them structs that impl the same trait to avoid ifs.
@ -26,10 +25,312 @@ pub enum X86_64GPReg {
impl GPRegTrait for X86_64GPReg {} impl GPRegTrait for X86_64GPReg {}
pub struct X86_64Assembler {}
pub struct X86_64WindowsFastcall {}
pub struct X86_64SystemV {}
const STACK_ALIGNMENT: u8 = 16;
impl CallConv<X86_64GPReg> for X86_64SystemV {
const GP_PARAM_REGS: &'static [X86_64GPReg] = &[
X86_64GPReg::RDI,
X86_64GPReg::RSI,
X86_64GPReg::RDX,
X86_64GPReg::RCX,
X86_64GPReg::R8,
X86_64GPReg::R9,
];
const GP_RETURN_REGS: &'static [X86_64GPReg] = &[X86_64GPReg::RAX, X86_64GPReg::RDX];
const GP_DEFAULT_FREE_REGS: &'static [X86_64GPReg] = &[
// The regs we want to use first should be at the end of this vec.
// We will use pop to get which reg to use next
// Use callee saved regs last.
X86_64GPReg::RBX,
// Don't use frame pointer: X86_64GPReg::RBP,
X86_64GPReg::R12,
X86_64GPReg::R13,
X86_64GPReg::R14,
X86_64GPReg::R15,
// Use caller saved regs first.
X86_64GPReg::RAX,
X86_64GPReg::RCX,
X86_64GPReg::RDX,
// Don't use stack pionter: X86_64GPReg::RSP,
X86_64GPReg::RSI,
X86_64GPReg::RDI,
X86_64GPReg::R8,
X86_64GPReg::R9,
X86_64GPReg::R10,
X86_64GPReg::R11,
];
const SHADOW_SPACE_SIZE: u8 = 0;
#[inline(always)]
fn callee_saved(reg: &X86_64GPReg) -> bool {
matches!(
reg,
X86_64GPReg::RBX
| X86_64GPReg::RBP
| X86_64GPReg::R12
| X86_64GPReg::R13
| X86_64GPReg::R14
| X86_64GPReg::R15
)
}
#[inline(always)]
fn setup_stack<'a>(
buf: &mut Vec<'a, u8>,
leaf_function: bool,
saved_regs: &[X86_64GPReg],
requested_stack_size: i32,
) -> Result<i32, String> {
x86_64_generic_setup_stack(buf, leaf_function, saved_regs, requested_stack_size)
}
#[inline(always)]
fn cleanup_stack<'a>(
buf: &mut Vec<'a, u8>,
leaf_function: bool,
saved_regs: &[X86_64GPReg],
aligned_stack_size: i32,
) -> Result<(), String> {
x86_64_generic_cleanup_stack(buf, leaf_function, saved_regs, aligned_stack_size)
}
}
impl CallConv<X86_64GPReg> for X86_64WindowsFastcall {
const GP_PARAM_REGS: &'static [X86_64GPReg] = &[
X86_64GPReg::RCX,
X86_64GPReg::RDX,
X86_64GPReg::R8,
X86_64GPReg::R9,
];
const GP_RETURN_REGS: &'static [X86_64GPReg] = &[X86_64GPReg::RAX];
const GP_DEFAULT_FREE_REGS: &'static [X86_64GPReg] = &[
// The regs we want to use first should be at the end of this vec.
// We will use pop to get which reg to use next
// Don't use stack pionter: X86_64GPReg::RSP,
// Don't use frame pointer: X86_64GPReg::RBP,
// Use callee saved regs last.
X86_64GPReg::RBX,
X86_64GPReg::RSI,
X86_64GPReg::RDI,
X86_64GPReg::R12,
X86_64GPReg::R13,
X86_64GPReg::R14,
X86_64GPReg::R15,
// Use caller saved regs first.
X86_64GPReg::RAX,
X86_64GPReg::RCX,
X86_64GPReg::RDX,
X86_64GPReg::R8,
X86_64GPReg::R9,
X86_64GPReg::R10,
X86_64GPReg::R11,
];
const SHADOW_SPACE_SIZE: u8 = 32;
#[inline(always)]
fn callee_saved(reg: &X86_64GPReg) -> bool {
matches!(
reg,
X86_64GPReg::RBX
| X86_64GPReg::RBP
| X86_64GPReg::RSI
| X86_64GPReg::RSP
| X86_64GPReg::RDI
| X86_64GPReg::R12
| X86_64GPReg::R13
| X86_64GPReg::R14
| X86_64GPReg::R15
)
}
#[inline(always)]
fn setup_stack<'a>(
buf: &mut Vec<'a, u8>,
leaf_function: bool,
saved_regs: &[X86_64GPReg],
requested_stack_size: i32,
) -> Result<i32, String> {
x86_64_generic_setup_stack(buf, leaf_function, saved_regs, requested_stack_size)
}
#[inline(always)]
fn cleanup_stack<'a>(
buf: &mut Vec<'a, u8>,
leaf_function: bool,
saved_regs: &[X86_64GPReg],
aligned_stack_size: i32,
) -> Result<(), String> {
x86_64_generic_cleanup_stack(buf, leaf_function, saved_regs, aligned_stack_size)
}
}
#[inline(always)]
fn x86_64_generic_setup_stack<'a>(
buf: &mut Vec<'a, u8>,
leaf_function: bool,
saved_regs: &[X86_64GPReg],
requested_stack_size: i32,
) -> Result<i32, String> {
if !leaf_function {
X86_64Assembler::push_reg64(buf, X86_64GPReg::RBP);
X86_64Assembler::mov_reg64_reg64(buf, X86_64GPReg::RBP, X86_64GPReg::RSP);
}
for reg in saved_regs {
X86_64Assembler::push_reg64(buf, *reg);
}
// full size is upcast to i64 to make sure we don't overflow here.
let full_size = 8 * saved_regs.len() as i64 + requested_stack_size as i64;
let alignment = if full_size <= 0 {
0
} else {
full_size % STACK_ALIGNMENT as i64
};
let offset = if alignment == 0 {
0
} else {
STACK_ALIGNMENT - alignment as u8
};
if let Some(aligned_stack_size) = requested_stack_size.checked_add(offset as i32) {
if aligned_stack_size > 0 {
X86_64Assembler::sub_reg64_reg64_imm32(
buf,
X86_64GPReg::RSP,
X86_64GPReg::RSP,
aligned_stack_size,
);
Ok(aligned_stack_size)
} else {
Ok(0)
}
} else {
Err("Ran out of stack space".to_string())
}
}
#[inline(always)]
fn x86_64_generic_cleanup_stack<'a>(
buf: &mut Vec<'a, u8>,
leaf_function: bool,
saved_regs: &[X86_64GPReg],
aligned_stack_size: i32,
) -> Result<(), String> {
if aligned_stack_size > 0 {
X86_64Assembler::add_reg64_reg64_imm32(
buf,
X86_64GPReg::RSP,
X86_64GPReg::RSP,
aligned_stack_size,
);
}
for reg in saved_regs.iter().rev() {
X86_64Assembler::pop_reg64(buf, *reg);
}
if !leaf_function {
X86_64Assembler::mov_reg64_reg64(buf, X86_64GPReg::RSP, X86_64GPReg::RBP);
X86_64Assembler::pop_reg64(buf, X86_64GPReg::RBP);
}
Ok(())
}
impl Assembler<X86_64GPReg> for X86_64Assembler {
// These functions should map to the raw assembly functions below.
// In some cases, that means you can just directly call one of the direct assembly functions.
#[inline(always)]
fn abs_reg64_reg64<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, src: X86_64GPReg) {
mov_reg64_reg64(buf, dst, src);
neg_reg64(buf, dst);
cmovl_reg64_reg64(buf, dst, src);
}
#[inline(always)]
fn add_reg64_reg64_imm32<'a>(
buf: &mut Vec<'a, u8>,
dst: X86_64GPReg,
src1: X86_64GPReg,
imm32: i32,
) {
if dst == src1 {
add_reg64_imm32(buf, dst, imm32);
} else {
mov_reg64_reg64(buf, dst, src1);
add_reg64_imm32(buf, dst, imm32);
}
}
#[inline(always)]
fn add_reg64_reg64_reg64<'a>(
buf: &mut Vec<'a, u8>,
dst: X86_64GPReg,
src1: X86_64GPReg,
src2: X86_64GPReg,
) {
if dst == src1 {
add_reg64_reg64(buf, dst, src2);
} else if dst == src2 {
add_reg64_reg64(buf, dst, src1);
} else {
mov_reg64_reg64(buf, dst, src1);
add_reg64_reg64(buf, dst, src2);
}
}
#[inline(always)]
fn mov_reg64_imm64<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, imm: i64) {
mov_reg64_imm64(buf, dst, imm);
}
#[inline(always)]
fn mov_reg64_reg64<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, src: X86_64GPReg) {
mov_reg64_reg64(buf, dst, src);
}
#[inline(always)]
fn mov_reg64_stack32<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, offset: i32) {
mov_reg64_stack32(buf, dst, offset);
}
#[inline(always)]
fn mov_stack32_reg64<'a>(buf: &mut Vec<'a, u8>, offset: i32, src: X86_64GPReg) {
mov_stack32_reg64(buf, offset, src);
}
#[inline(always)]
fn sub_reg64_reg64_imm32<'a>(
buf: &mut Vec<'a, u8>,
dst: X86_64GPReg,
src1: X86_64GPReg,
imm32: i32,
) {
if dst == src1 {
sub_reg64_imm32(buf, dst, imm32);
} else {
mov_reg64_reg64(buf, dst, src1);
sub_reg64_imm32(buf, dst, imm32);
}
}
#[inline(always)]
fn ret<'a>(buf: &mut Vec<'a, u8>) {
ret(buf);
}
}
impl X86_64Assembler {
#[inline(always)]
fn pop_reg64<'a>(buf: &mut Vec<'a, u8>, reg: X86_64GPReg) {
pop_reg64(buf, reg);
}
#[inline(always)]
fn push_reg64<'a>(buf: &mut Vec<'a, u8>, reg: X86_64GPReg) {
push_reg64(buf, reg);
}
}
const REX: u8 = 0x40; const REX: u8 = 0x40;
const REX_W: u8 = REX + 0x8; const REX_W: u8 = REX + 0x8;
fn add_rm_extension(reg: X86_64GPReg, byte: u8) -> u8 { #[inline(always)]
const fn add_rm_extension(reg: X86_64GPReg, byte: u8) -> u8 {
if reg as u8 > 7 { if reg as u8 > 7 {
byte + 1 byte + 1
} else { } else {
@ -37,11 +338,13 @@ fn add_rm_extension(reg: X86_64GPReg, byte: u8) -> u8 {
} }
} }
fn add_opcode_extension(reg: X86_64GPReg, byte: u8) -> u8 { #[inline(always)]
const fn add_opcode_extension(reg: X86_64GPReg, byte: u8) -> u8 {
add_rm_extension(reg, byte) add_rm_extension(reg, byte)
} }
fn add_reg_extension(reg: X86_64GPReg, byte: u8) -> u8 { #[inline(always)]
const fn add_reg_extension(reg: X86_64GPReg, byte: u8) -> u8 {
if reg as u8 > 7 { if reg as u8 > 7 {
byte + 4 byte + 4
} else { } else {
@ -49,316 +352,149 @@ fn add_reg_extension(reg: X86_64GPReg, byte: u8) -> u8 {
} }
} }
pub struct X86_64Assembler {} // Below here are the functions for all of the assembly instructions.
pub struct X86_64WindowsFastcall {} // Their names are based on the instruction and operators combined.
pub struct X86_64SystemV {} // You should call `buf.reserve()` if you push or extend more than once.
// Unit tests are added at the bottom of the file to ensure correct asm generation.
// Please keep these in alphanumeric order.
impl CallConv<X86_64GPReg> for X86_64SystemV { /// `ADD r/m64, imm32` -> Add imm32 sign-extended to 64-bits from r/m64.
fn gp_param_regs() -> &'static [X86_64GPReg] { #[inline(always)]
&[ fn add_reg64_imm32<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, imm: i32) {
X86_64GPReg::RDI, // This can be optimized if the immediate is 1 byte.
X86_64GPReg::RSI, let rex = add_rm_extension(dst, REX_W);
X86_64GPReg::RDX, let dst_mod = dst as u8 % 8;
X86_64GPReg::RCX, buf.reserve(7);
X86_64GPReg::R8, buf.extend(&[rex, 0x81, 0xC0 + dst_mod]);
X86_64GPReg::R9, buf.extend(&imm.to_le_bytes());
] }
}
fn gp_return_regs() -> &'static [X86_64GPReg] { /// `ADD r/m64,r64` -> Add r64 to r/m64.
&[X86_64GPReg::RAX, X86_64GPReg::RDX] #[inline(always)]
} fn add_reg64_reg64<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, src: X86_64GPReg) {
fn gp_default_free_regs() -> &'static [X86_64GPReg] { let rex = add_rm_extension(dst, REX_W);
&[ let rex = add_reg_extension(src, rex);
// The regs we want to use first should be at the end of this vec. let dst_mod = dst as u8 % 8;
// We will use pop to get which reg to use next let src_mod = (src as u8 % 8) << 3;
// Use callee saved regs last. buf.extend(&[rex, 0x01, 0xC0 + dst_mod + src_mod]);
X86_64GPReg::RBX, }
// Don't use frame pointer: X86_64GPReg::RBP,
X86_64GPReg::R12, /// `CMOVL r64,r/m64` -> Move if less (SF≠ OF).
X86_64GPReg::R13, #[inline(always)]
X86_64GPReg::R14, fn cmovl_reg64_reg64<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, src: X86_64GPReg) {
X86_64GPReg::R15, let rex = add_reg_extension(dst, REX_W);
// Use caller saved regs first. let rex = add_rm_extension(src, rex);
X86_64GPReg::RAX, let dst_mod = (dst as u8 % 8) << 3;
X86_64GPReg::RCX, let src_mod = src as u8 % 8;
X86_64GPReg::RDX, buf.extend(&[rex, 0x0F, 0x4C, 0xC0 + dst_mod + src_mod]);
// Don't use stack pionter: X86_64GPReg::RSP, }
X86_64GPReg::RSI,
X86_64GPReg::RDI, /// `MOV r/m64, imm32` -> Move imm32 sign extended to 64-bits to r/m64.
X86_64GPReg::R8, #[inline(always)]
X86_64GPReg::R9, fn mov_reg64_imm32<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, imm: i32) {
X86_64GPReg::R10, let rex = add_rm_extension(dst, REX_W);
X86_64GPReg::R11, let dst_mod = dst as u8 % 8;
] buf.reserve(7);
} buf.extend(&[rex, 0xC7, 0xC0 + dst_mod]);
fn caller_saved_regs() -> ImSet<X86_64GPReg> { buf.extend(&imm.to_le_bytes());
// TODO: stop using vec! here. I was just have trouble with some errors, but it shouldn't be needed. }
ImSet::from(vec![
X86_64GPReg::RAX, /// `MOV r64, imm64` -> Move imm64 to r64.
X86_64GPReg::RCX, #[inline(always)]
X86_64GPReg::RDX, fn mov_reg64_imm64<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, imm: i64) {
X86_64GPReg::RSP, if imm <= i32::MAX as i64 && imm >= i32::MIN as i64 {
X86_64GPReg::RSI, mov_reg64_imm32(buf, dst, imm as i32)
X86_64GPReg::RDI, } else {
X86_64GPReg::R8, let rex = add_opcode_extension(dst, REX_W);
X86_64GPReg::R9, let dst_mod = dst as u8 % 8;
X86_64GPReg::R10, buf.reserve(10);
X86_64GPReg::R11, buf.extend(&[rex, 0xB8 + dst_mod]);
]) buf.extend(&imm.to_le_bytes());
}
fn callee_saved_regs() -> ImSet<X86_64GPReg> {
// TODO: stop using vec! here. I was just have trouble with some errors, but it shouldn't be needed.
ImSet::from(vec![
X86_64GPReg::RBX,
X86_64GPReg::RBP,
X86_64GPReg::R12,
X86_64GPReg::R13,
X86_64GPReg::R14,
X86_64GPReg::R15,
])
}
fn stack_pointer() -> X86_64GPReg {
X86_64GPReg::RSP
}
fn frame_pointer() -> X86_64GPReg {
X86_64GPReg::RBP
}
fn shadow_space_size() -> u8 {
0
}
fn red_zone_size() -> u8 {
128
} }
} }
impl CallConv<X86_64GPReg> for X86_64WindowsFastcall { /// `MOV r/m64,r64` -> Move r64 to r/m64.
fn gp_param_regs() -> &'static [X86_64GPReg] { #[inline(always)]
&[ fn mov_reg64_reg64<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, src: X86_64GPReg) {
X86_64GPReg::RCX, let rex = add_rm_extension(dst, REX_W);
X86_64GPReg::RDX, let rex = add_reg_extension(src, rex);
X86_64GPReg::R8, let dst_mod = dst as u8 % 8;
X86_64GPReg::R9, let src_mod = (src as u8 % 8) << 3;
] buf.extend(&[rex, 0x89, 0xC0 + dst_mod + src_mod]);
} }
fn gp_return_regs() -> &'static [X86_64GPReg] {
&[X86_64GPReg::RAX] /// `MOV r64,r/m64` -> Move r/m64 to r64.
} #[inline(always)]
fn gp_default_free_regs() -> &'static [X86_64GPReg] { fn mov_reg64_stack32<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, offset: i32) {
&[ // This can be optimized based on how many bytes the offset actually is.
// The regs we want to use first should be at the end of this vec. // This function can probably be made to take any memory offset, I didn't feel like figuring it out rn.
// We will use pop to get which reg to use next // Also, this may technically be faster genration since stack operations should be so common.
// Use callee saved regs last. let rex = add_reg_extension(dst, REX_W);
X86_64GPReg::RBX, let dst_mod = (dst as u8 % 8) << 3;
// Don't use frame pointer: X86_64GPReg::RBP, buf.reserve(8);
X86_64GPReg::RSI, buf.extend(&[rex, 0x8B, 0x84 + dst_mod, 0x24]);
// Don't use stack pionter: X86_64GPReg::RSP, buf.extend(&offset.to_le_bytes());
X86_64GPReg::RDI, }
X86_64GPReg::R12,
X86_64GPReg::R13, /// `MOV r/m64,r64` -> Move r64 to r/m64.
X86_64GPReg::R14, #[inline(always)]
X86_64GPReg::R15, fn mov_stack32_reg64<'a>(buf: &mut Vec<'a, u8>, offset: i32, src: X86_64GPReg) {
// Use caller saved regs first. // This can be optimized based on how many bytes the offset actually is.
X86_64GPReg::RAX, // This function can probably be made to take any memory offset, I didn't feel like figuring it out rn.
X86_64GPReg::RCX, // Also, this may technically be faster genration since stack operations should be so common.
X86_64GPReg::RDX, let rex = add_reg_extension(src, REX_W);
X86_64GPReg::R8, let src_mod = (src as u8 % 8) << 3;
X86_64GPReg::R9, buf.reserve(8);
X86_64GPReg::R10, buf.extend(&[rex, 0x89, 0x84 + src_mod, 0x24]);
X86_64GPReg::R11, buf.extend(&offset.to_le_bytes());
] }
}
fn caller_saved_regs() -> ImSet<X86_64GPReg> { /// `NEG r/m64` -> Two's complement negate r/m64.
// TODO: stop using vec! here. I was just have trouble with some errors, but it shouldn't be needed. #[inline(always)]
ImSet::from(vec![ fn neg_reg64<'a>(buf: &mut Vec<'a, u8>, reg: X86_64GPReg) {
X86_64GPReg::RAX, let rex = add_rm_extension(reg, REX_W);
X86_64GPReg::RCX, let reg_mod = reg as u8 % 8;
X86_64GPReg::RDX, buf.extend(&[rex, 0xF7, 0xD8 + reg_mod]);
X86_64GPReg::R8, }
X86_64GPReg::R9,
X86_64GPReg::R10, /// `RET` -> Near return to calling procedure.
X86_64GPReg::R11, #[inline(always)]
]) fn ret<'a>(buf: &mut Vec<'a, u8>) {
} buf.push(0xC3);
fn callee_saved_regs() -> ImSet<X86_64GPReg> { }
// TODO: stop using vec! here. I was just have trouble with some errors, but it shouldn't be needed.
ImSet::from(vec![ /// `SUB r/m64, imm32` -> Subtract imm32 sign-extended to 64-bits from r/m64.
X86_64GPReg::RBX, #[inline(always)]
X86_64GPReg::RBP, fn sub_reg64_imm32<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, imm: i32) {
X86_64GPReg::RSI, // This can be optimized if the immediate is 1 byte.
X86_64GPReg::RSP, let rex = add_rm_extension(dst, REX_W);
X86_64GPReg::RDI, let dst_mod = dst as u8 % 8;
X86_64GPReg::R12, buf.reserve(7);
X86_64GPReg::R13, buf.extend(&[rex, 0x81, 0xE8 + dst_mod]);
X86_64GPReg::R14, buf.extend(&imm.to_le_bytes());
X86_64GPReg::R15, }
])
} /// `POP r64` -> Pop top of stack into r64; increment stack pointer. Cannot encode 32-bit operand size.
fn stack_pointer() -> X86_64GPReg { #[inline(always)]
X86_64GPReg::RSP fn pop_reg64<'a>(buf: &mut Vec<'a, u8>, reg: X86_64GPReg) {
} let reg_mod = reg as u8 % 8;
fn frame_pointer() -> X86_64GPReg { if reg as u8 > 7 {
X86_64GPReg::RBP let rex = add_opcode_extension(reg, REX);
} buf.extend(&[rex, 0x58 + reg_mod]);
fn shadow_space_size() -> u8 { } else {
32 buf.push(0x58 + reg_mod);
}
fn red_zone_size() -> u8 {
0
} }
} }
impl Assembler<X86_64GPReg> for X86_64Assembler { /// `PUSH r64` -> Push r64,
// Below here are the functions for all of the assembly instructions. #[inline(always)]
// Their names are based on the instruction and operators combined. fn push_reg64<'a>(buf: &mut Vec<'a, u8>, reg: X86_64GPReg) {
// You should call `buf.reserve()` if you push or extend more than once. let reg_mod = reg as u8 % 8;
// Unit tests are added at the bottom of the file to ensure correct asm generation. if reg as u8 > 7 {
// Please keep these in alphanumeric order. let rex = add_opcode_extension(reg, REX);
buf.extend(&[rex, 0x50 + reg_mod]);
/// `ADD r/m64, imm32` -> Add imm32 sign-extended to 64-bits from r/m64. } else {
fn add_register64bit_immediate32bit<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, imm: i32) { buf.push(0x50 + reg_mod);
// This can be optimized if the immediate is 1 byte.
let rex = add_rm_extension(dst, REX_W);
let dst_mod = dst as u8 % 8;
buf.reserve(7);
buf.extend(&[rex, 0x81, 0xC0 + dst_mod]);
buf.extend(&imm.to_le_bytes());
}
/// `ADD r/m64,r64` -> Add r64 to r/m64.
fn add_register64bit_register64bit<'a>(
buf: &mut Vec<'a, u8>,
dst: X86_64GPReg,
src: X86_64GPReg,
) {
let rex = add_rm_extension(dst, REX_W);
let rex = add_reg_extension(src, rex);
let dst_mod = dst as u8 % 8;
let src_mod = (src as u8 % 8) << 3;
buf.extend(&[rex, 0x01, 0xC0 + dst_mod + src_mod]);
}
/// `CMOVL r64,r/m64` -> Move if less (SF≠ OF).
fn cmovl_register64bit_register64bit<'a>(
buf: &mut Vec<'a, u8>,
dst: X86_64GPReg,
src: X86_64GPReg,
) {
let rex = add_reg_extension(dst, REX_W);
let rex = add_rm_extension(src, rex);
let dst_mod = (dst as u8 % 8) << 3;
let src_mod = src as u8 % 8;
buf.extend(&[rex, 0x0F, 0x4C, 0xC0 + dst_mod + src_mod]);
}
/// `MOV r/m64, imm32` -> Move imm32 sign extended to 64-bits to r/m64.
fn mov_register64bit_immediate32bit<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, imm: i32) {
let rex = add_rm_extension(dst, REX_W);
let dst_mod = dst as u8 % 8;
buf.reserve(7);
buf.extend(&[rex, 0xC7, 0xC0 + dst_mod]);
buf.extend(&imm.to_le_bytes());
}
/// `MOV r64, imm64` -> Move imm64 to r64.
fn mov_register64bit_immediate64bit<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, imm: i64) {
if imm <= i32::MAX as i64 && imm >= i32::MIN as i64 {
Self::mov_register64bit_immediate32bit(buf, dst, imm as i32)
} else {
let rex = add_opcode_extension(dst, REX_W);
let dst_mod = dst as u8 % 8;
buf.reserve(10);
buf.extend(&[rex, 0xB8 + dst_mod]);
buf.extend(&imm.to_le_bytes());
}
}
/// `MOV r/m64,r64` -> Move r64 to r/m64.
fn mov_register64bit_register64bit<'a>(
buf: &mut Vec<'a, u8>,
dst: X86_64GPReg,
src: X86_64GPReg,
) {
let rex = add_rm_extension(dst, REX_W);
let rex = add_reg_extension(src, rex);
let dst_mod = dst as u8 % 8;
let src_mod = (src as u8 % 8) << 3;
buf.extend(&[rex, 0x89, 0xC0 + dst_mod + src_mod]);
}
/// `MOV r64,r/m64` -> Move r/m64 to r64.
fn mov_register64bit_stackoffset32bit<'a>(
buf: &mut Vec<'a, u8>,
dst: X86_64GPReg,
offset: i32,
) {
// This can be optimized based on how many bytes the offset actually is.
// This function can probably be made to take any memory offset, I didn't feel like figuring it out rn.
// Also, this may technically be faster genration since stack operations should be so common.
let rex = add_reg_extension(dst, REX_W);
let dst_mod = (dst as u8 % 8) << 3;
buf.reserve(8);
buf.extend(&[rex, 0x8B, 0x84 + dst_mod, 0x24]);
buf.extend(&offset.to_le_bytes());
}
/// `MOV r/m64,r64` -> Move r64 to r/m64.
fn mov_stackoffset32bit_register64bit<'a>(
buf: &mut Vec<'a, u8>,
offset: i32,
src: X86_64GPReg,
) {
// This can be optimized based on how many bytes the offset actually is.
// This function can probably be made to take any memory offset, I didn't feel like figuring it out rn.
// Also, this may technically be faster genration since stack operations should be so common.
let rex = add_reg_extension(src, REX_W);
let src_mod = (src as u8 % 8) << 3;
buf.reserve(8);
buf.extend(&[rex, 0x89, 0x84 + src_mod, 0x24]);
buf.extend(&offset.to_le_bytes());
}
/// `NEG r/m64` -> Two's complement negate r/m64.
fn neg_register64bit<'a>(buf: &mut Vec<'a, u8>, reg: X86_64GPReg) {
let rex = add_rm_extension(reg, REX_W);
let reg_mod = reg as u8 % 8;
buf.extend(&[rex, 0xF7, 0xD8 + reg_mod]);
}
/// `RET` -> Near return to calling procedure.
fn ret<'a>(buf: &mut Vec<'a, u8>) {
buf.push(0xC3);
}
/// `SUB r/m64, imm32` -> Subtract imm32 sign-extended to 64-bits from r/m64.
fn sub_register64bit_immediate32bit<'a>(buf: &mut Vec<'a, u8>, dst: X86_64GPReg, imm: i32) {
// This can be optimized if the immediate is 1 byte.
let rex = add_rm_extension(dst, REX_W);
let dst_mod = dst as u8 % 8;
buf.reserve(7);
buf.extend(&[rex, 0x81, 0xE8 + dst_mod]);
buf.extend(&imm.to_le_bytes());
}
/// `POP r64` -> Pop top of stack into r64; increment stack pointer. Cannot encode 32-bit operand size.
fn pop_register64bit<'a>(buf: &mut Vec<'a, u8>, reg: X86_64GPReg) {
let reg_mod = reg as u8 % 8;
if reg as u8 > 7 {
let rex = add_opcode_extension(reg, REX);
buf.extend(&[rex, 0x58 + reg_mod]);
} else {
buf.push(0x58 + reg_mod);
}
}
/// `PUSH r64` -> Push r64,
fn push_register64bit<'a>(buf: &mut Vec<'a, u8>, reg: X86_64GPReg) {
let reg_mod = reg as u8 % 8;
if reg as u8 > 7 {
let rex = add_opcode_extension(reg, REX);
buf.extend(&[rex, 0x50 + reg_mod]);
} else {
buf.push(0x50 + reg_mod);
}
} }
} }
@ -372,7 +508,7 @@ mod tests {
const TEST_I64: i64 = 0x12345678_9ABCDEF0; const TEST_I64: i64 = 0x12345678_9ABCDEF0;
#[test] #[test]
fn test_add_register64bit_immediate32bit() { fn test_add_reg64_imm32() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
for (dst, expected) in &[ for (dst, expected) in &[
@ -380,14 +516,14 @@ mod tests {
(X86_64GPReg::R15, [0x49, 0x81, 0xC7]), (X86_64GPReg::R15, [0x49, 0x81, 0xC7]),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::add_register64bit_immediate32bit(&mut buf, *dst, TEST_I32); add_reg64_imm32(&mut buf, *dst, TEST_I32);
assert_eq!(expected, &buf[..3]); assert_eq!(expected, &buf[..3]);
assert_eq!(TEST_I32.to_le_bytes(), &buf[3..]); assert_eq!(TEST_I32.to_le_bytes(), &buf[3..]);
} }
} }
#[test] #[test]
fn test_add_register64bit_register64bit() { fn test_add_reg64_reg64() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
for ((dst, src), expected) in &[ for ((dst, src), expected) in &[
@ -397,13 +533,13 @@ mod tests {
((X86_64GPReg::R15, X86_64GPReg::R15), [0x4D, 0x01, 0xFF]), ((X86_64GPReg::R15, X86_64GPReg::R15), [0x4D, 0x01, 0xFF]),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::add_register64bit_register64bit(&mut buf, *dst, *src); add_reg64_reg64(&mut buf, *dst, *src);
assert_eq!(expected, &buf[..]); assert_eq!(expected, &buf[..]);
} }
} }
#[test] #[test]
fn test_cmovl_register64bit_register64bit() { fn test_cmovl_reg64_reg64() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
for ((dst, src), expected) in &[ for ((dst, src), expected) in &[
@ -425,13 +561,13 @@ mod tests {
), ),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::cmovl_register64bit_register64bit(&mut buf, *dst, *src); cmovl_reg64_reg64(&mut buf, *dst, *src);
assert_eq!(expected, &buf[..]); assert_eq!(expected, &buf[..]);
} }
} }
#[test] #[test]
fn test_mov_register64bit_immediate32bit() { fn test_mov_reg64_imm32() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
for (dst, expected) in &[ for (dst, expected) in &[
@ -439,14 +575,14 @@ mod tests {
(X86_64GPReg::R15, [0x49, 0xC7, 0xC7]), (X86_64GPReg::R15, [0x49, 0xC7, 0xC7]),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::mov_register64bit_immediate32bit(&mut buf, *dst, TEST_I32); mov_reg64_imm32(&mut buf, *dst, TEST_I32);
assert_eq!(expected, &buf[..3]); assert_eq!(expected, &buf[..3]);
assert_eq!(TEST_I32.to_le_bytes(), &buf[3..]); assert_eq!(TEST_I32.to_le_bytes(), &buf[3..]);
} }
} }
#[test] #[test]
fn test_mov_register64bit_immediate64bit() { fn test_mov_reg64_imm64() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
for (dst, expected) in &[ for (dst, expected) in &[
@ -454,7 +590,7 @@ mod tests {
(X86_64GPReg::R15, [0x49, 0xBF]), (X86_64GPReg::R15, [0x49, 0xBF]),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::mov_register64bit_immediate64bit(&mut buf, *dst, TEST_I64); mov_reg64_imm64(&mut buf, *dst, TEST_I64);
assert_eq!(expected, &buf[..2]); assert_eq!(expected, &buf[..2]);
assert_eq!(TEST_I64.to_le_bytes(), &buf[2..]); assert_eq!(TEST_I64.to_le_bytes(), &buf[2..]);
} }
@ -463,14 +599,14 @@ mod tests {
(X86_64GPReg::R15, [0x49, 0xC7, 0xC7]), (X86_64GPReg::R15, [0x49, 0xC7, 0xC7]),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::mov_register64bit_immediate64bit(&mut buf, *dst, TEST_I32 as i64); mov_reg64_imm64(&mut buf, *dst, TEST_I32 as i64);
assert_eq!(expected, &buf[..3]); assert_eq!(expected, &buf[..3]);
assert_eq!(TEST_I32.to_le_bytes(), &buf[3..]); assert_eq!(TEST_I32.to_le_bytes(), &buf[3..]);
} }
} }
#[test] #[test]
fn test_mov_register64bit_register64bit() { fn test_mov_reg64_reg64() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
for ((dst, src), expected) in &[ for ((dst, src), expected) in &[
@ -480,13 +616,13 @@ mod tests {
((X86_64GPReg::R15, X86_64GPReg::R15), [0x4D, 0x89, 0xFF]), ((X86_64GPReg::R15, X86_64GPReg::R15), [0x4D, 0x89, 0xFF]),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::mov_register64bit_register64bit(&mut buf, *dst, *src); mov_reg64_reg64(&mut buf, *dst, *src);
assert_eq!(expected, &buf[..]); assert_eq!(expected, &buf[..]);
} }
} }
#[test] #[test]
fn test_mov_register64bit_stackoffset32bit() { fn test_mov_reg64_stack32() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
for ((dst, offset), expected) in &[ for ((dst, offset), expected) in &[
@ -494,14 +630,14 @@ mod tests {
((X86_64GPReg::R15, TEST_I32), [0x4C, 0x8B, 0xBC, 0x24]), ((X86_64GPReg::R15, TEST_I32), [0x4C, 0x8B, 0xBC, 0x24]),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::mov_register64bit_stackoffset32bit(&mut buf, *dst, *offset); mov_reg64_stack32(&mut buf, *dst, *offset);
assert_eq!(expected, &buf[..4]); assert_eq!(expected, &buf[..4]);
assert_eq!(TEST_I32.to_le_bytes(), &buf[4..]); assert_eq!(TEST_I32.to_le_bytes(), &buf[4..]);
} }
} }
#[test] #[test]
fn test_mov_stackoffset32bit_register64bit() { fn test_mov_stack32_reg64() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
for ((offset, src), expected) in &[ for ((offset, src), expected) in &[
@ -509,14 +645,14 @@ mod tests {
((TEST_I32, X86_64GPReg::R15), [0x4C, 0x89, 0xBC, 0x24]), ((TEST_I32, X86_64GPReg::R15), [0x4C, 0x89, 0xBC, 0x24]),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::mov_stackoffset32bit_register64bit(&mut buf, *offset, *src); mov_stack32_reg64(&mut buf, *offset, *src);
assert_eq!(expected, &buf[..4]); assert_eq!(expected, &buf[..4]);
assert_eq!(TEST_I32.to_le_bytes(), &buf[4..]); assert_eq!(TEST_I32.to_le_bytes(), &buf[4..]);
} }
} }
#[test] #[test]
fn test_neg_register64bit() { fn test_neg_reg64() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
for (reg, expected) in &[ for (reg, expected) in &[
@ -524,7 +660,7 @@ mod tests {
(X86_64GPReg::R15, [0x49, 0xF7, 0xDF]), (X86_64GPReg::R15, [0x49, 0xF7, 0xDF]),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::neg_register64bit(&mut buf, *reg); neg_reg64(&mut buf, *reg);
assert_eq!(expected, &buf[..]); assert_eq!(expected, &buf[..]);
} }
} }
@ -533,12 +669,12 @@ mod tests {
fn test_ret() { fn test_ret() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
X86_64Assembler::ret(&mut buf); ret(&mut buf);
assert_eq!(&[0xC3], &buf[..]); assert_eq!(&[0xC3], &buf[..]);
} }
#[test] #[test]
fn test_sub_register64bit_immediate32bit() { fn test_sub_reg64_imm32() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
for (dst, expected) in &[ for (dst, expected) in &[
@ -546,14 +682,14 @@ mod tests {
(X86_64GPReg::R15, [0x49, 0x81, 0xEF]), (X86_64GPReg::R15, [0x49, 0x81, 0xEF]),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::sub_register64bit_immediate32bit(&mut buf, *dst, TEST_I32); sub_reg64_imm32(&mut buf, *dst, TEST_I32);
assert_eq!(expected, &buf[..3]); assert_eq!(expected, &buf[..3]);
assert_eq!(TEST_I32.to_le_bytes(), &buf[3..]); assert_eq!(TEST_I32.to_le_bytes(), &buf[3..]);
} }
} }
#[test] #[test]
fn test_pop_register64bit() { fn test_pop_reg64() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
for (dst, expected) in &[ for (dst, expected) in &[
@ -561,13 +697,13 @@ mod tests {
(X86_64GPReg::R15, vec![0x41, 0x5F]), (X86_64GPReg::R15, vec![0x41, 0x5F]),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::pop_register64bit(&mut buf, *dst); pop_reg64(&mut buf, *dst);
assert_eq!(&expected[..], &buf[..]); assert_eq!(&expected[..], &buf[..]);
} }
} }
#[test] #[test]
fn test_push_register64bit() { fn test_push_reg64() {
let arena = bumpalo::Bump::new(); let arena = bumpalo::Bump::new();
let mut buf = bumpalo::vec![in &arena]; let mut buf = bumpalo::vec![in &arena];
for (src, expected) in &[ for (src, expected) in &[
@ -575,7 +711,7 @@ mod tests {
(X86_64GPReg::R15, vec![0x41, 0x57]), (X86_64GPReg::R15, vec![0x41, 0x57]),
] { ] {
buf.clear(); buf.clear();
X86_64Assembler::push_register64bit(&mut buf, *src); push_reg64(&mut buf, *src);
assert_eq!(&expected[..], &buf[..]); assert_eq!(&expected[..], &buf[..]);
} }
} }

View File

@ -1,4 +1,4 @@
use crate::generic64::{x86_64, Backend64Bit}; use crate::generic64::{aarch64, x86_64, Backend64Bit};
use crate::{Backend, Env, Relocation, INLINED_SYMBOLS}; use crate::{Backend, Env, Relocation, INLINED_SYMBOLS};
use bumpalo::collections::Vec; use bumpalo::collections::Vec;
use object::write; use object::write;
@ -22,7 +22,7 @@ pub fn build_module<'a>(
target: &Triple, target: &Triple,
procedures: MutMap<(symbol::Symbol, Layout<'a>), Proc<'a>>, procedures: MutMap<(symbol::Symbol, Layout<'a>), Proc<'a>>,
) -> Result<Object, String> { ) -> Result<Object, String> {
let (mut output, mut backend) = match target { match target {
Triple { Triple {
architecture: TargetArch::X86_64, architecture: TargetArch::X86_64,
binary_format: TargetBF::Elf, binary_format: TargetBF::Elf,
@ -33,15 +33,42 @@ pub fn build_module<'a>(
x86_64::X86_64Assembler, x86_64::X86_64Assembler,
x86_64::X86_64SystemV, x86_64::X86_64SystemV,
> = Backend::new(env, target)?; > = Backend::new(env, target)?;
Ok(( build_object(
Object::new(BinaryFormat::Elf, Architecture::X86_64, Endianness::Little), env,
procedures,
backend, backend,
)) Object::new(BinaryFormat::Elf, Architecture::X86_64, Endianness::Little),
)
}
Triple {
architecture: TargetArch::Aarch64(_),
binary_format: TargetBF::Elf,
..
} => {
let backend: Backend64Bit<
aarch64::AArch64GPReg,
aarch64::AArch64Assembler,
aarch64::AArch64Call,
> = Backend::new(env, target)?;
build_object(
env,
procedures,
backend,
Object::new(BinaryFormat::Elf, Architecture::Aarch64, Endianness::Little),
)
} }
x => Err(format! { x => Err(format! {
"the target, {:?}, is not yet implemented", "the target, {:?}, is not yet implemented",
x}), x}),
}?; }
}
fn build_object<'a, B: Backend<'a>>(
env: &'a Env,
procedures: MutMap<(symbol::Symbol, Layout<'a>), Proc<'a>>,
mut backend: B,
mut output: Object,
) -> Result<Object, String> {
let text = output.section_id(StandardSection::Text); let text = output.section_id(StandardSection::Text);
let data_section = output.section_id(StandardSection::Data); let data_section = output.section_id(StandardSection::Data);
let comment = output.add_section(vec![], b"comment".to_vec(), SectionKind::OtherString); let comment = output.add_section(vec![], b"comment".to_vec(), SectionKind::OtherString);

View File

@ -9,7 +9,7 @@ extern crate libc;
#[macro_use] #[macro_use]
mod helpers; mod helpers;
#[cfg(all(test, target_os = "linux", target_arch = "x86_64"))] #[cfg(all(test, target_os = "linux", any(target_arch = "x86_64"/*, target_arch = "aarch64"*/)))]
mod gen_num { mod gen_num {
//use roc_std::RocOrder; //use roc_std::RocOrder;