mirror of
https://github.com/roc-lang/roc.git
synced 2024-11-10 10:02:38 +03:00
Fix merge conflicts
This commit is contained in:
parent
86229718ad
commit
db53ebf1bb
786
crates/compiler/solve/src/specialize.rs
Normal file
786
crates/compiler/solve/src/specialize.rs
Normal file
@ -0,0 +1,786 @@
|
||||
//! Module [specialize] is resolves specialization lambda sets.
|
||||
|
||||
use std::collections::VecDeque;
|
||||
|
||||
use bumpalo::Bump;
|
||||
use roc_can::{
|
||||
abilities::{AbilitiesStore, ImplKey},
|
||||
module::ExposedByModule,
|
||||
};
|
||||
use roc_collections::{VecMap, VecSet};
|
||||
use roc_debug_flags::dbg_do;
|
||||
#[cfg(debug_assertions)]
|
||||
use roc_debug_flags::ROC_TRACE_COMPACTION;
|
||||
use roc_derive::SharedDerivedModule;
|
||||
use roc_derive_key::{DeriveBuiltin, DeriveError, DeriveKey};
|
||||
use roc_error_macros::{internal_error, todo_abilities};
|
||||
use roc_module::symbol::{ModuleId, Symbol};
|
||||
use roc_types::{
|
||||
subs::{
|
||||
get_member_lambda_sets_at_region, Content, Descriptor, GetSubsSlice, LambdaSet, Mark,
|
||||
OptVariable, Rank, Subs, SubsSlice, UlsOfVar, Variable,
|
||||
},
|
||||
types::{AliasKind, MemberImpl, Uls},
|
||||
};
|
||||
use roc_unify::unify::{unify, Env as UEnv, Mode, MustImplementConstraints};
|
||||
|
||||
use crate::solve::{deep_copy_var_in, introduce, Pools};
|
||||
|
||||
/// What phase in the compiler is reaching out to specialize lambda sets?
|
||||
/// This is important to distinguish subtle differences in the behavior of the solving algorithm.
|
||||
//
|
||||
// TODO the APIs of this trait suck, this needs a nice cleanup.
|
||||
pub trait Phase {
|
||||
/// The regular type-solving phase, or during some later phase of compilation.
|
||||
/// During the solving phase we must anticipate that some information is still unknown and react to
|
||||
/// that; during late phases, we expect that all information is resolved.
|
||||
const IS_LATE: bool;
|
||||
|
||||
fn with_module_abilities_store<T, F>(&self, module: ModuleId, f: F) -> T
|
||||
where
|
||||
F: FnMut(&AbilitiesStore) -> T;
|
||||
|
||||
/// Given a known lambda set's ambient function in an external module, copy that ambient
|
||||
/// function into the given subs.
|
||||
fn copy_lambda_set_ambient_function_to_home_subs(
|
||||
&self,
|
||||
external_lambda_set_var: Variable,
|
||||
external_module_id: ModuleId,
|
||||
home_subs: &mut Subs,
|
||||
) -> Variable;
|
||||
|
||||
/// Find the ambient function var at a given region for an ability member definition (not a
|
||||
/// specialization!), and copy that into the given subs.
|
||||
fn get_and_copy_ability_member_ambient_function(
|
||||
&self,
|
||||
ability_member: Symbol,
|
||||
region: u8,
|
||||
home_subs: &mut Subs,
|
||||
) -> Variable;
|
||||
}
|
||||
|
||||
pub(crate) struct SolvePhase<'a> {
|
||||
pub abilities_store: &'a AbilitiesStore,
|
||||
}
|
||||
impl Phase for SolvePhase<'_> {
|
||||
const IS_LATE: bool = false;
|
||||
|
||||
fn with_module_abilities_store<T, F>(&self, _module: ModuleId, mut f: F) -> T
|
||||
where
|
||||
F: FnMut(&AbilitiesStore) -> T,
|
||||
{
|
||||
// During solving we're only aware of our module's abilities store.
|
||||
f(self.abilities_store)
|
||||
}
|
||||
|
||||
fn copy_lambda_set_ambient_function_to_home_subs(
|
||||
&self,
|
||||
external_lambda_set_var: Variable,
|
||||
_external_module_id: ModuleId,
|
||||
home_subs: &mut Subs,
|
||||
) -> Variable {
|
||||
// During solving we're only aware of our module's abilities store, the var must
|
||||
// be in our module store. Even if the specialization lambda set comes from another
|
||||
// module, we should have taken care to import it before starting solving in this module.
|
||||
let LambdaSet {
|
||||
ambient_function, ..
|
||||
} = home_subs.get_lambda_set(external_lambda_set_var);
|
||||
ambient_function
|
||||
}
|
||||
|
||||
fn get_and_copy_ability_member_ambient_function(
|
||||
&self,
|
||||
ability_member: Symbol,
|
||||
region: u8,
|
||||
home_subs: &mut Subs,
|
||||
) -> Variable {
|
||||
// During solving we're only aware of our module's abilities store, the var must
|
||||
// be in our module store. Even if the specialization lambda set comes from another
|
||||
// module, we should have taken care to import it before starting solving in this module.
|
||||
let member_def = self
|
||||
.abilities_store
|
||||
.member_def(ability_member)
|
||||
.unwrap_or_else(|| {
|
||||
internal_error!(
|
||||
"{:?} is not resolved, or not an ability member!",
|
||||
ability_member
|
||||
)
|
||||
});
|
||||
let member_var = member_def.signature_var();
|
||||
|
||||
let region_lset = get_member_lambda_sets_at_region(home_subs, member_var, region);
|
||||
|
||||
let LambdaSet {
|
||||
ambient_function, ..
|
||||
} = home_subs.get_lambda_set(region_lset);
|
||||
|
||||
ambient_function
|
||||
}
|
||||
}
|
||||
|
||||
pub struct DerivedEnv<'a> {
|
||||
pub derived_module: &'a SharedDerivedModule,
|
||||
/// Exposed types needed by the derived module.
|
||||
pub exposed_types: &'a ExposedByModule,
|
||||
}
|
||||
|
||||
#[derive(Default)]
|
||||
pub struct AwaitingSpecializations {
|
||||
// What variables' specialized lambda sets in `uls_of_var` will be unlocked for specialization
|
||||
// when an implementation key's specialization is resolved?
|
||||
waiting: VecMap<ImplKey, VecSet<Variable>>,
|
||||
uls_of_var: UlsOfVar,
|
||||
}
|
||||
|
||||
impl AwaitingSpecializations {
|
||||
pub fn remove_for_specialized(&mut self, subs: &Subs, impl_key: ImplKey) -> UlsOfVar {
|
||||
let spec_variables = self
|
||||
.waiting
|
||||
.remove(&impl_key)
|
||||
.map(|(_, set)| set)
|
||||
.unwrap_or_default();
|
||||
|
||||
let mut result = UlsOfVar::default();
|
||||
for var in spec_variables {
|
||||
let target_lambda_sets = self
|
||||
.uls_of_var
|
||||
.remove_dependent_unspecialized_lambda_sets(subs, var);
|
||||
|
||||
result.extend(var, target_lambda_sets);
|
||||
}
|
||||
result
|
||||
}
|
||||
|
||||
pub fn add(
|
||||
&mut self,
|
||||
impl_key: ImplKey,
|
||||
var: Variable,
|
||||
lambda_sets: impl IntoIterator<Item = Variable>,
|
||||
) {
|
||||
self.uls_of_var.extend(var, lambda_sets);
|
||||
let waiting = self.waiting.get_or_insert(impl_key, Default::default);
|
||||
waiting.insert(var);
|
||||
}
|
||||
|
||||
pub fn union(&mut self, other: Self) {
|
||||
for (impl_key, waiting_vars) in other.waiting {
|
||||
let waiting = self.waiting.get_or_insert(impl_key, Default::default);
|
||||
waiting.extend(waiting_vars);
|
||||
}
|
||||
self.uls_of_var.union(other.uls_of_var);
|
||||
}
|
||||
|
||||
pub fn waiting_for(&self, impl_key: ImplKey) -> bool {
|
||||
self.waiting.contains_key(&impl_key)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct CompactionResult {
|
||||
pub obligations: MustImplementConstraints,
|
||||
pub awaiting_specialization: AwaitingSpecializations,
|
||||
}
|
||||
|
||||
#[cfg(debug_assertions)]
|
||||
fn trace_compaction_step_1(subs: &Subs, c_a: Variable, uls_a: &[Variable]) {
|
||||
let c_a = roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(c_a), subs);
|
||||
let uls_a = uls_a
|
||||
.iter()
|
||||
.map(|v| {
|
||||
format!(
|
||||
"{:?}",
|
||||
roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(*v), subs)
|
||||
)
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
.join(",");
|
||||
eprintln!("===lambda set compaction===");
|
||||
eprintln!(" concrete type: {:?}", c_a);
|
||||
eprintln!(" step 1:");
|
||||
eprintln!(" uls_a = {{ {} }}", uls_a);
|
||||
}
|
||||
|
||||
#[cfg(debug_assertions)]
|
||||
fn trace_compaction_step_2(subs: &Subs, uls_a: &[Variable]) {
|
||||
let uls_a = uls_a
|
||||
.iter()
|
||||
.map(|v| {
|
||||
format!(
|
||||
"{:?}",
|
||||
roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(*v), subs)
|
||||
)
|
||||
})
|
||||
.collect::<Vec<_>>()
|
||||
.join(",");
|
||||
eprintln!(" step 2:");
|
||||
eprintln!(" uls_a' = {{ {} }}", uls_a);
|
||||
}
|
||||
|
||||
#[cfg(debug_assertions)]
|
||||
fn trace_compaction_step_3start() {
|
||||
eprintln!(" step 3:");
|
||||
}
|
||||
|
||||
#[cfg(debug_assertions)]
|
||||
fn trace_compaction_step_3iter_start(
|
||||
subs: &Subs,
|
||||
iteration_lambda_set: Variable,
|
||||
t_f1: Variable,
|
||||
t_f2: Variable,
|
||||
) {
|
||||
let iteration_lambda_set = roc_types::subs::SubsFmtContent(
|
||||
subs.get_content_without_compacting(iteration_lambda_set),
|
||||
subs,
|
||||
);
|
||||
let t_f1 = roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(t_f1), subs);
|
||||
let t_f2 = roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(t_f2), subs);
|
||||
eprintln!(" - iteration: {:?}", iteration_lambda_set);
|
||||
eprintln!(" {:?}", t_f1);
|
||||
eprintln!(" ~ {:?}", t_f2);
|
||||
}
|
||||
|
||||
#[cfg(debug_assertions)]
|
||||
#[rustfmt::skip]
|
||||
fn trace_compaction_step_3iter_end(subs: &Subs, t_f_result: Variable, skipped: bool) {
|
||||
let t_f_result =
|
||||
roc_types::subs::SubsFmtContent(subs.get_content_without_compacting(t_f_result), subs);
|
||||
if skipped {
|
||||
eprintln!(" SKIP");
|
||||
}
|
||||
eprintln!(" = {:?}\n", t_f_result);
|
||||
}
|
||||
|
||||
macro_rules! trace_compact {
|
||||
(1. $subs:expr, $c_a:expr, $uls_a:expr) => {{
|
||||
dbg_do!(ROC_TRACE_COMPACTION, {
|
||||
trace_compaction_step_1($subs, $c_a, $uls_a)
|
||||
})
|
||||
}};
|
||||
(2. $subs:expr, $uls_a:expr) => {{
|
||||
dbg_do!(ROC_TRACE_COMPACTION, {
|
||||
trace_compaction_step_2($subs, $uls_a)
|
||||
})
|
||||
}};
|
||||
(3start.) => {{
|
||||
dbg_do!(ROC_TRACE_COMPACTION, { trace_compaction_step_3start() })
|
||||
}};
|
||||
(3iter_start. $subs:expr, $iteration_lset:expr, $t_f1:expr, $t_f2:expr) => {{
|
||||
dbg_do!(ROC_TRACE_COMPACTION, {
|
||||
trace_compaction_step_3iter_start($subs, $iteration_lset, $t_f1, $t_f2)
|
||||
})
|
||||
}};
|
||||
(3iter_end. $subs:expr, $t_f_result:expr) => {{
|
||||
dbg_do!(ROC_TRACE_COMPACTION, {
|
||||
trace_compaction_step_3iter_end($subs, $t_f_result, false)
|
||||
})
|
||||
}};
|
||||
(3iter_end_skipped. $subs:expr, $t_f_result:expr) => {{
|
||||
dbg_do!(ROC_TRACE_COMPACTION, {
|
||||
trace_compaction_step_3iter_end($subs, $t_f_result, true)
|
||||
})
|
||||
}};
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn iter_concrete_of_unspecialized<'a>(
|
||||
subs: &'a Subs,
|
||||
c_a: Variable,
|
||||
uls: &'a [Uls],
|
||||
) -> impl Iterator<Item = &'a Uls> {
|
||||
uls.iter()
|
||||
.filter(move |Uls(var, _, _)| subs.equivalent_without_compacting(*var, c_a))
|
||||
}
|
||||
|
||||
/// Gets the unique unspecialized lambda resolving to concrete type `c_a` in a list of
|
||||
/// unspecialized lambda sets.
|
||||
#[inline(always)]
|
||||
fn unique_unspecialized_lambda(subs: &Subs, c_a: Variable, uls: &[Uls]) -> Option<Uls> {
|
||||
let mut iter_concrete = iter_concrete_of_unspecialized(subs, c_a, uls);
|
||||
let uls = iter_concrete.next()?;
|
||||
debug_assert!(iter_concrete.next().is_none(), "multiple concrete");
|
||||
Some(*uls)
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
pub fn compact_lambda_sets_of_vars<P: Phase>(
|
||||
subs: &mut Subs,
|
||||
derived_env: &DerivedEnv,
|
||||
arena: &Bump,
|
||||
pools: &mut Pools,
|
||||
uls_of_var: UlsOfVar,
|
||||
phase: &P,
|
||||
) -> CompactionResult {
|
||||
let mut must_implement = MustImplementConstraints::default();
|
||||
let mut awaiting_specialization = AwaitingSpecializations::default();
|
||||
|
||||
let mut uls_of_var_queue = VecDeque::with_capacity(uls_of_var.len());
|
||||
uls_of_var_queue.extend(uls_of_var.drain());
|
||||
|
||||
// Suppose a type variable `a` with `uls_of_var` mapping `uls_a = {l1, ... ln}` has been instantiated to a concrete type `C_a`.
|
||||
while let Some((c_a, uls_a)) = uls_of_var_queue.pop_front() {
|
||||
let c_a = subs.get_root_key_without_compacting(c_a);
|
||||
// 1. Let each `l` in `uls_a` be of form `[solved_lambdas + ... + C:f:r + ...]`.
|
||||
// NB: There may be multiple unspecialized lambdas of form `C:f:r, C:f1:r1, ..., C:fn:rn` in `l`.
|
||||
// In this case, let `t1, ... tm` be the other unspecialized lambdas not of form `C:_:_`,
|
||||
// that is, none of which are now specialized to the type `C`. Then, deconstruct
|
||||
// `l` such that `l' = [solved_lambdas + t1 + ... + tm + C:f:r]` and `l1 = [[] + C:f1:r1], ..., ln = [[] + C:fn:rn]`.
|
||||
// Replace `l` with `l', l1, ..., ln` in `uls_a`, flattened.
|
||||
// TODO: the flattening step described above
|
||||
let uls_a = {
|
||||
let mut uls = uls_a.into_vec();
|
||||
|
||||
// De-duplicate lambdas by root key.
|
||||
uls.iter_mut().for_each(|v| *v = subs.get_root_key(*v));
|
||||
uls.sort();
|
||||
uls.dedup();
|
||||
uls
|
||||
};
|
||||
|
||||
trace_compact!(1. subs, c_a, &uls_a);
|
||||
|
||||
// The flattening step - remove lambda sets that don't reference the concrete var, and for
|
||||
// flatten lambda sets that reference it more than once.
|
||||
let mut uls_a: Vec<_> = uls_a
|
||||
.into_iter()
|
||||
.flat_map(|lambda_set| {
|
||||
let LambdaSet {
|
||||
solved,
|
||||
recursion_var,
|
||||
unspecialized,
|
||||
ambient_function,
|
||||
} = subs.get_lambda_set(lambda_set);
|
||||
let lambda_set_rank = subs.get_rank(lambda_set);
|
||||
let unspecialized = subs.get_subs_slice(unspecialized);
|
||||
// TODO: is it faster to traverse once, see if we only have one concrete lambda, and
|
||||
// bail in that happy-path, rather than always splitting?
|
||||
let (concrete, mut not_concrete): (Vec<_>, Vec<_>) = unspecialized
|
||||
.iter()
|
||||
.copied()
|
||||
.partition(|Uls(var, _, _)| subs.equivalent_without_compacting(*var, c_a));
|
||||
if concrete.len() == 1 {
|
||||
// No flattening needs to be done, just return the lambda set as-is
|
||||
return vec![lambda_set];
|
||||
}
|
||||
// Must flatten
|
||||
concrete
|
||||
.into_iter()
|
||||
.enumerate()
|
||||
.map(|(i, concrete_lambda)| {
|
||||
let (var, unspecialized) = if i == 0 {
|
||||
// The first lambda set contains one concrete lambda, plus all solved
|
||||
// lambdas, plus all other unspecialized lambdas.
|
||||
// l' = [solved_lambdas + t1 + ... + tm + C:f:r]
|
||||
let unspecialized = SubsSlice::extend_new(
|
||||
&mut subs.unspecialized_lambda_sets,
|
||||
not_concrete
|
||||
.drain(..)
|
||||
.chain(std::iter::once(concrete_lambda)),
|
||||
);
|
||||
(lambda_set, unspecialized)
|
||||
} else {
|
||||
// All the other lambda sets consists only of their respective concrete
|
||||
// lambdas.
|
||||
// ln = [[] + C:fn:rn]
|
||||
let unspecialized = SubsSlice::extend_new(
|
||||
&mut subs.unspecialized_lambda_sets,
|
||||
[concrete_lambda],
|
||||
);
|
||||
let var = subs.fresh(Descriptor {
|
||||
content: Content::Error,
|
||||
rank: lambda_set_rank,
|
||||
mark: Mark::NONE,
|
||||
copy: OptVariable::NONE,
|
||||
});
|
||||
(var, unspecialized)
|
||||
};
|
||||
|
||||
subs.set_content(
|
||||
var,
|
||||
Content::LambdaSet(LambdaSet {
|
||||
solved,
|
||||
recursion_var,
|
||||
unspecialized,
|
||||
ambient_function,
|
||||
}),
|
||||
);
|
||||
var
|
||||
})
|
||||
.collect()
|
||||
})
|
||||
.collect();
|
||||
|
||||
// 2. Now, each `l` in `uls_a` has a unique unspecialized lambda of form `C:f:r`.
|
||||
// Sort `uls_a` primarily by `f` (arbitrary order), and secondarily by `r` in descending order.
|
||||
uls_a.sort_by(|v1, v2| {
|
||||
let unspec_1 = subs.get_subs_slice(subs.get_lambda_set(*v1).unspecialized);
|
||||
let unspec_2 = subs.get_subs_slice(subs.get_lambda_set(*v2).unspecialized);
|
||||
|
||||
let Uls(_, f1, r1) = unique_unspecialized_lambda(subs, c_a, unspec_1).unwrap();
|
||||
let Uls(_, f2, r2) = unique_unspecialized_lambda(subs, c_a, unspec_2).unwrap();
|
||||
|
||||
match f1.cmp(&f2) {
|
||||
std::cmp::Ordering::Equal => {
|
||||
// Order by descending order of region.
|
||||
r2.cmp(&r1)
|
||||
}
|
||||
ord => ord,
|
||||
}
|
||||
});
|
||||
|
||||
trace_compact!(2. subs, &uls_a);
|
||||
|
||||
// 3. For each `l` in `uls_a` with unique unspecialized lambda `C:f:r`:
|
||||
// 1. Let `t_f1` be the directly ambient function of the lambda set containing `C:f:r`. Remove `C:f:r` from `t_f1`'s lambda set.
|
||||
// - For example, `(b' -[[] + Fo:f:2]-> {})` if `C:f:r=Fo:f:2`. Removing `Fo:f:2`, we get `(b' -[[]]-> {})`.
|
||||
// 2. Let `t_f2` be the directly ambient function of the specialization lambda set resolved by `C:f:r`.
|
||||
// - For example, `(b -[[] + b:g:1]-> {})` if `C:f:r=Fo:f:2`, running on example from above.
|
||||
// 3. Unify `t_f1 ~ t_f2`.
|
||||
trace_compact!(3start.);
|
||||
for l in uls_a {
|
||||
let compaction_result =
|
||||
compact_lambda_set(subs, derived_env, arena, pools, c_a, l, phase);
|
||||
|
||||
match compaction_result {
|
||||
OneCompactionResult::Compacted {
|
||||
new_obligations,
|
||||
new_lambda_sets_to_specialize,
|
||||
} => {
|
||||
must_implement.extend(new_obligations);
|
||||
uls_of_var_queue.extend(new_lambda_sets_to_specialize.drain());
|
||||
}
|
||||
OneCompactionResult::MustWaitForSpecialization(impl_key) => {
|
||||
awaiting_specialization.add(impl_key, c_a, [l])
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
CompactionResult {
|
||||
obligations: must_implement,
|
||||
awaiting_specialization,
|
||||
}
|
||||
}
|
||||
|
||||
enum OneCompactionResult {
|
||||
Compacted {
|
||||
new_obligations: MustImplementConstraints,
|
||||
new_lambda_sets_to_specialize: UlsOfVar,
|
||||
},
|
||||
MustWaitForSpecialization(ImplKey),
|
||||
}
|
||||
|
||||
#[must_use]
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn compact_lambda_set<P: Phase>(
|
||||
subs: &mut Subs,
|
||||
derived_env: &DerivedEnv,
|
||||
arena: &Bump,
|
||||
pools: &mut Pools,
|
||||
resolved_concrete: Variable,
|
||||
this_lambda_set: Variable,
|
||||
phase: &P,
|
||||
) -> OneCompactionResult {
|
||||
// 3. For each `l` in `uls_a` with unique unspecialized lambda `C:f:r`:
|
||||
// 1. Let `t_f1` be the directly ambient function of the lambda set containing `C:f:r`. Remove `C:f:r` from `t_f1`'s lambda set.
|
||||
// - For example, `(b' -[[] + Fo:f:2]-> {})` if `C:f:r=Fo:f:2`. Removing `Fo:f:2`, we get `(b' -[[]]-> {})`.
|
||||
// 2. Let `t_f2` be the directly ambient function of the specialization lambda set resolved by `C:f:r`.
|
||||
// - For example, `(b -[[] + b:g:1]-> {})` if `C:f:r=Fo:f:2`, from the algorithm's running example.
|
||||
// 3. Unify `t_f1 ~ t_f2`.
|
||||
let LambdaSet {
|
||||
solved,
|
||||
recursion_var,
|
||||
unspecialized,
|
||||
ambient_function: t_f1,
|
||||
} = subs.get_lambda_set(this_lambda_set);
|
||||
let target_rank = subs.get_rank(this_lambda_set);
|
||||
|
||||
debug_assert!(!unspecialized.is_empty());
|
||||
|
||||
let unspecialized = subs.get_subs_slice(unspecialized);
|
||||
|
||||
// 1. Let `t_f1` be the directly ambient function of the lambda set containing `C:f:r`.
|
||||
let Uls(c, f, r) = unique_unspecialized_lambda(subs, resolved_concrete, unspecialized).unwrap();
|
||||
|
||||
debug_assert!(subs.equivalent_without_compacting(c, resolved_concrete));
|
||||
|
||||
// Now decide: do we
|
||||
// - proceed with specialization
|
||||
// - simply drop the specialization lambda set (due to an error)
|
||||
// - or do we need to wait, because we don't know enough information for the specialization yet?
|
||||
let specialization_decision = make_specialization_decision(subs, phase, c, f);
|
||||
let specialization_key_or_drop = match specialization_decision {
|
||||
SpecializeDecision::Specialize(key) => Ok(key),
|
||||
SpecializeDecision::Drop => Err(()),
|
||||
SpecializeDecision::PendingSpecialization(impl_key) => {
|
||||
// Bail, we need to wait for the specialization to be known.
|
||||
return OneCompactionResult::MustWaitForSpecialization(impl_key);
|
||||
}
|
||||
};
|
||||
|
||||
// 1b. Remove `C:f:r` from `t_f1`'s lambda set.
|
||||
let new_unspecialized: Vec<_> = unspecialized
|
||||
.iter()
|
||||
.filter(|Uls(v, _, _)| !subs.equivalent_without_compacting(*v, resolved_concrete))
|
||||
.copied()
|
||||
.collect();
|
||||
debug_assert_eq!(new_unspecialized.len(), unspecialized.len() - 1);
|
||||
let t_f1_lambda_set_without_concrete = LambdaSet {
|
||||
solved,
|
||||
recursion_var,
|
||||
unspecialized: SubsSlice::extend_new(
|
||||
&mut subs.unspecialized_lambda_sets,
|
||||
new_unspecialized,
|
||||
),
|
||||
ambient_function: t_f1,
|
||||
};
|
||||
subs.set_content(
|
||||
this_lambda_set,
|
||||
Content::LambdaSet(t_f1_lambda_set_without_concrete),
|
||||
);
|
||||
|
||||
let specialization_key = match specialization_key_or_drop {
|
||||
Ok(specialization_key) => specialization_key,
|
||||
Err(()) => {
|
||||
// Do nothing other than to remove the concrete lambda to drop from the lambda set,
|
||||
// which we already did in 1b above.
|
||||
trace_compact!(3iter_end_skipped. subs, t_f1);
|
||||
return OneCompactionResult::Compacted {
|
||||
new_obligations: Default::default(),
|
||||
new_lambda_sets_to_specialize: Default::default(),
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
let specialization_ambient_function_var = get_specialization_lambda_set_ambient_function(
|
||||
subs,
|
||||
derived_env,
|
||||
phase,
|
||||
f,
|
||||
r,
|
||||
specialization_key,
|
||||
target_rank,
|
||||
);
|
||||
|
||||
let t_f2 = match specialization_ambient_function_var {
|
||||
Ok(lset) => lset,
|
||||
Err(()) => {
|
||||
// Do nothing other than to remove the concrete lambda to drop from the lambda set,
|
||||
// which we already did in 1b above.
|
||||
trace_compact!(3iter_end_skipped. subs, t_f1);
|
||||
return OneCompactionResult::Compacted {
|
||||
new_obligations: Default::default(),
|
||||
new_lambda_sets_to_specialize: Default::default(),
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
// Ensure the specialized ambient function we'll unify with is not a generalized one, but one
|
||||
// at the rank of the lambda set being compacted.
|
||||
let t_f2 = deep_copy_var_in(subs, target_rank, pools, t_f2, arena);
|
||||
|
||||
// 3. Unify `t_f1 ~ t_f2`.
|
||||
trace_compact!(3iter_start. subs, this_lambda_set, t_f1, t_f2);
|
||||
let (vars, new_obligations, new_lambda_sets_to_specialize, _meta) = unify(
|
||||
&mut UEnv::new(subs),
|
||||
t_f1,
|
||||
t_f2,
|
||||
Mode::LAMBDA_SET_SPECIALIZATION,
|
||||
)
|
||||
.expect_success("ambient functions don't unify");
|
||||
trace_compact!(3iter_end. subs, t_f1);
|
||||
|
||||
introduce(subs, target_rank, pools, &vars);
|
||||
|
||||
OneCompactionResult::Compacted {
|
||||
new_obligations,
|
||||
new_lambda_sets_to_specialize,
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
enum SpecializationTypeKey {
|
||||
Opaque(Symbol),
|
||||
Derived(DeriveKey),
|
||||
Immediate(Symbol),
|
||||
}
|
||||
|
||||
enum SpecializeDecision {
|
||||
Specialize(SpecializationTypeKey),
|
||||
Drop,
|
||||
|
||||
/// Only relevant during module solving of recursive defs - we don't yet know the
|
||||
/// specialization type for a declared ability implementation, so we must hold off on
|
||||
/// specialization.
|
||||
PendingSpecialization(ImplKey),
|
||||
}
|
||||
|
||||
fn make_specialization_decision<P: Phase>(
|
||||
subs: &Subs,
|
||||
phase: &P,
|
||||
var: Variable,
|
||||
ability_member: Symbol,
|
||||
) -> SpecializeDecision {
|
||||
use Content::*;
|
||||
use SpecializationTypeKey::*;
|
||||
match subs.get_content_without_compacting(var) {
|
||||
Alias(opaque, _, _, AliasKind::Opaque) if opaque.module_id() != ModuleId::NUM => {
|
||||
if P::IS_LATE {
|
||||
SpecializeDecision::Specialize(Opaque(*opaque))
|
||||
} else {
|
||||
// Solving within a module.
|
||||
phase.with_module_abilities_store(opaque.module_id(), |abilities_store| {
|
||||
let impl_key = ImplKey {
|
||||
opaque: *opaque,
|
||||
ability_member,
|
||||
};
|
||||
match abilities_store.get_implementation(impl_key) {
|
||||
None => {
|
||||
// Doesn't specialize; an error will already be reported for this.
|
||||
SpecializeDecision::Drop
|
||||
}
|
||||
Some(MemberImpl::Error | MemberImpl::Derived) => {
|
||||
// TODO: probably not right, we may want to choose a derive decision!
|
||||
SpecializeDecision::Specialize(Opaque(*opaque))
|
||||
}
|
||||
Some(MemberImpl::Impl(specialization_symbol)) => {
|
||||
match abilities_store.specialization_info(*specialization_symbol) {
|
||||
Some(_) => SpecializeDecision::Specialize(Opaque(*opaque)),
|
||||
|
||||
// If we expect a specialization impl but don't yet know it, we must hold off
|
||||
// compacting the lambda set until the specialization is well-known.
|
||||
None => SpecializeDecision::PendingSpecialization(impl_key),
|
||||
}
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
Structure(_) | Alias(_, _, _, _) => {
|
||||
// This is a structural type, find the name of the derived ability function it
|
||||
// should use.
|
||||
match roc_derive_key::Derived::builtin(DeriveBuiltin::ToEncoder, subs, var) {
|
||||
Ok(derived) => match derived {
|
||||
roc_derive_key::Derived::Immediate(imm) => {
|
||||
SpecializeDecision::Specialize(Immediate(imm))
|
||||
// todo!("deal with lambda set extraction from immediates")
|
||||
}
|
||||
roc_derive_key::Derived::Key(derive_key) => {
|
||||
SpecializeDecision::Specialize(Derived(derive_key))
|
||||
}
|
||||
},
|
||||
Err(DeriveError::UnboundVar) => {
|
||||
// not specialized yet, but that also means that it can't possibly be derivable
|
||||
// at this point?
|
||||
// TODO: is this right? Revisit if it causes us problems in the future.
|
||||
SpecializeDecision::Drop
|
||||
}
|
||||
Err(DeriveError::Underivable) => {
|
||||
// we should have reported an error for this; drop the lambda set.
|
||||
SpecializeDecision::Drop
|
||||
}
|
||||
}
|
||||
}
|
||||
Error => SpecializeDecision::Drop,
|
||||
FlexAbleVar(_, _)
|
||||
| RigidAbleVar(..)
|
||||
| FlexVar(..)
|
||||
| RigidVar(..)
|
||||
| RecursionVar { .. }
|
||||
| LambdaSet(..)
|
||||
| RangedNumber(..) => {
|
||||
internal_error!("unexpected")
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
fn get_specialization_lambda_set_ambient_function<P: Phase>(
|
||||
subs: &mut Subs,
|
||||
derived_env: &DerivedEnv,
|
||||
phase: &P,
|
||||
ability_member: Symbol,
|
||||
lset_region: u8,
|
||||
specialization_key: SpecializationTypeKey,
|
||||
target_rank: Rank,
|
||||
) -> Result<Variable, ()> {
|
||||
match specialization_key {
|
||||
SpecializationTypeKey::Opaque(opaque) => {
|
||||
let opaque_home = opaque.module_id();
|
||||
let external_specialized_lset =
|
||||
phase.with_module_abilities_store(opaque_home, |abilities_store| {
|
||||
let impl_key = roc_can::abilities::ImplKey {
|
||||
opaque,
|
||||
ability_member,
|
||||
};
|
||||
let opt_specialization =
|
||||
abilities_store.get_implementation(impl_key);
|
||||
match opt_specialization {
|
||||
None => {
|
||||
if P::IS_LATE {
|
||||
internal_error!(
|
||||
"expected to know a specialization for {:?}#{:?}, but it wasn't found",
|
||||
opaque,
|
||||
ability_member
|
||||
);
|
||||
} else {
|
||||
// doesn't specialize, we'll have reported an error for this
|
||||
Err(())
|
||||
}
|
||||
}
|
||||
Some(member_impl) => match member_impl {
|
||||
MemberImpl::Impl(spec_symbol) => {
|
||||
let specialization =
|
||||
abilities_store.specialization_info(*spec_symbol).expect("expected custom implementations to always have complete specialization info by this point");
|
||||
|
||||
let specialized_lambda_set = *specialization
|
||||
.specialization_lambda_sets
|
||||
.get(&lset_region)
|
||||
.expect("lambda set region not resolved");
|
||||
Ok(specialized_lambda_set)
|
||||
}
|
||||
MemberImpl::Derived => todo_abilities!(),
|
||||
MemberImpl::Error => todo_abilities!(),
|
||||
},
|
||||
}
|
||||
})?;
|
||||
|
||||
let specialized_ambient = phase.copy_lambda_set_ambient_function_to_home_subs(
|
||||
external_specialized_lset,
|
||||
opaque_home,
|
||||
subs,
|
||||
);
|
||||
|
||||
Ok(specialized_ambient)
|
||||
}
|
||||
|
||||
SpecializationTypeKey::Derived(derive_key) => {
|
||||
let mut derived_module = derived_env.derived_module.lock().unwrap();
|
||||
|
||||
let (_, _, specialization_lambda_sets) =
|
||||
derived_module.get_or_insert(derived_env.exposed_types, derive_key);
|
||||
|
||||
let specialized_lambda_set = *specialization_lambda_sets
|
||||
.get(&lset_region)
|
||||
.expect("lambda set region not resolved");
|
||||
|
||||
let specialized_ambient = derived_module.copy_lambda_set_ambient_function_to_subs(
|
||||
specialized_lambda_set,
|
||||
subs,
|
||||
target_rank,
|
||||
);
|
||||
|
||||
Ok(specialized_ambient)
|
||||
}
|
||||
|
||||
SpecializationTypeKey::Immediate(imm) => {
|
||||
// Immediates are like opaques in that we can simply look up their type definition in
|
||||
// the ability store, there is nothing new to synthesize.
|
||||
//
|
||||
// THEORY: if something can become an immediate, it will always be available in the
|
||||
// local ability store, because the transformation is local (?)
|
||||
let immediate_lambda_set_at_region =
|
||||
phase.get_and_copy_ability_member_ambient_function(imm, lset_region, subs);
|
||||
|
||||
Ok(immediate_lambda_set_at_region)
|
||||
}
|
||||
}
|
||||
}
|
@ -7370,10 +7370,10 @@ mod solve_expr {
|
||||
E#k(10) : E -[[k(10)]]-> {}
|
||||
a : j | j has J
|
||||
b : j | j has J
|
||||
it : k -[[] + j:j(2):2 + a:j(2):2]-> {} | a has J, j has J, k has K
|
||||
J#j(2) : j -[[] + j:j(2):1]-> (k -[[] + j:j(2):2 + a:j(2):2]-> {}) | a has J, j has J, k has K
|
||||
J#j(2) : j -[[] + j:j(2):1]-> (k -[[] + a:j(2):2 + j:j(2):2]-> {}) | a has J, j has J, k has K
|
||||
it : k -[[] + j:j(2):2 + a:j(2):2]-> {} | a has J, j has J, k has K
|
||||
it : k -[[] + j:j(2):2 + j1:j(2):2]-> {} | j has J, j1 has J, k has K
|
||||
J#j(2) : j -[[] + j:j(2):1]-> (k -[[] + j:j(2):2 + j1:j(2):2]-> {}) | j has J, j1 has J, k has K
|
||||
J#j(2) : j -[[] + j:j(2):1]-> (k -[[] + j1:j(2):2 + j:j(2):2]-> {}) | j has J, j1 has J, k has K
|
||||
it : k -[[] + j:j(2):2 + j1:j(2):2]-> {} | j has J, j1 has J, k has K
|
||||
f : [A, B], C, D -[[f(11)]]-> (E -[[k(10)]]-> {})
|
||||
f A (@C {}) (@D {}) : E -[[k(10)]]-> {}
|
||||
main : {}
|
||||
@ -7439,10 +7439,10 @@ mod solve_expr {
|
||||
kF : F -[[kF(12)]]-> {}
|
||||
a : j | j has J
|
||||
b : j | j has J
|
||||
it : k -[[] + j:j(2):2 + a:j(2):2]-> {} | a has J, j has J, k has K
|
||||
J#j(2) : j -[[] + j:j(2):1]-> (k -[[] + j:j(2):2 + a:j(2):2]-> {}) | a has J, j has J, k has K
|
||||
J#j(2) : j -[[] + j:j(2):1]-> (k -[[] + a:j(2):2 + j:j(2):2]-> {}) | a has J, j has J, k has K
|
||||
it : k -[[] + j:j(2):2 + a:j(2):2]-> {} | a has J, j has J, k has K
|
||||
it : k -[[] + j:j(2):2 + j1:j(2):2]-> {} | j has J, j1 has J, k has K
|
||||
J#j(2) : j -[[] + j:j(2):1]-> (k -[[] + j:j(2):2 + j1:j(2):2]-> {}) | j has J, j1 has J, k has K
|
||||
J#j(2) : j -[[] + j:j(2):1]-> (k -[[] + j1:j(2):2 + j:j(2):2]-> {}) | j has J, j1 has J, k has K
|
||||
it : k -[[] + j:j(2):2 + j1:j(2):2]-> {} | j has J, j1 has J, k has K
|
||||
main : {}
|
||||
it : k -[[] + k:k(4):1]-> {} | k has K
|
||||
f : [A, B], C, D -[[f(13)]]-> (k -[[] + k:k(4):1]-> {}) | k has K
|
||||
|
Loading…
Reference in New Issue
Block a user